用户名: 密码: 验证码:
P53介导的ROS及线粒体通路在Azurin及其联合化疗药物诱导骨肉瘤细胞凋亡的机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     骨肉瘤因其恶性程度高、转移早,目前临床上治疗多采用手术配合化疗、放疗的综合疗法,但限于手术治疗的致残率高、假体功能差,放化疗毒副反应大,晚期肿瘤容易形成对化疗药物的耐受,极易复发,再次治疗也极为棘手,故而骨肉瘤的远期生存率较低,疗效难如人意,传统疗法的局限使得骨肉瘤的新型疗法如生物治疗、免疫治疗、基因治疗和微生物纯化产物治疗正日益成为研究和临床的焦点与热点。
     近年Yamada研究报道由假单孢细菌分泌的含铜细菌氧化还原蛋白Azurin,可以与P53蛋白结合形成复合体,抑制P53降解,从而稳定P53蛋白。它在体外细胞试验和体内荷瘤裸鼠实验中均可诱导P53野生型的单核巨噬细胞、黑色素瘤细胞、乳腺癌细胞凋亡,而在呈现P53突变或缺失的黑色素瘤细胞、乳腺癌细胞中细胞毒性大大降低,其细胞毒性具有明显的P53选择性。尤为关键的是,在恶性黑色素瘤细胞、乳腺癌细胞的裸鼠体内移植瘤瘤块中,野生型Azurin可以促使移植瘤退变,抑制移植瘤瘤块生长,诱导肿瘤细胞凋亡,而裸鼠体内却没有发现明显的毒副作用。这一发现为活菌产物纯化蛋白Azurin应用于临床肿瘤治疗带来了希望和前景。
     浙二骨科研究所杨迪生教授和苗旭东等人已经对Azurin蛋白在人骨肉瘤细胞中开展了一系列体外细胞实验研究。结果如下:Azurin抑制了骨肉瘤的生长,诱导P53野生型U20S细胞凋亡,而对正常肝脏L-02、P53突变型人骨肉瘤MG-63细胞毒性较小。对其分子机制的进一步研究发现:P53蛋白是其发挥凋亡效应的关键因素,Bax的线粒体移位、Bcl-2/Bax比例的下调、caspase-3,8活性增加、线粒体、细胞外Fas受体途径都参与了Azurin诱导U20S细胞凋亡的分子机制。
     野生型P53基因是一种抑癌基因,p53的主要功能在于阻滞细胞周期或者诱导细胞凋亡。在p53诱导的细胞凋亡信号途径中有三个关键步骤:(i)氧化还原相关基因的转录诱导;(ii)形成的活性氧(ROS)的形成;(iii)线粒体成分的氧化降解,最终活化caspase导致细胞凋亡。
     在骨肉瘤的化疗中,药物毒副反应较大,同时肿瘤由于反复给药极易获得耐药性,复发率较高,因此远期生存率较低。研究表明,肿瘤细胞对细胞凋亡逃避导致的细胞凋亡抵抗(resistance to apoptosis)是肿瘤耐药发生的主要原因之一,细胞内活性氧自由基(ROS)及谷胱甘肽(GSH)还原体系状态水平的改变与细胞凋亡密切相关。因此肿瘤细胞的耐药性与其细胞内的ROS水平差异密切相关。通过调节细胞内GSH水平或升高ROS水平,可以增强化疗药物的凋亡诱导效应。
     据此,我们推测Azurin上调p53转录活性,引发胞内氧化还原状态失衡,通过线粒体途径诱导了细胞凋亡,同时,Azurin是否对骨肉瘤化疗药物顺铂(Cisplatin, CDDP)、氨甲喋呤(MTX)、阿霉素(ADM)和异环磷酰胺(IFO)具有化疗增敏效应?并探讨p53、GSH、ROS在Azurin化疗增敏效应中的具体作用机制。
     方法
     本实验选取三种P53不同基因型的骨肉瘤细胞株(p53野生型U20S、p53突变型MG-63、p53缺失型SAOS-2)以及一种p53野生型正常人外周血单核细胞(PMBCs),应用MTT比色法检测细胞存活率,应用Annexin V、PI双染流式细胞仪检测细胞凋亡率Annexin V positive cell(%),通过流式细胞仪、荧光显微镜检测线粒体膜电位(△Ψm)以及线粒体内膜心磷脂氧化,通过细胞免疫荧光技术、激光共聚焦以及亚细胞器蛋白分离Western blot技术检测线粒体内外膜间蛋白CytochromeC(细胞色素C)、AIF(凋亡诱导因子)释放进入细胞质、细胞质Bax移位线粒体,采用Western blot检测线粒体核心凋亡蛋白Bcl-xL、MCL-1、XIAP、survivin、Bak、 Bid、tBid的表达,通过流式细胞仪检测活性氧(H202)、超氧阴离子(02-)以及一氧化氮(NO),通过酶标仪比色法检测胞内GSH、细胞外液GSH、谷胱甘肽过氧化物酶(GPX)、GSSG(氧化型GSH)、谷胱甘肽还原酶(GR)水平,报告基因质粒pp53-TA-luc和内参Renilla-luc瞬时共转染骨肉瘤细胞SAOS-2(null)、MG-63(mut)、U2OS (wt),荧光检测仪检测上述细胞荧光素酶活性,即p53基因的转录活性。并采用线粒体膜PT孔道抑制剂环孢菌素A(CsA);还原剂Catalase、NAC、 MnTBAP; GSH耗竭剂BSO; P53信号阻断剂PFT-α从正反二个方向验证,以明确线粒体、ROS、P53的具体作用机制。
     结果
     首先我们观察了Azurin通过P53途径诱导了肿瘤细胞凋亡。
     为进一步明确Azurin的P53选择性杀灭肿瘤机理,我们选取了其他组织来源的不同P53基因型背景的肿瘤细胞:携带野生型P53的人肝癌细胞系HepG2细胞株、肺癌细胞株A549、骨肉瘤细胞株U20S;具有P53突变型的肺癌细胞株H322、肝癌细胞株Huh-7细胞、骨肉瘤细胞株MG-63;呈现P53缺失型的肺癌细胞株H1299、肝癌细胞株Hep3B细胞、骨肉瘤细胞株SAOS-2;携带野生型P53的正常人外周血单核细胞(PMBCs)。并通过MTT法观察了Azurin对上述细胞系细胞增殖的影响。
     通过MTT试验,我们发现在肺癌、肝癌、骨肉瘤细胞株的不同P53基因背景的肿瘤细胞中,Azurin也同样明显抑制了携带野生型P53的HepG2、A549、U2OS细胞的增殖活性,与之相反,在P53功能性失活的细胞中,Azurin的细胞毒性明显减弱。在上述细胞中,Azurin同样表现出明显的P53选择性细胞毒性效应,同时对正常PMBCs细胞毒性较小。
     在p53野生型U20S细胞中,经Azurin处理后,caspase-3活性明显增加,启动Caspase级联反应,PARP发生剪切,诱导细胞凋亡。反之,在p53突变型MG-63、p53缺失型SAOS-2细胞株中,Azurin上调的caspase-3激酶活性、Annexin V positive cell(%)均明显减弱;试验进一步采用P53信号阻断剂PFT-α预孵育U20S细胞,观察其对Azurin作用后的Cleaved-PARP蛋白、激酶caspase-3活性、Annexin V positive cell(%). MTT等指标的影响,我们发现PFT-a几乎完全抑制了Azurin诱导的Caspase-3的活化、PARP的剪切、Annexin V positive (%)的上调;从而证实了Azurin的细胞凋亡分子机理呈现P53依赖性。
     其次我们检测了Azurin诱导的线粒体损伤。
     P53野生型细胞U20S经Azurin作用后,JC-1红绿荧光比值明显下降,即线粒体膜电位(△Ψm)发生了降低;线粒体NAO荧光强度明显降低,即线粒体内膜心磷脂含量的减少,内膜产生了脂质过氧化损伤,引起线粒体外膜通透性增加;细胞质蛋白Bax单体靶向移位聚集线粒体外膜,构型改变发生寡聚化,构成跨线粒体外膜的蛋白孔道,引发线粒体外膜通透性进一步增加。Bcl-2家族抑凋亡蛋白Bcl-xL和MCL-1、XIAP的蛋白表达水平自8h时间点开始降低,促凋亡蛋白Bak的表达量呈现时间依赖性上调,同时截短型Bid(tBid)从4h时间点开始出现,24h时间点tBid蛋白表达量达到峰值,Bid蛋白发生了剪切。与心磷脂结合的细胞色素c得以解偶联,线粒体内外膜之间的蛋白Cytochrome C(细胞色素C)、AIF(凋亡诱导因子)经蛋白孔道大量释放进入细胞质,启动caspase的级联反应,激活下游效应器caspase-3,AIF进而易位细胞核,在核内通过和DNA结合导致染色质聚集并断裂。
     值得注意的是,在p53突变型MG-63、p53缺失型SAOS-2细胞以及正常人外周血单核细胞(PMBCs)中,经Azurin处理后,线粒体膜电位△Ψm、线粒体内膜心磷脂含量均未见明显改变,提示P53信号途径与Azurin诱导的线粒体损伤有关。
     为了明确线粒体途径在Azurin诱导细胞凋亡中的作用,我们采用线粒体膜PT孔道抑制剂环孢菌素A(CsA)预先孵育U20S细胞,CsA明显抑制了Azurin增强的caspase-3活性、Cleaved-PARP蛋白的上调以及细胞凋亡。但却对Azurin诱导的胞内的ROS水平上调、GSH水平降低近乎没有影响,这提示线粒体通道开放事件发生较晚,是位于氧化还原系统失衡发生的下游事件。
     再次,我们观察了Azurin诱导的细胞内氧化还原状态失衡。
     Azurin在P53野生型U20S细胞中,迅速引发DCF(H2O2), ethidium (O2-)荧光强度的显著上调,却对DAF-FM (NO)荧光强度没有影响,即Azurin主要引起了过氧化氢(H202)、超氧阴离子(02-)这二种自由基的上升,却对一氧化氮(NO)没有影响。
