用户名: 密码: 验证码:
不同根管桩弯曲性能及两种纤维桩粘结性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究Pontic制作的纤维根管桩与五种根管桩的弯曲强度和弯曲模量,并研究成品玻璃纤维根管桩和Pontic自制纤维根管桩的剪切粘结强度,为Pontic制作纤维桩的临床应用提供理论基础。
     方法(1)在自制的玻璃模具上,采用Pontic制作纤维根管桩。(2)用三点弯曲的方法,在Pontic自制纤维根管桩的中央加载,加载速度为1.0mm/min,直至试样断裂,记录最大载荷值。在同条件下测试不同直径的成品玻璃纤维根管桩、成品氧化锆根管桩、成品不锈钢根管桩、成品钛合金根管桩和铸造Ni-Cr合金根管桩的最大载荷,进行各种根管桩弯曲强度和弯曲模量的比较。(3)选取20颗新鲜完整离体上颌中切牙,经根管治疗、根管预备后随机分为两组,成品玻璃纤维根管桩和Pontic自制纤维根管桩组。两组均用Rely X Unicem粘结剂将纤维桩粘于根管内。经慢速切割机连续切割出厚度为1.5mm的三片薄片S1, S2和S3后,用微推出的方法,在纤维桩中央加载,直至纤维桩完全从根管中推出,加载速度为0.5mm/min,记录最大载荷值。(4)采用双因素方差分析和单因素方差分析对实验结果进行统计处理。
     结果(1)各种根管桩弯曲强度的范围分别是:Pontic自制纤维根管桩为585~ 616MPa,成品玻璃纤维根管桩为519~1081MPa,成品氧化锆根管桩为939~1265 MPa,成品不锈钢根管桩为1649~2265MPa,成品钛合金根管桩为1411~2156MPa,铸造Ni-Cr合金根管桩为1336~1949MPa;经双因素方差分析各测试组的弯曲强度有显著性差异(P<0.05)。(2)各种根管桩弯曲模量的范围分别是:Pontic自制纤维根管桩为16~20GPa,成品玻璃纤维根管桩为21~36GPa,成品氧化锆根管桩为74~125GPa,成品不锈钢根管桩为32~98GPa,成品钛合金根管桩为42~63GPa,铸造Ni-Cr合金根管桩为34~98GPa;经双因素方差分析各测试组的弯曲模量有显著性差异(P<0.05)。(3)成品玻璃纤维桩的剪切粘结强度为8.61±3.33MPa,Pontic自制纤维根管桩的剪切粘结强度为6.36±3.05MPa,两种纤维桩的剪切粘结强度有显著性差异(P<0.05)。在S1段,成品玻璃纤维根管桩的剪切粘结强度为8.08±3.61MPa,Pontic自制纤维根管桩为8.13±3.32MPa;在S2段,成品玻璃纤维根管桩的剪切粘结强度为9.32±4.06MPa,Pontic自制纤维根管桩为6.79±2.96MPa;在S1和S2段,两种纤维桩的剪切粘结强度均无显著性差异(P>0.05)。在S3段,成品玻璃纤维根管桩的剪切粘结强度为8.44±2.34MPa,Pontic自制纤维根管桩为4.19±1.22MPa,两种纤维桩的剪切粘结强度有显著性差异(P<0.05)。
     结论(1)金属根管桩拥有较高的弯曲强度,氧化锆根管桩次之,纤维根管桩的弯曲强度较低,各组根管桩的弯曲强度均达到临床使用要求。(2)弯曲模量最高的是氧化锆根管桩,其次为金属根管桩,纤维根管桩的较低,两种纤维根管桩的弯曲模量与牙本质较匹配,有利于保护牙根。(3)应用Rely X Unicem粘结剂,成品玻璃纤维根管桩和Pontic自制纤维根管桩与根管形成良好粘结
Objective The aim of this study was to investigate the flexural strength and the flexural modulus of 6 kinds root canal post and the bond strength of 2 kinds of fiber reinforced root canal post, and to provide theoretical ground for applying Pontic fiber post to clinical use.