     同时我们观察了Azurin对U20S细胞GSH还原系统的影响,我们发现Azurin抑制谷胱甘肽过氧化物酶(GPx)的合成与酶的活性,氧化型GSSG含量大大增加,降低了GSH还原系统的抗氧化能力,诱发GSH释放进入细胞外液,进一步耗竭细胞内GSH,促发氧化还原系统失衡。
     应用GSH的前体抗氧化剂NAC预处理P53野生型U20S细胞,我们发现NAC明显抑制了Azurin诱导的胞内GSH水平降低以及ROS上调,也阻止了Azurin促发的线粒体膜电位的下降以及内膜心磷脂的过氧化,并最终抑制了caspase活化介导的细胞凋亡。从而提示Azurin引发的胞内氧化还原状态失衡是介于线粒体损伤发生之前的上游事件。
     试验进一步采用还原剂过氧化氢(H202)酶Catalase预处理P53野生型细胞U2OS, Catalase抑制了Azurin诱导的胞内ROS水平上调以及细胞凋亡,却对Azurin所致的GSH水平降低没有影响,这表明Azurin在U20S细胞中首先引发了GSH水平的下降,进而导致了氧自由基过氧化氢(H2O2)的积聚。GSH下降是先于ROS积聚发生的上游事件。
     我们还采用超氧阴离子清除剂MnTBAP预处理P53野生型细胞U20S,发现其对Azurin诱导的胞内氧化应激、caspase活性均没有影响,这表明虽然超氧阴离子水平呈现上调,但其并未参与Azurin诱导的细胞凋亡。
     同U20S细胞相比,P53突变型细胞MG63、p53缺失型SAOS-2经Azurin处理后,过氧化氢(H2O2)、超氧阴离子(O2-)、细胞外液GSH、细胞内GSH含量、谷胱甘肽过氧化物酶(GPX)活性均未见明显改变。
     BSO抑制细胞内GSH合成,P53突变型MG63、p53缺失型SAOS-2细胞经BSO作用后,胞内GSH显著下降,氧自由基水平急剧增高,线粒体△Ψm明显降低,线粒体内膜脂质发生过氧化,Caspase活化,诱导细胞发生凋亡。BSO模拟了Azurin在U20S中的细胞毒性效应。
     上述结果表明GSH耗竭、ROS的积聚在Azurin诱导的细胞凋亡中发挥着重要作用,并且氧化应激有可能受p53途径调控。
     最后,我们观察了P53信号通路、氧化应激、线粒体损伤、细胞凋亡间的相互关系。
     我们将报告基因质粒pp53-TA-luc和内参Renilla-luc瞬时共转染肺癌细胞株H1299(null). H322(mut)、A549(wt);肝癌细胞株Hep3B (null). Huh-7(mut)、 HepG2(wt);骨肉瘤细胞株SAOS-2(null)、MG-63(mut)、U20S (wt),荧光检测仪检测荧光素酶活性,我们发现Azurin增强了p53基因的转录活性。
     试验进一步采用p53抑制剂PFT-α(pifithrinalpha,PFT-α)干扰试验,阻断U2OS的P53信号途径,结果显示PFT-α的预处理抑制了Azurin触发的GPX活性降低、GSH下降、ROS上调;线粒体膜电位△Ψm降低、内膜心磷脂氧化;Bax移位线粒体;细胞色素C、AIF释放进入胞质。这表明Azurin介导的氧化还原状态失衡、线粒体损伤受p53信号途径调控。
     此外,实验结果还显示:在U2OS细胞中,NAC预处理抑制了Azurin上调的P53转录活性,而GSH耗竭剂BSO则在U2OS细胞中模拟了Azurin上调的P53转录活性,从而提示氧化还原状态的失衡正反馈激活了P53信号途径。
     上述研究结果表明,P53信号通路及其调控的GSH代谢、ROS水平、线粒体途径,在Azurin诱导的靶细胞凋亡过程中扮演着重要角色。
     我们选取骨肉瘤化疗常用药物如顺铂(Cisplatin, CDDP).氨甲喋呤(MTX)、阿霉素(ADM)和异环磷酰胺(IFO),在U20S、MG-63、SAOS-2细胞中,进行Azurin的药物增敏活性筛选,以验证小剂量Azurin联合低浓度化疗药物是否对骨肉瘤细胞的杀伤具有增敏效应?并就P53、ROS、GSH在其中的分子机制进一步探讨。
     在顺铂、氨甲喋呤的药敏试验中,在U2OS细胞中,MTT显示,低剂量Azurin显著增加顺铂、氨甲喋呤的细胞毒性,联合给药具有协同效应。同时,也引发了GSH下降、ROS增加。还原剂NAC p53抑制剂PFT-α(pifithrinalpha,PFT-a)预处理U20S后,明显抑制了联合给药组所致的GSH降低、ROS上调以及细胞存活率的下降。而在P53功能缺失的其余二株MG-63、SAOS-2细胞中,联合给药组缺乏协同效应,同时,MG-63、SAOS-2胞内GSH、ROS水平也几乎没有改变。
     以上数据表明了在Azurin联合顺铂、氨甲喋呤组的增敏效应中,P53及其调控的氧化还原状态失衡尤为关键。
     在阿霉素、异环磷酰胺的药敏试验中,有趣的是,在三种MG-63、SAOS-2、 U2OS细胞中,小剂量Azurin都显著增强了阿霉素、异环磷酰胺的细胞毒性,在联合给药中,我们没有观察到GSH下降、ROS增加,还原剂NAC、p53抑制剂PFT-α(pifithrinalpha,PFT-α)的预处理对联合给药组所致的细胞存活率的下降也近乎没有影响,从而提示在MG-63、SAOS-2、U2OS中,Azurin对阿霉素、异环磷酰胺细胞毒性的增敏效应与P53、ROS途径无关。这表明在P53功能性缺失的肿瘤细胞中,Azurin也可对化疗药物的细胞毒性具有协同增敏效应,从而避免其局限于P53野生型肿瘤细胞。
     此外,试验还发现对于人外周血单核细胞(PBMC)细胞,Azurin联合顺铂、氨甲喋呤、阿霉素、异环磷酰胺给药组的细胞毒性相对较小。这意味着,联合给药组既避免了单独给药时肿瘤细胞的获得性耐药,又使得其对正常体细胞的毒副反应大大降低。
     结论
     综上所述,在杨迪生教授、苗旭东等人的工作基础上,我们进一步探讨了P53、 ROS、线粒体途径在Azurin细胞毒性中的分子机制:Azurin增强p53转录活性↑→p53胞内水平↑→谷胱甘肽过氧化物酶(GPX)↓→GSH↓→ROS↑→线粒体内膜心磷脂氧化→线粒体膜电位(△Ψm)↓→Bax移位线粒体→细胞色素C、AIF释放进入胞质→激活线粒体途径→caspase活化→骨肉瘤细胞凋亡。P53基因调控的氧化还原状态失衡(GSH耗竭和ROS增高)在其中尤为关键。此外,通过P53依赖性或者非P53依赖性途径,Azurin与低剂量化疗药物如顺铂(Cisplatin, CDDP)、氨甲喋呤(MTX)、阿霉素(ADM)和异环磷酰胺(IFO)的联合给药具有协同效应,Azurin对上述化疗药物体外骨肉瘤细胞的细胞毒性具有增敏效应,其P53依赖性增敏机制与P53调控的氧化应激密切相关,而其不依赖于P53的增敏机制则与氧自由基水平无关。
     本论文的研究结果将不仅有助于发现Azurin的可能作用靶点以及信号通路,还为Azurin的临床前期开发应用提供充分的实验依据,也为今后Azurin应用于临床骨肉瘤化疗的联合用药提供了安全有效的分子策略。
Backgroud:
     Osteosarcoma because of its high degree of malignancy, early metastasis, clinical treatment with surgery combined with chemotherapy and radiotherapy treatments, but limited to the surgical treatment of high morbidity and poor function of the prosthesis, put the side effects of chemotherapy, advanced tumors easy to form a tolerance to chemotherapeutic drugs, vulnerable to relapse, re-treatment is also extremely difficult, and therefore lower long-term survival of osteosarcoma difficult to satisfactory efficacy, the limitations of traditional therapy makes osteosarcoma new therapies such as biological therapy, immunotherapy therapy, gene therapy, and microbial treatment of the purified product are increasingly becoming the focus of research and clinical and hotspots.
     Yamada reported in recent years by Pseudomonas bacteria secrete copper-containing bacterial redox protein Azurin, can combine to form complexes with the P53protein, inhibition of P53degradation, thereby stabilizing the P53protein.It can be induced in vitro cell assays and in vivo tumor-bearing nude mice P53wild type mononuclear macrophages, melanoma cells, breast cancer cells, while P53mutation or deletion of melanoma cells in the rendered breast cancer cells, the cytotoxicity is greatly reduced, its cytotoxic obvious p53selectivity.Particularly critical in malignant melanoma cells, breast cancer cells in nude mice transplanted tumor, tumor size, and the wild-type Azurin can promote the degeneration of the transplanted tumors, inhibiting the growth of transplanted tumors tumor block induction of tumor cell apoptosis, while nude mice The body was found no significant side effects.This finding viable cells product purified protein the Azurin used in clinical tumor therapy to bring hope and prospects.
     Zhejiang Second Orthopaedic Institute Professor Yang Disheng and Miao Xudong et al Azurin protein in human osteosarcoma cells to carry out a series of in vitro experimental study.The results are as follows:Azurin inhibited the growth of osteosarcoma induced P53wild type U2OS cell apoptosis, while normal liver L-02the P53mutant human osteosarcoma MG-63cells less toxic.Further study its molecular mechanisms:P53protein is play the key factors of the apoptotic effects the Bax mitochondrial shift of Bcl-2/Bax ratio downward, caspase-3,8increased activity, mitochondrial, extracellular Fas by pathway Azurin-induced the U2OS cell apoptosis molecular mechanisms are involved.
     Tumor cells escape apoptosis caused apoptosis resistance (resistance to apoptosis) is one of the main reasons of tumor drug resistance, restore the system state level of intracellular reactive oxygen species (ROS) and glutathione (GSH) change is closely related to the apoptosis.
     The wild-type p53gene is a tumor suppressor gene, the main function of p53is to arrest the cell cycle or induce apoptosis.There are three key steps in the p53-induced apoptosis signaling pathways:(i) oxidation reduction related gene transcription induced;(ii) the formation of reactive oxygen species (ROS) is formed; component (iii) mitochondrial oxidative degradation, and ultimately activation caspase leading to apoptosis.
     In osteosarcoma chemotherapy drug toxicity reaction, while tumor recurrence rate was high due to repeated administration can easily acquire resistance, and therefore the long-term survival rate is lower.Studies have shown that the the ROS level differences related to the resistance of tumor cells to their cells.Through the regulation of intracellular GSH levels or elevated ROS levels can enhance the apoptosis-inducing effects of chemotherapy drugs.
     Accordingly, we speculate Azurin raised p53transcriptional activity, triggered intracellular oxidation reduction state of imbalance through the mitochondrial pathway induction of apoptosis, and at the same time, Azurin of osteosarcoma tumor chemotherapy drug cis-platinum (Cisplatin, of CDDP), methotrexate chatter methotrexate (MTX). adriamycin (ADM) and ifosfamide (IFO) with chemotherapy sensitizing effect?And to explore the the p53, GSH, ROS in Azurin chemosensitizing effect of the specific mechanism of action.
     Methods:
     In our study, three different genotypes of P53osteosarcoma cell line (p53wild-type U2OS, p53mutant MG-63, p53-deficient SAOS-2) and a p53wild-type normal Human peripheral blood mononuclear cells (PMBCs), by MTT colorimetric assay of cell viability, application of Annexin V and PI double staining flow cytometry apoptosis rate Annexin V positive cell (%) by flow cytometry, fluorescence microscopy detection of mitochondrial membrane potential (ΔΨm) and mitochondrial inner membrane heart phospholipids oxidation by immunofluorescence techniques, laser confocal subcellular protein separation Cytochrome C (cytochrome C) Western blot analysis of mitochondrial outer membrane protein, AIF (apoptosis-inducing factor) release into the cytoplasm, cytoplasmic Bax shift mitochondria, Western blot analysis of mitochondrial core apoptotic protein Bcl-xL of MCL-1, XIAP, survivin, Bak, Bid, tBid of expression by flow cytometry reactive oxygen species (H202), superoxide anion (O2-) and nitric oxide (NO), through the the microplate colorimetric detection intracellular GSH, extracellular fluid GSH, glutathione peroxidase (GPX), GSSG (oxidized form of GSH), glutathione reductase (GR) level, pp53-TA-luc reporter plasmid and the internal reference Renilla-luc transiently co-transfected osteosarcoma cells SAOS-2(null), MG-63(mut), U2OS (wt), the fluorescence detector detects the above cell luciferase activity, namely the transcriptional activity of the p53gene.And mitochondrial membrane PT pore inhibitor cyclosporine A (CsA); reductant Catalase, NAC, MnTBAP; GSH depleting agent BSO; P53signal blocking agent PFT-a verified from two positive and negative direction to clear mitochondria ROS, P53specific mechanism of action.
     Result:
     First, we observed Azurin P53pathway induced tumor cell apoptosis.
     Further clear of Azurin the P53selectively kill tumor mechanism, we have selected different P53genotype background of tumor cells in other tissue sources:53people carrying wild-type P hepatoma cell line HepG2cell lines, lung cancer cell line A549, flesh and blood tumor cell line U2OS; P53mutant lung cancer cell line H322, hepatoma cell line Huh-7cells, osteosarcoma cell line MG-63; render P53deletion lung cancer cell lines HI299hepatoma cell line Hep3B cells, osteosarcoma SAOS-2cell lines; carrying the wild-type P53normal human peripheral blood the monocytes (PMBCs).Azurin proliferation of these cell lines by MTT assay.
     By MTT assay, we found that the tumor cells in the background of P53gene in lung cancer, liver cancer, osteosarcoma cell lines, Azurin also significantly inhibited with wild-type P53the HepG2, A549, U2OS cells proliferation activity, whom In contrast, in the cells of P53functional inactivation AZURIN cell toxicity is significantly weakened.In these cells, Azurin perform equally obvious P53selective cytotoxic effect, simultaneously less toxic of normal PMBCs cells.