     Methods (1) Pontic fiber posts were made by self-made glass pattern; (2) Pontic fiber posts were loaded to failure in a three-point bending test. The crosshead speed is 1.0 mm/min. The same test repeated with glass fiber posts, zirconia posts, Ni-Cr alloy cast posts, stainless steel posts and titanium posts; (3) Twenty extracted human maxillary central incisors were selected and then canines were endodontically treated. Following standardized post space preparations, teeth were divided into two equal groups, and then glass fiber posts and Pontic fiber posts were placed in the treated canines using Rely X Unicem. Three slices of 1.5mm height were cut perpendicular to the post from each restored root. The bond strength was determined by pushing out test. The crosshead speed is 0.5 mm/min. (4)Data were statistically analyzed using two-way analysis of variance(ANOVA) and one-way analysis of variance.
     Results (1) The ANOVA test analysis revealed significant differences between groups (P < 0.05) for flexural strength mean values. Yield flexural strength of the 6 kinds post as follows:Pontic fiber post were 585 to 616MPa, glass fiber post were 519 to 1081MPa, zirconia post were 939 to 1265MPa, stainless steel posts were 1649 to 2265Mpa, titanium posts were 1411 to 2156MPa, Ni-Cr alloy cast posts were 1336 to 1949MPa. (2)The ANOVA test analysis revealed significant differences between groups (P < 0.05) for flexural modulus mean values. Yield flexural modulus of the 6 kinds post as follows: Pontic fiber posts were 16 to 20Gpa, glass fiber posts were 21 to 36GPa, zirconia posts were 74 to 125GPa, stainless steel posts were 32 to 98GPa, titanium posts were 42 to 63GPa, Ni-Cr alloy cast posts were 34 to 98GPa. (3) The ANOVA test analysis revealed significant differences between the two group in mean bond strengths (P>0.05), the bond strength for glass fiber post was 8.61±3.33MPa, and for Pontic fiber post was 6.36±3.05MPa. At the coronal third, the ANOVA test analysis revealed significant differences between the two post, the bond strength of glass fiber post was 8.44±2.34MPa, that of Pontic fiber post was 4.19±1.22MPa (P < 0.05); at the middle third and the apical third, the ANOVA test analysis revealed no statistically significant difference in mean bond strengths (P>0.05), at the middle third, the bond strength of glass fiber post was 9.32±4.06MPa, that of Pontic fiber post was 6.79±2.96MPa; at the apical third, the bond strength of glass fiber post was 8.08±3.61MPa, that of Pontic fiber post was 8.13±3.32MPa.
     Conclusions (1) The metal post has the highest flexural strength recorded, the next is zirconia post, fiber post is lower. Flexural strength of the 6 kinds post can meet clinical requirement. (2) Zirconia post had the highest flexural strength recorded, the next is those metal post, fiber post is lower. The flexture modulous of fiber post is more matching that of dentin. (3) Using Rely X Unicem, both glass fiber post and Pontic fiber post form good bond strength to dentin.
引文
1. 程祥荣. 非金属桩及其临床应用[J]. 中华口腔医学杂志, 2006, 6(41):336-338.
    2. Torbjorner A, Karlsson S, Syverud M, et al. Carbon fiber reinforced root canal posts. Mechanical and cytotoxic properties [J]. Eur J Oral Sci, 1996, 104(5-6): 605-611.
    3. Ricketts DN, Tait CM, Higgins J. Post and core systems, refinements to tooth preparation and cementation [J]. Br Dent J, 2005, 198(9):533-541.
    4. O'Keefe KL, Miller BH, Powers JM. In vitro tensile bond strength of adhesive cements to new post materials [J]. Int J Prosthodont, 2000, 13(1):47-51.