     Azurin treatment in p53wild-type U2OS cells, caspase-3activity was significantly increased, start caspase cascade, PARP occurred shear induced apoptosis.Conversely, p53mutated MG-63, p53-deficient SAOS-2cell lines Azurin upregulation of caspase-3kinase activity, Annexin V positive cell (%) were significantly weakened; trials further a P53signal blocker PFT-a preincubation U2OS cells, were observed on the the Azurin role Cleaved-PARP protein kinase caspase-3activity, Annexin V positive cell (%), MTT indicators, we find that PFT-a almost completely inhibited Azurin induced Caspase-3activation, PARP a shear, Annexin V positive (%) of the raised; thus confirming the molecular mechanism of Azurin apoptosis presented P53-dependent manner.
     Secondly, we detect the the Azurin induced mitochondrial damage.
     P53wild-type cells U2OS after Azurin role, JC-1red and green fluorescence ratio decreased mitochondrial membrane potential (ΔΨm) happened; mitochondrial NAO fluorescence intensity was significantly reduced, and reduce mitochondrial endometrial cardiolipin content endometrial produce a shift gathered mitochondrial outer membrane lipid peroxidation, causing increased permeability of the outer mitochondrial membrane; cytoplasmic protein Bax monomer targeted protein conformational change occurred oligomerization to form across the mitochondrial outer membrane pore, lead to mitochondrial further increase in membrane permeability.Bcl-2family inhibiting apoptotic protein Bcl-xL and MCL-1, XIAP protein expression levels of self-8h time point reduced to promote the expression of apoptotic protein Bak presents a time-dependent increase, while the truncated Bid (tBid) from the4h time to point began to appear, the24h time point tBid the protein expression levels peak of Bid Protein shear.Cytochrome C combined with cardiolipin be uncoupling between the inner and outer mitochondrial membrane protein Cytochrome C (Cytochrome C), AIF (apoptosis inducing factor) protein pore massive release into the cytoplasm, start caspase cascade activation of downstream effector caspase-3, AIF thus translocation nucleus and DNA binding in the nuclear cause staining quality gathering and fracture.
     It is noteworthy that in p53mutant MG-63, p53-deficient SAOS-2cells and normal human peripheral blood mononuclear cells (PMBCs) Azurin treatment, mitochondrial membrane potential ΔΨm, mitochondrial inner membrane center phospholipid content did not change significantly, suggesting that p53signaling pathways Azurin-induced mitochondrial damage.
     To clear the mitochondrial pathway Azurin induced apoptosis, mitochondrial membrane PT pore inhibitor cyclosporine A (CsA) pre-incubated U2OS cells, CsA significantly inhibited the the Azurin enhanced caspase-3activity, Cleaved-PARP The upregulation of the protein, and apoptosis.But raised on Azurin induced intracellular ROS levels, GSH levels decreased almost no effect, suggesting that mitochondrial channel opening events later, in the redox system imbalance occurs downstream events.
     Again, we observed Azurin-induced cell redox state of imbalance.
     Azurin in a P53wild-type U2OS cells, quickly lead to the DCF (H2O2), ethidium (O2-) significant upregulation of the fluorescence intensity, but then the fluorescence intensity of the DAF-FM (NO) does not affect, i.e. The Azurin mainly caused too hydrogen peroxide (H2O2) and superoxide anion (O2-) of these two kinds of radicals rise, but then the nitric oxide (NO) no effect.
     Meanwhile, we observed the Azurin U20S cells GSH reduction system, we found Azurin suppression Synthesis and enzyme activity of glutathione peroxidase (GPX), oxidized GSSG content increased greatly reduces the antioxidant capacity of the GSH reduction system, to induce GSH release into the extracellular fluid, further depletion of intracellular GSH, promote hair redox system imbalance.
     Application of GSH precursor antioxidants NAC pretreatment p53wild-type U20S cells, we found that NAC significantly inhibited the Azurin induced intracellular GSH level reduced and ROS upward, also prevent a decline in mitochondrial membrane potential and intimal Azurin priming heart phospholipid peroxidation, and eventually suppressed caspase activation mediated apoptosis.Which prompted Azurin triggered intracellular redox state imbalance between mitochondrial damage occurs before the upstream events.
     Test further reducing agent, hydrogen peroxide (H2O2) the enzyme Catalase pretreatment P53wild-type cells U20S Catalase suppression Azurin induced intracellular ROS levels increase, and apoptosis, but then the Azurin due to the reduced GSH levels did not impact, which indicates that the decline in the level of GSH Azurin first initiator in U2OS cells, leading to oxygen radicals of hydrogen peroxide (H2O2) accumulation.GSH decreased upstream events prior to ROS accumulation occurred.
     We also used the superoxide anion scavenger MnTBAP pretreatment P53wild type cells U2OS the the Azurin induced intracellular oxidative stress, caspase activity had no effect, suggesting that superoxide anion levels presented raised, but did not participate in The Azurin induced apoptosis.
     Compared with U2OS cells, P53mutant cells of MG63of p53-deficient SAOS-2after Azurin processing, hydrogen peroxide (H2O2), superoxide anion (O2-) cell extracellular fluid GSH intracellular GSH content, glutathione Gan peptide peroxidase (GPX) activity showed no significant change.
     The BSO inhibition of intracellular GSH synthesis P53mutant of MG63and p53-deficient SAOS-2cells after BSO role of intracellular GSH was significantly decreased, and a sharp increase in the level of oxygen free radicals, significantly decreased the ΔΨm, mitochondrial inner membrane lipid peroxidation occurred, Caspase activation and induce apoptosis.The BSO analog Azurin in U2OS cytotoxic effect.
     The above results indicate that GSH depletion, accumulation of ROS-induced apoptosis in Azurin plays an important role, and oxidative stress may be affected by the p53pathway regulation.
     Finally, we observed p53signaling pathway, the relationship between oxidative stress, mitochondrial damage, apoptosis.
     We will pp53-TA-luc reporter plasmid and the internal reference Renilla-luc instantaneous co-transfected lung cancer cell lines H1299(null), H322(mut), A549(wt); hepatoma cell line Hep3B (null), Huh-7(mut was), HepG2(wt); osteosarcoma cell line, SAOS-2(null), MG-63(MUT), U2OS,(by weight), the fluorescent detector detecting the luciferase activity, we found to The Azurin enhance the transcriptional activity of the p53gene.
     Further test p53inhibitor PFT-α (pifithrinalpha, PFT-α) interference test, blocked U2OS P53signaling pathways, and results showed that PFT-a pretreatment inhibits Azurin triggered GPX activity decreased, GSH decreased, ROS raised; mitochondrial membrane potential ΔΨm lower endometrial cardiolipin oxidation; the Bax shift mitochondria; cytochrome C, AIF release into the cytoplasm.This indicates that the redox state of imbalance Azurin mediated mitochondrial damage by the p53signaling pathway regulation.
     In addition, the results also show that:U2OS cells, NAC pretreatment inhibited Azurin upregulation of p53transcriptional activity, GSH depletion agent BSO in U2OS cells to simulate the the Azurin raised p53transcriptional activity, suggesting the redox state of imbalance Positive feedback activation of the p53signaling pathway.
     The results of the study show that the P53signaling pathway and its regulation of GSH metabolism, ROS levels, mitochondrial pathway in the Azurin induced target cell apoptosis process plays an important role.
     We selected the commonly used drugs such as osteosarcoma chemotherapy Cisplatin (Cisplatin, CDDP), methotrexate (MTX), adriamycin (ADM) and Ifosfamide (IFO), U2OS MG-63, SAOS-2cells, Azurin drug-sensitizing activity screening to verify that small doses Azurin combined with low concentrations of chemotherapy drugs osteosarcoma cells destruction sensitizing effect?And P53, ROS, GSH in which to further explore the molecular mechanisms.
     Susceptibility testing of cisplatin, methotrexate, U2OS cells, MTT showed that low-dose the Azurin significant increase cisplatin, methotrexate cytotoxicity, administered in combination have a synergistic effect.At the same time, it also raised GSH decline, ROS increase.Reducing agent NAC, p53inhibitor PFT-a (pifithrinalpha, PFT-a) after pretreatment U2OS significantly inhibited due to the co-administered group of GSH decreased ROS raised as well as the reduction in cellular viability.In P53loss of function of the remaining two MG-63, SAOS-2cells, combination group lack of synergy effects, the MG-63, SAOS-2intracellular GSH of ROS levels are almost no change.
     These data suggest that the P53and its regulation of the redox state of imbalance is particularly critical in Azurin combination with cisplatin, methotrexate group sensitizing effect.
     Doxorubicin, ifosfamide susceptibility testing, it is interesting that three kinds of MG-63, SAOS-2, U2OS cells, small doses of Azurin significantly enhanced doxorubicin, ifosfamide cytotoxicity, co-administration, we have not observed GSH decline, ROS increases, reducing agent NAC p53inhibitor PFT-a (pifithrinalpha, PFT-a) pretreatment cell viability due to the co-administered group decline in almost no effect, which prompted the MG-63, SAOS-2, U2OS, Azurin doxorubicin, different sensitizing effect of cyclophosphamide cytotoxicity P53, ROS pathway unrelated.This shows that in the p53functional deletion of tumor cells, Azurin also be synergistic sensitizing effect of cytotoxic chemotherapy drugs, thus avoiding its limited to P53wild type tumor cells.
     In addition, the tests also found that the cells of the human peripheral blood mononuclear cells (PBMC), AZURIN cisplatin, methotrexate, adriamycin, ifosfamide administration group cytotoxic relatively small.This means that the co-administration group only avoids acquired drug resistance of tumor cells when administered alone, but also makes its toxic side effects on normal cells greatly reduced.
     Conclusion:
     In In summary, on the basis of the work of Professor Yang Disheng, Miao Xudong et al, we further investigate the P53, ROS, mitochondrial pathway of the molecular mechanisms of cytotoxicity in Azurin:Azurin enhanced p53transcriptional activity↑→p53intracellular levels→GSH↓of ROS, the↑→glutathione peroxidase (GPX)↓↑→mitochondrial oxidation of endometrial cardiolipin→mitochondrial membrane potential (ΔΨ m)↓→Bax shift mitochondrial→cytochrome C, AIF release into cell the quality→activation of the mitochondrial pathway→caspase activation→apoptosis of osteosarcoma.Redox state of the P53gene regulatory imbalance (GSH depletion and increased ROS) in which is particularly critical.In addition, the P53-dependent or non-dependent pathway of P53Azurin with low doses of chemotherapy drugs such as cisplatin (Cisplatin, CDDP), methotrexate methotrexate (MTX), adriamycin (ADM) and ifosfamide (IFO) to the United The drugs have a synergistic effect, Azurin sensitizing effect of the chemotherapy drugs osteosarcoma cells in vitro cytotoxic, oxidative stress is closely related to its P53-dependent the sensitizing mechanism with P53control, which does not depend on the P53sensitizing mechanism has nothing to do with the level of oxygen free radicals.
     The findings of this paper will not only help to identify the Azurin the possible targets of signaling pathways also provide sufficient experimental evidence of Azurin the preclinical development and application, and also for the future Azurin used in clinical osteosarcoma chemotherapy combination provides a safe and effective molecular strategies.
引文
[1]A. Celli, F.G Que, GJ. Gores, N.F. LaRusso, Glutathione depletion is associated with decreased Bcl-2 expression and increased apoptosis in cholangiocytes, The American journal of physiology,275 (1998) G749-757.
    [2]Y.P. Chau, S.G Shiah, M.J. Don, M.L. Kuo, Involvement of hydrogen peroxide in topoisomerase inhibitor beta-lapachone-induced apoptosis and differentiation in human leukemia cells, Free radical biology & medicine,24 (1998) 660-670.
    [3]M.D. Cohen, E.M. Bugaieski, M. Haliloglu, P. Faught, A.R. Siddiqui, Visual presentation of the staging of pediatric solid tumors, Radiographics:a review publication of the Radiological Society of North America, Inc,16 (1996) 523-545.
    [4]S. Coppola, L. Ghibelli, GSH extrusion and and the mitochondrial pathway of apoptotic signalling, Biochemical Society transactions,28 (2000) 56-61.
    [5]S.J. Cotterill, S. Ahrens, M. Paulussen, H.F. Jurgens, P.A. Voute, H. Gadner, A.W. Craft, Prognostic factors in Ewing's tumor of bone:analysis of 975 patients from the European Intergroup Cooperative Ewing's Sarcoma Study Group, Journal of clinical oncology:official journal of the American Society of Clinical Oncology, 18(2000)3108-3114.
    [6]M.A. Davis, J.A. Flaws, M. Young, K. Collins, N.H. Colburn, Effect of ceramide on intracellular glutathione determines apoptotic or necrotic cell death of JB6 tumor cells, Toxicological sciences:an official journal of the Society of Toxicology, 53 (2000) 48-55.
    [7]P. Drane, A. Bravard, V. Bouvard, E. May, Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis, Oncogene,20 (2001) 430-439.
    [8]M. Goto, T. Yamada, K. Kimbara, J. Horner, M. Newcomb, T.K. Gupta, A.M. Chakrabarty, Induction of apoptosis in macrophages by Pseudomonas aeruginosa azurin:tumour-suppressor protein p53 and reactive oxygen species, but not redox activity, as critical elements in cytotoxicity, Mol Microbiol,47 (2003) 549-559.
    [9]C.L. Hammond, T.K. Lee, N. Ballatori, Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes, Journal of hepatology,34 (2001) 946-954.
    [10]P.M. Hwang, F. Bunz, J. Yu, C. Rago, T.A. Chan, M.P. Murphy, G.F. Kelso, R.A. Smith, K.W. Kinzler, B. Vogelstein, Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells, Nature medicine,7 (2001)1111-1117.
    [11]H. Jiang, Q. Xu, C. Yang, Z.G. Cao, Z.X. Li, Z.M. Ye, [gammadelta T cells stimulated by zoledronate kill osteosarcoma cells], Xi bao yu fen zi mian yi xue za zhi= Chinese journal of cellular and molecular immunology,26 (2010) 1195-1197.
    [12]H. Koster, M. Weintrob, Diffuse Endothelioma of Bone:Ewing's Sarcoma, Annals of surgery,94(1931) 111-116.
    [13]F. Lamoureux, V. Trichet, C. Chipoy, F. Blanchard, F. Gouin, F. Redini, Recent advances in the management of osteosarcoma and forthcoming therapeutic strategies, Expert review of anticancer therapy,7 (2007) 169-181.
    [14]Y.S. Lau, I.E. Adamopoulos, A. Sabokbar, H. Giele, C.L. Gibbons, N.A. Athanasou, Cellular and humoral mechanisms of osteoclast formation in Ewing's sarcoma, British journal of cancer,96 (2007) 1716-1722.
    [15]P.F. Li, R. Dietz, R. von Harsdorf, p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2, The EMBO journal,18 (1999) 6027-6036.
    [16]Z. Li, H. Peng, Q. Xu, Z. Ye, Sensitization of human osteosarcoma cells to Vgamma9Vdelta2 T-cell-mediated cytotoxicity by zoledronate, Journal of orthopaedic research:official publication of the Orthopaedic Research Society,30 (2012) 824-830.
    [17]Z. Li, Q. Xu, H. Peng, R. Cheng, Z. Sun, Z. Ye, IFN-gamma enhances HOS and U2OS cell lines susceptibility to gammadelta T cell-mediated killing through the Fas/Fas ligand pathway, Int Immunopharmacol,11 (2011) 496-503.
    [18]C.Z. Liang, J.K. Zhang, Z. Shi, B. Liu, C.Q. Shen, H.M. Tao, Matrine induces caspase-dependent apoptosis in human osteosarcoma cells in vitro and in vivo through the upregulation of Bax and Fas/FasL and downregulation of Bcl-2, Cancer chemotherapy and pharmacology,69 (2012) 317-331.
    [19]B. Liu, Z.L. Shi, J. Feng, H.M. Tao, Celecoxib, a cyclooxygenase-2 inhibitor, induces apoptosis in human osteosarcoma cell line MG-63 via down-regulation of PI3K/Akt, Cell biology international,32 (2008) 494-501.
    [20]N.D. Marchenko, A. Zaika, U.M. Moll, Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling, The Journal of biological chemistry,275 (2000) 16202-16212.
    [21]C. Meplan, M.J. Richard, P. Hainaut, Redox signalling and transition metals in the control of the p53 pathway, Biochemical pharmacology,59 (2000) 25-33.