    5. 高虹,张振庭. 碳纤维复合树脂桩核与金属桩核修复牙体缺损的实验研究[J]. 口腔颌面修复学杂志, 2005, 2(6):26-29.
    6. 郭泽清,程祥荣等. 3 种桩核系统修复喇叭形根管的抗折性比较[J]. 武汉大学学报(医学版), 2004,7(25):423-434.
    7. 胡书海,畏田责幸等. 不同材质桩核修复漏斗状残根的抗疲劳强度[J].中华口腔医学杂志, 2005, 7(40):287-290.
    8. 程辉,程祥荣,章少萍. 超瓷材/纤维冠桥修复体临床疗效观察[J]. 中华医学美学美容杂志, 2004, 10(2):86-88.
    9. Behr M, Rosentritt M, Lang R, et al. Glass-fiber-reinforced-composite fixed partial dentures on dental implants [J]. Journal of Oral Rehabilitation, 2001, 28(10): 895-902.
    10. Monaco C, Ferrari M, Miceli GP, et al. Clinical Evaluation of Fiber-Reinforced Composite Inlay FPDs [J]. Int J Prosthodont, 2003, 16(3):319-325.
    11. Alander P, Lassila L. V. J, Vallittu P. K. The span length and cross-sectional design affect values of strength [J]. Dental Material, 2005, 21(4):347-353.
    12. 吴红霞,吴友农,陈培生. 纤维桩外形和深度对牙根应力分布影响的三维有限元分析[J]. 口腔医学研究, 2004, 20(4):382-385.
    13. Plotinoa G, Grandea N. M, Bedinib R, et al. Flexural properties of endodontic posts and human root dentin [J]. Dental Material, 2007, 23(9):1129-1135.
    14. Lassila L. V, Tanner J, et al. Flexural properties of fiber reinforced root canalposts [J]. Dental Material, 2004, 20(1):29-36.
    15. Manning KE, Yu DC, Yu HC, et al. Factors to consider for predictable post and core build-ups of endodontically treated teeth part: Clinical application of basic concepts [J]. J Can Dent Assoc, 1995, 61(8):696-701.
    16. Pierrisnard L, Bohin F, Renault P, et al. Corono-radicular reconstruction of pulpless teeth: A mechanical study using finite element analysis [J]. J Prosthet Dent, 2002, 88(4):442-448.
    17. 吴悦梅,张富强,宋宁等. 石英纤维根管桩复合材料的力学性能研究[J]. 上海口腔医学, 2006, 15(3):304-307.
    18. 王荣国. 复合材料概论[M]. 哈尔滨:哈尔滨工业大学出版社,1999: 78.
    19. Viguie G, Makquarti G, Vincent B. Epoxy/carbon composite resins in dentistry: mechanical properties related to fiber reinforcements [J]. J Prosthet Dent, 1994, 72(3):245-249.
    20. Monticelli F, Grandini S, Goracci C, et al. Clinical behavior of translucent-fiber posts: a 2-year prospective study [J]. Int J Prosthodont, 2003,16(6):593-596.
    21. Richard SS, James WR. Post placement and restoration of endodontically treated teeth: a literature review [J]. J Endod, 2004, 30(5):289-301.
    22. Goracci C, Grandini S, Bossù M, et al. Laboratory assessment of the retentive potential of adhesive posts: A review [J]. Journal of Dentistry, 2007, 35(11):827-835.
    23. Versluis A, Tantbirojn D, Douglas WH. Why do shear bond tests pull-out dentin? [J] Journal of Dental Research, 1997, 76(6):1298-1307.
    24. Bouillaguet S, Troesch S, Wataha JC. Microtensile bond strength between adhesive cements and root canal dentin [J]. Dent Mater, 2003, 19(3):199-205.
    25. Pashley DH, Carvalho RM, Sano H, et al. The microtensile bond test: a review [J]. Journal of Adhesive Dentistry, 1999, 1(4):299-309.
    26. Shono Y, Ogawa T, Terashita M, et al. Regional measurement of resin–dentin bonding as an array [J]. Journal of Dental Research, 1999, 78(2):699-705.
    27. Patierno JM, Rueggeberg FA, Anderson RW, et al. Push-out strength and SEM evaluation of resin composite bonded to internal cervical dentin [J]. Endod Dent Traumatol, 1996, 12(5):227-236.
    28. Goracci C, Tavares AU, Fabianelli A, et al. The adhesion between fiber posts and root canal walls: comparison between microtensile and push-out bond strength measurements [J]. Eur J Oral Sci, 2004, 112(4):353-361.
    29. Jorge Perdig ao, George Gomes, Vitor Augusto. The Effect of Dowel Space on the Bond Strengths of Fiber Posts [J]. Journal of Prosthodontics, 2007, 16(3): 154-164.
    30. Assif D, Ferber A. Retention of dowels using a composite resin as a cementing medium [J]. J Prosthet Dent, 1982, 48(3):292-296.
    31. Chan FW, Harcourt JK, Brockhurst PJ. The effect of post adaptation in the root canal on retention of posts cemented with various cements [J]. Aust Dent J, 1993,38(1):39-45.
    32. Assif D, Bleicher S. Retention of serrated endodontic posts with a composite luting agent: effect of cement thickness [J]. J Prosthet Dent, 1986,56(6): 689-691.
    33. Pirani C, Chersoni S, Foschi F, et al. Does hybridization of intraradicular dentin really improve fiber post retention in endodontically treated teeth? [J] J Endod, 2005, 31(12):891-894.
    34. Hagge MS, Wong RD, Lindemuth JS. Effect of dowel space preparation and composite cement thickness on retention of a prefabricated dowel [J]. J Prosthodont, 2002, 11(1):19-24.
    35. Pettiette MT, Philips C, Trope M. Effect of endodontic instrument taper on post retention [J]. J Endod, 2003, 29(1): 65-68.
    36. Mark S. Hagge, Ralan D.M, et al. Effect of dowel space proparation and composite cement thickness on retention of a prefabricated dowel [J]. J Prosthodontics, 2002, 11(1):19-24.
    37. Wang VJ, Chen YM, Yip KH, et al. Effect of two fiber post types and two luting cement systems on regional post retention using the push-out test [J]. Dent Mater, 2008, 24(3):372-377.
    38. DeMunck J, ValgasM, Van UnduytK. Bonding of anauto- adhesive luting material to enamel and dentin [J]. Dent Mater, 2004, 20(10):963-971.
    39. Masashi M, Ando S, Hinoura K, et al. Influence of filler addition to bondingagents on shear bond strength to bovine dentin [J]. Dent Mater, 1995, 11(4):234-238.
    40. Miyazaki M, Onose H, Iida N, et al. Determination of residual double bonds in resin-dentin interface by Raman spectroscopy [J]. Dent Mater, 2003, 19(3):245-251.
    41.李振春,房艳,吴漩等. 桩核粘接界面物理构象的实验研究[J]. 口腔材料器械杂志, 2006, 15(4):175-179.
    1. 陈治清. 口腔材料学[M]. 北京:人民卫生出版社,2003: 20.
    2. 王尊一,卫彦,邓旭亮等. 高温高压消毒对五种桩挠曲强度与弹性模量的影响[J]. 西安交通大学学报( 医学版) 2006, 27(1):90-92.
    3. Manning KE, Yu DC, Yu HC, et al. Factors to consider for predictable post and core build-ups of endodontically treated teeth part: Clinical application of basic concepts [J]. J Can Dent Assoc, 1995, 61 (8):696-701.
    4. Cormier C.J, Burns D.R, Moon P. In Vitro Comparison of the Fracture Resistance and Failure Mode of Fiber, Ceramic, and Conventional Post Systems at Various Stages of Restoration [J]. Journal of Prosthodontics. 2001, 10(1): 26-36.