    [22]X.D. Miao, Z.M. Ye, D.S. Yang, R.Z. Xu, W.X. Li, H.M. Tao, [Cytotoxicity and apoptosis of human osteosarcoma U2OS cells induced by recombinant soluble AZURIN], Zhejiang Da Xue Xue Bao Yi Xue Ban,34 (2005) 384-389.
    [23]M. Mihara, S. Erster, A. Zaika, O. Petrenko, T. Chittenden, P. Pancoska, U.M. Moll, p53 has a direct apoptogenic role at the mitochondria, Molecular cell,11 (2003) 577-590.
    [24]P. Picci, Osteosarcoma (osteogenic sarcoma), Orphanet journal of rare diseases,2 (2007) 6.
    [25]K. Polyak, Y. Xia, J.L. Zweier, K.W. Kinzler, B. Vogelstein, A model for p53-induced apoptosis, Nature,389 (1997) 300-305.
    [26]V. Punj, S. Bhattacharyya, D. Saint-Dic, C. Vasu, E.A. Cunningham, J. Graves, T. Yamada, A.I. Constantinou, K. Christov, B. White, G. Li, D. Majumdar, A.M. Chakrabarty, T.K. Das Gupta, Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer, Oncogene,23 (2004) 2367-2378.
    [27]L.S. Rosen, J. Brown, B. Laxa, L. Boulos, L. Reiswig, W.D. Henner, R.T. Lum, S.R. Schow, C.A. Maack, J.G. Keck, J.C. Mascavage, J.A. Dombroski, R.F. Gomez, GL. Brown, Phase Ⅰ study of TLK286 (glutathione S-transferase P1-1 activated glutathione analogue) in advanced refractory solid malignancies, Clinical cancer research:an official journal of the American Association for Cancer Research,9 (2003) 1628-1638.
    [28]M. Schuler, D.R. Green, Mechanisms of p53-dependent apoptosis, Biochemical Society transactions,29 (2001) 684-688.
    [29]C.A. Stiller, S.S. Bielack, G. Jundt, E. Steliarova-Foucher, Bone tumours in European children and adolescents,1978-1997. Report from the Automated Childhood Cancer Information System project, European journal of cancer,42 (2006)2124-2135.
    [30]M. Tan, S. Li, M. Swaroop, K. Guan, L.W. Oberley, Y. Sun, Transcriptional activation of the human glutathione peroxidase promoter by p53, The Journal of biological chemistry,274 (1999) 12061-12066.
    [31]D.M. Townsend, K.D. Tew, The role of glutathione-S-transferase in anti-cancer drug resistance, Oncogene,22 (2003) 7369-7375.
    [32]A. Troyano, C. Fernandez, P. Sancho, E. de Blas, P. Aller, Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation, The Journal of biological chemistry,276 (2001) 47107-47115.
    [33]M.T. Vlachaki, R.E. Meyn, ASTRO research fellowship:the role of BCL-2 and glutathione in an antioxidant pathway to prevent radiation-induced apoptosis, International journal of radiation oncology, biology, physics,42 (1998) 185-190.
    [34]B. Vogelstein, D. Lane, A.J. Levine, Surfing the p53 network, Nature,408 (2000) 307-310.
    [35]X.K. Xie, D.S. Yang, Z.M. Ye, H.M. Tao, [Construction of antisense c-myc recombinant adenovirus and its anti-tumor effects on osteosarcoma cell lines MG-63 and U2OS], Ai zheng= Aizheng= Chinese journal of cancer,24 (2005) 292-297.
    [36]X.K. Xie, D.S. Yang, Z.M. Ye, H.M. Tao, Recombinant antisense C-myc adenovirus increase in vitro sensitivity of osteosarcoma MG-63 cells to cisplatin, Cancer investigation,24 (2006) 1-8.
    [37]X.K. Xie, D.S. Yang, Z.M. Ye, H.M. Tao, Enhancement effect of adenovirus-mediated antisense c-myc and caffeine on the cytotoxicity of cisplatin in osteosarcoma cell lines, Chemotherapy,55 (2009) 433-440.
    [38]Q. Xu, Z.X. Li, H.Q. Peng, Z.W. Sun, R.L. Cheng, Z.M. Ye, W.X. Li, Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line in vitro and in vivo, Journal of Zhejiang University. Science. B,12 (2011) 247-255.
    [39]Q. Xu, Z.X. Li, Z.M. Ye, [Nitidine chloride-induced apoptosis of human osteosarcoma cells and its mechanism], Nan fang yi ke da xue xue bao= Journal of Southern Medical University,31 (2011) 361-364.
    [40]T. Yamada, M. Goto, V. Punj, O. Zaborina, M.L. Chen, K. Kimbara, D. Majumdar, E. Cunningham, T.K. Das Gupta, A.M. Chakrabarty, Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer, Proc Natl Acad Sci U S A, 99(2002)14098-14103.
    [41]T. Yamada, M. Goto, V. Punj, O. Zaborina, K. Kimbara, T.K. Das Gupta, A.M. Chakrabarty, The bacterial redox protein azurin induces apoptosis in J774 macrophages through complex formation and stabilization of the tumor suppressor protein p53, Infect Immun,70 (2002) 7054-7062.
    [42]T. Yamada, Y. Hiraoka, T.K. Das Gupta, A.M. Chakrabarty, Rusticyanin, a bacterial electron transfer protein, causes G1 arrest in J774 and apoptosis in human cancer cells, Cell Cycle,3 (2004) 1182-1187.
    [43]X. Yan, J. Feng, Z. Ye, X. Miao, W. Li, D. Yang, p53 siRNA inhibits apoptosis of U2OS cells treated with azurin, Molecular medicine reports,4 (2011) 1089-1094.
    [44]X.B. Yan, D.S. Yang, X. Gao, J. Feng, Z.L. Shi, Z. Ye, Caspase-8 dependent osteosarcoma cell apoptosis induced by proteasome inhibitor MG132, Cell biology international,31 (2007) 1136-1143.
    [45]D.S. Yang, X.D. Miao, Z.M. Ye, J. Feng, R.Z. Xu, X. Huang, F.F. Ge, Bacterial redox protein azurin induce apoptosis in human osteosarcoma U2OS cells, Pharmacol Res,52 (2005) 413-421.
    [46]D.S. Yang, X.D. Miao, Z.M. Ye, Y.S. Xu, [Synergistic induction of apoptosis by the combination of TRAIL and low dose adriamycin in human osteosarcoma cell line U2OS], Zhonghua zhong liu za zhi [Chinese journal of oncology],27 (2005) 595-597.
    [47]D.S. Yang, X.K. Xie, Z.M. Ye, H.M. Tao, [Adenovirus mediated antisense c-myc gene on the chemotherapy sensitivity of osteosarcoma cells to cisplatin], Zhonghua wai ke za zhi [Chinese journal of surgery],43 (2005) 799-802.
    [48]Z. Ye, H. Peng, Y. Fang, J. Feng, D.S. Yang, The construction of the eukaryotic expression plasmid pcDNA3.1/azurin and the increased apoptosis of U2OS cells transfected with it, Cell Mol Biol Lett, (2007).
    [49]Z.M. Ye, X.D. Miao, D.S. Yang, R.Z. Xu, X. Huang, F.F. Ge, [Selective inducement effect of bacterial redox protein azurin on apoptosis of human osteosarcoma cell line U2OS], Ai Zheng,24 (2005) 298-304.
    [50]B. Zhang, Z.L. Shi, B. Liu, X.B. Yan, J. Feng, H.M. Tao, Enhanced anticancer effect of gemcitabine by genistein in osteosarcoma:the role of Akt and nuclear factor-kappaB, Anti-cancer drugs,21 (2010) 288-296.
    [51]L.J. Zhou, X.Z. Zhu, Reactive oxygen species-induced apoptosis in PC 12 cells and protective effect of bilobalide, The Journal of pharmacology and experimental therapeutics,293 (2000) 982-988.
    [52]高翔,杨迪生,叶招明,蛋白酶体抑制剂联合TRAIL杀伤骨肉瘤细胞的研究,实用癌症杂志,(2006).
    [53]解先宽,杨迪生,叶招明,陶惠民,反义c-myc对增强顺铂引起骨肉瘤细胞凋亡作用的实验研究,中国病理生理杂志,(2005).