    5. Plotinoa G, Grandea N.M, Bedinib R, et al. Flexural properties of endodontic posts and human root dentin [J]. dental mater 2007, 23(9): 1129-1135.
    6. 唐高妍,巢永烈等.四种桩材料对牙本质应力分布影响的三维有限元分析[J]. 华西口腔医学杂志, 1998, 8(16):259-261.
    7. Pegoretti A, Fambri L, Zappini G, et al. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials, 2002, 23: 2667 - 2628.
    8. 程祥荣.非金属桩及其临床应用[J].中华口腔医学杂志, 2006, 41(6): 336- 338.
    9. 李伟,陈吉华,郑亚萍等. 新型齿科纤维/树脂桩钉的应用设计及性能研究[J]. 口腔医学研究, 2004, 20(6):623-525.
    10. 高虹,张振庭. 碳纤维复合树脂桩核与金属桩核修复牙体缺损的实验研究[J]. 口腔颌面修复学杂志, 2005, 6(1):26-29.
    11. Purton DG, Payne JA. Comparison of carbon fiber and stainless steel root canal posts [J]. Quitessence Int, 1996, 27(2):93-97.
    12. Lassila L.V, Tanner J, et al. Flexural properties of fiber reinforced root canal posts [J]. Dental Mater, 2004, 20(1):29-36.
    13. Alander P, Lassila LV, et al. Acoustic emission analysis of fiber-reinforced composite in flexural testing [J]. Dental Mater, 2004, 20(4):305-312.
    14. Kwiatkowski S, Geller W. A preliminary consideration of the glass-ceramic dowel post and core [J]. Int J Prosthodont, 1989, 2(1):51-55.
    15. Christel P, Meunier A, Heller M, et al. Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-pertially-stabilized zirconnia [J]. J Biomed Master Res, 1989, 23(1):45-61.
    16. Filser F, Kocher P, Weibel F, et al. Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM) [J]. Int J Comput Dent, 2001, 4(2):89-106.
    17. Drummond J.L, Bapna M.S.Static and cyclic loading of fiber-reinforced dental resin [J]. Dent Mater, 2003,19(3):226-231
    18. Purton DG, Love RM, Chandler NP. Rigidity and retention of ceramic root canal posts [J]. Oper Dent. 2000, 25(3):223-227.
    19. John MP, Robert GC, Stifness. Elastic limit and strength of newer types of endodontic posts [J]. 1lth ed, Lous: Mosby, 2002:77-78.
    20. Torbjorner A, Karlsson S, Syverud M, et al. Carbon fiber reinforced root canal posts [J]. Eur J Sci Mechan Cytotoxic Properties, 1996,104:605-611.
    21. Mannocci F,Sherriff M,Watson TF.Three-point bending test of fiber posts [J]. J Endod. 2001, 27(12):758-761
    22. Galbano G, Valandro L, et al. Evaluation of the flexural strength of carbon fiber-, quartz fiber-, and glass fiber-based posts [J]. Basic Research- Technology, 2005, 31 (3):209-211.
    23. 陈吉华,李伟,郑亚萍. 不同弯曲度对牙科纤维增强复合材料桩钉性能的影响[J]. 中华口腔医学杂志, 2006, 41(6):331-332.
    24. Fischer H, Edelhoff D, Marx R. Mechanische Beanspruch barkeit von Zirkonoxid-Wurzelstiften [J]. Dtsch Zahnarztl, Z. 1998, 53(3):854-858.
    25. Sidoli G.E, King P.A, Setchell D.J. An in vitro evaluation of a carbon fiber-based post and core system [J]. J Prosthet Dent. 1997,78(1):5-9.
    26. S. M. Chung, A. U. J. Yap, S. P. Chandra et al. Flexural Strength of Dental Composite Restoratives: Comparison of Biaxial and Three-Point Bending Test [J]. J Biomed Mater Res B Appl Biomater. 2004, 71(2):278-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700