    [54]解先宽,杨迪生,叶招明,陶惠民,腺病毒介导反义c-myc联合咖啡因在骨肉瘤化疗中增效作用的实验研究,中国病理生理杂志,(2007).
    [55]苗金红,徐玉生,王家祥,TRAIL蛋白联合顺铂抑制裸鼠横纹肌肉瘤生长的实验研究,中华小儿外科杂志,30(2009)4.
    [56]苗旭东,杨迪生,叶招明,徐荣臻,冯洁,黄新,Fas抗原和caspase-8调控细菌氧化还原蛋白azurin诱导的人骨肉瘤细胞凋亡的实验研究,中国病理生理杂志,(2006).
    [57]苗旭东,杨迪生,叶招明,徐荣臻,张桂娣,细菌氧化还原蛋白azurin诱导U20S细胞凋亡过程中caspase-3的活化,中国病理生理杂志,(2004).
    [58]徐玉生,苗金红,王利民,王义生,许建中,杨迪生,TRAIL和顺铂对横纹肌肉瘤细胞凋亡时caspase-3活性和线粒体膜电位的影响,中国病理生理杂志,(2007).
    [59]徐玉生,秦红霞,苗金红,杨迪生,许建中,张国富,TRAIL联合顺铂对横纹肌肉瘤细胞Fas表达和caspase3活性的影响,中华肿瘤防治杂志,(2007).
    [60]徐玉生,陶惠民,陈维善,杨迪生,TRAIL与顺铂协同诱导横纹肌肉瘤细胞凋亡时Fas和cFLIP表达的改变及其意义,中国病理生理杂志,(2004).
    [61]徐玉生,王家祥,杨迪生,苗金红,肿瘤坏死因子凋亡诱导配体联合顺铂对人横纹肌肉瘤细胞株凋亡的影响,中华小儿外科杂志,(2006).
    [62]徐玉生,王义生,杨迪生,许建中,苗金红,TRAIL联合顺铂对横纹肌肉瘤细胞caspase-3活性和cFLIP基因表达的影响,中华骨科杂志,27(2007)4.
    [63]徐玉生,许建中,苗金红,杨迪生,顺铂、TRAIL单独或联合应用对横纹肌肉 瘤细胞生长的影响,郑州大学学报(医学版),(2006).
    [64]徐玉生,杨迪生,TRAIL蛋白与顺铂协同诱导横纹肌肉瘤细胞凋亡的实验研究,实用肿瘤杂志,(2006).
    [65]严晓波,高翔,冯洁,师钟丽,杨迪生,蛋白酶体抑制剂MG132诱导caspase-8依赖的骨肉瘤细胞凋亡机制研究,中国病理生理杂志,(2008).
    [66]杨迪生,高翔,叶招明,陶惠民,李伟栩,蛋白酶体抑制剂MG132诱导骨肉瘤细胞凋亡及其对p27-(Kipl)蛋白表达的影响,中华骨科杂志,(2005).
    [67]杨迪生,徐玉生,叶招明,苗旭东,TRAIL基因与顺铂协同诱导横纹肌肉瘤细胞凋亡的实验研究,中华骨科杂志,(2004).
    [1]LeBlanc HN, Ashkenazi A. (2003) Apo2L/TRAIL and its death and decoy receptors. Cell death and differentiation 10:66-75.
    [2]Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277:815-818.
    [3]Sheridan JP, Marsters SA, Pitti RM, et al. (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277:818-821.
    [4]Jo M, Kim TH, Seol DW, et al. (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nature medicine 6:564-567.
    [5]Lawrence D, Shahrokh Z, Marsters S, et al. (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nature medicine 7:383-385.
    [6]Hymowitz SG, O'Connell MP, Ultsch MH, et al. (2000) A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry 39:633-640.
    [7]Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12:611-620.
    [8]Green DR. (2000) Apoptotic pathways:paper wraps stone blunts scissors. Cell 102:1-4.
    [9]Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH. (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell death and differentiation 7:1166-1173.
    [10]Yu J, Zhang L. (2005) The transcriptional targets of p53 in apoptosis control. Biochemical and biophysical research communications 331:851-858.
    [11]Vogelstein B, Kinzler KW. (2004) Cancer genes and the pathways they control. Nature medicine 10:789-799.
    [12]Dyer MJ, MacFarlane M, Cohen GM. (2007) Barriers to effective TRAIL-targeted therapy of malignancy. Journal of clinical oncology:official journal of the American Society of Clinical Oncology 25:4505-4506.
    [13]Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P. (1999) Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer research 59:2747-2753.
    [14]Vigneswaran N, Baucum DC, Wu J, et al. (2007) Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not its receptors during oral cancer progression. BMC cancer 7:108.
    [15]Zhang XD, Franco AV, Nguyen T, Gray CP, Hersey P. (2000) Differential localization and regulation of death and decoy receptors for TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. Journal of immunology 164:3961-3970.
    [16]Irmler M, Thome M, Hahne M, et al. (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190-195.
    [17]Deveraux QL, Takahashi R, Salvesen GS, Reed JC. (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300-304.
    [18]Schimmer AD, Welsh K, Pinilla C, et al. (2004) Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer cell 5:25-35.
    [19]Hinz S, Trauzold A, Boenicke L, et al. (2000) Bcl-XL protects pancreatic adenocarcinoma cells against CD95-and TRAIL-receptor-mediated apoptosis. Oncogene 19:5477-5486.
    [20]Fulda S, Meyer E, Debatin KM. (2002) Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21:2283-2294.
    [21]Taniai M, Grambihler A, Higuchi H, et al. (2004) Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer research 64:3517-3524.
    [22]Wirth T, Kuhnel F, Fleischmann-Mundt B, et al. (2005) Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by elimination of Mcl-1. Cancer research 65:7393-7402.
    [23]Chen C, Edelstein LC, Gelinas C. (2000) The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Molecular and cellular biology 20:2687-2695.
    [24]Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS, Jr. (1998) NF-kappaB antiapoptosis:induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680-1683.
    [25]Van Geelen CM, de Vries EG, de Jong S. (2004) Lessons from TRAIL-resistance mechanisms in colorectal cancer cells:paving the road to patient-tailored therapy. Drug resistance updates:reviews and commentaries in antimicrobial and anticancer chemotherapy 7:345-358.
    [26]Szegezdi E, Cahill S, Meyer M, O'Dwyer M, Samali A. (2006) TRAIL sensitisation by arsenic trioxide is caspase-8 dependent and involves modulation of death receptor components and Akt. British journal of cancer 94:398-406.
    [27]Ganten TM, Haas TL, Sykora J, et al. (2004) Enhanced caspase-8 recruitment to and activation at the DISC is critical for sensitisation of human hepatocellular carcinoma cells to TRAIL-induced apoptosis by chemotherapeutic drugs. Cell death and differentiation 11 Suppl 1:S86-96.
    [28]Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. Journal of immunology 161:2833-2840.
    [29]Sayers TJ, Brooks AD, Koh CY, et al. (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102:303-310.
    [30]Guo F, Sigua C, Tao J, et al. (2004) Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer research 64:2580-2589.
    [31]Adams J. (2004) The development of proteasome inhibitors as anticancer drugs. Cancer cell 5:417-421.
    [32]An J, Sun Y, Fisher M, Rettig MB. (2004) Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia:official journal of the Leukemia Society of America, Leukemia Research Fund, UK 18:1699-1704.
    [33]Zhang XD, Gillespie SK, Borrow JM, Hersey P. (2003) The histone deacetylase inhibitor suberic bishydroxamate:a potential sensitizer of melanoma to TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis. Biochemical pharmacology 66:1537-1545.
    [34]Kang J, Kisenge RR, Toyoda H, et al. (2003) Chemical sensitization and regulation of TRAIL-induced apoptosis in a panel of B-lymphocytic leukaemia cell lines. British journal of haematology 123:921-932.
    [35]Nimmanapalli R, Porosnicu M, Nguyen D, et al. (2001) Cotreatment with STI-571 enhances tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL or apo-2L)-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Clinical cancer research:an official journal of the American Association for Cancer Research 7:350-357.
    [36]Hougardy BM, Maduro JH, van der Zee AG, et al. (2006) Proteasome inhibitor MG132 sensitizes HPV-positive human cervical cancer cells to rhTRAIL-induced apoptosis. International journal of cancer Journal international du cancer 118:1892-1900.
    [37]Vasilevskaya I A, O'Dwyer PJ. (2005) 17-Allylamino-17-demethoxygeldanamycin overcomes TRAIL resistance in colon cancer cell lines. Biochemical pharmacology 70:580-589.
    [38]Kerbauy DM, Lesnikov V, Abbasi N, Seal S, Scott B, Deeg HJ. (2005) NF-kappaB and FLIP in arsenic trioxide (ATO)-induced apoptosis in myelodysplastic syndromes (MDSs). Blood 106:3917-3925.
    [39]Karikari CA, Roy I, Tryggestad E, et al. (2007) Targeting the apoptotic machinery in pancreatic cancers using small-molecule antagonists of the X-linked inhibitor of apoptosis protein. Molecular cancer therapeutics 6:957-966.
    [40]Hao JH, Yu M, Liu FT, Newland AC, Jia L. (2004) Bcl-2 inhibitors sensitize tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by uncoupling of mitochondrial respiration in human leukemic CEM cells. Cancer research 64:3607-3616.
    [41]Arts HJ, de Jong S, Hollema H, ten Hoor K, van der Zee AG, de Vries EG. (2004) Chemotherapy induces death receptor 5 in epithelial ovarian carcinoma. Gynecologic oncology 92:794-800.
    [42]Koornstra JJ, Kleibeuker JH, van Geelen CM, et al. (2003) Expression of TRAIL (TNF-related apoptosis-inducing ligand) and its receptors in normal colonic mucosa, adenomas, and carcinomas. The Journal of pathology 200:327-335.
    [43]Reesink-Peters N, Hougardy BM, van den Heuvel FA, et al. (2005) Death receptors and ligands in cervical carcinogenesis:an immunohistochemical study. Gynecologic oncology 96:705-713.
    [44]van Geelen CM, Westra JL, de Vries EG, et al. (2006) Prognostic significance of tumor necrosis factor-related apoptosis-inducing ligand and its receptors in adjuvantly treated stage III colon cancer patients. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 24:4998-5004.
    [45]McCarthy MM, Sznol M, DiVito KA, Camp RL, Rimm DL, Kluger HM. (2005) Evaluating the expression and prognostic value of TRAIL-R1 and TRAIL-R2 in breast cancer. Clinical cancer research:an official journal of the American Association for Cancer Research 11:5188-5194.
    [46]Grosse-Wilde A, Voloshanenko O, Bailey SL, et al. (2008) TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. The Journal of clinical investigation 118:100-110.
    [47]Ashkenazi A. (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature reviews Cancer 2:420-430.
    [48]Ichikawa K, Liu W, Zhao L, et al. (2001) Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nature medicine 7:954-960.
    [49]Kelley RF, Totpal K, Lindstrom SH, et al. (2005) Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. The Journal of biological chemistry 280:2205-2212.
    [50]van der Sloot AM, Tur V, Szegezdi E, et al. (2006) Designed tumor necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the DR5 receptor. Proceedings of the National Academy of Sciences of the United States of America 103:8634-8639.
    [51]Nesterov A, Nikrad M, Johnson T, Kraft AS. (2004) Oncogenic Ras sensitizes normal human cells to tumor necrosis factor-alpha-related apoptosis-inducing ligand-induced apoptosis. Cancer research 64:3922-3927.
    [52]Wang Y, Engels IH, Knee DA, Nasoff M, Deveraux QL, Quon KC. (2004) Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway. Cancer cell 5:501-512.
    [53]MacFarlane M, Inoue S, Kohlhaas SL, et al. (2005) Chronic lymphocytic leukemic cells exhibit apoptotic signaling via TRAIL-R1. Cell death and differentiation 12:773-782.
    [54]Younes M, Georgakis GV, Rahmani M, Beer D, Younes A. (2006) Functional expression of TRAIL receptors TRAIL-R1 and TRAIL-R2 in esophageal adenocarcinoma. European journal of cancer 42:542-547.
    [55]Melloni E, Secchiero P, Celeghini C, et al. (2005) Functional expression of TRAIL and TRAIL-R2 during human megakaryocytic development. Journal of cellular physiology 204:975-982.
    [56]Horak P, Pils D, Haller G, et al. (2005) Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Molecular cancer research:MCR 3:335-343.
    [57]Wagner KW, Punnoose EA, Januario T, et al. (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nature medicine 13:1070-1077.
    [58]Takimoto R, El-Deiry WS. (2000) Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 19:1735-1743.
    [59]Liu X, Yue P, Khuri FR, Sun SY. (2004) p53 upregulates death receptor 4 expression through an intronic p53 binding site. Cancer research 64:5078-5083.
    [60]Chen X, Kandasamy K, Srivastava RK. (2003) Differential roles of RelA (p65) and c-Rel subunits of nuclear factor kappa B in tumor necrosis factor-related apoptosis-inducing ligand signaling. Cancer research 63:1059-1066.
    [61]Sheikh MS, Burns TF, Huang Y, et al. (1998) p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer research 58:1593-1598.
    [62]Shiraishi T, Yoshida T, Nakata S, et al. (2005) Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells. Cancer research 65:6364-6370.
    [63]Yamaguchi H, Wang HG. (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. The Journal of biological chemistry 279:45495-45502.
    [64]Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S. (1999) Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer research 59:734-741.
    [65]Nimmanapalli R, Perkins CL, Orlando M, O'Bryan E, Nguyen D, Bhalla KN. (2001) Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels. Cancer research 61:759-763.
    [66]Jin H, Yang R, Fong S, et al. (2004) Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand cooperates with chemotherapy to inhibit orthotopic lung tumor growth and improve survival. Cancer research 64:4900-4905.
    [67]Nagane M, Pan G Weddle JJ, Dixit VM, Cavenee WK, Huang HJ. (2000) Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer research 60:847-853.
    [68]Leverkus M, Neumann M, Mengling T, et al. (2000) Regulation of tumor necrosis factor-related apoptosis-inducing ligand sensitivity in primary and transformed human keratinocytes. Cancer research 60:553-559.
    [69]Li JH, Kirkiles-Smith NC, McNiff JM, Pober JS. (2003) TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells. Journal of immunology 171:1526-1533.
    [70]Koschny R, Ganten TM, Sykora J, et al. (2007) TRAIL/bortezomib cotreatment is potentially hepatotoxic but induces cancer-specific apoptosis within a therapeutic window. Hepatology 45:649-658.
    [71]Ashkenazi A, Holland P, Eckhardt SG (2008) Ligand-based targeting of apoptosis in cancer:the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). Journal of clinical oncology:official journal of the American Society of Clinical Oncology 26:3621-3630.
    [72]Liu Y, Zhang W, Cheung LH, et al. (2006) The antimelanoma immunocytokine scFvMEL/TNF shows reduced toxicity and potent antitumor activity against human tumor xenografts. Neoplasia 8:384-393.
    [73]Christ O, Matzku S, Burger C, Zoller M. (2001) Interleukin 2-antibody and tumor necrosis factor-antibody fusion proteins induce different antitumor immune responses in vivo. Clinical cancer research:an official journal of the American Association for Cancer Research 7:1385-1397.
    [74]Rosenblum MG, Horn SA, Cheung LH. (2000) A novel recombinant fusion toxin targeting HER-2/NEU-over-expressing cells and containing human tumor necrosis factor. International journal of cancer Journal international du cancer 88:267-273.
    [75]Sharifi J, Khawli LA, Hu P, Li J, Epstein AL. (2002) Generation of human interferon gamma and tumor Necrosis factor alpha chimeric TNT-3 fusion proteins. Hybridoma and hybridomics 21:421-432.
    [76]Stieglmaier J, Bremer E, Kellner C, et al. (2008) Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein. Cancer immunology, immunotherapy:CII 57:233-246.
    [77]Mohr A, Lyons M, Deedigan L, et al. (2008) Mesenchymal stem cells expressing TRAIL lead to tumour growth inhibition in an experimental lung cancer model. Journal of cellular and molecular medicine 12:2628-2643.
    [78]Szegezdi E, O'Reilly A, Davy Y, et al. (2009) Stem cells are resistant to TRAIL receptor-mediated apoptosis. Journal of cellular and molecular medicine 13:4409-4414.
    [79]MacFarlane M, Kohlhaas SL, Sutcliffe MJ, Dyer MJ, Cohen GM. (2005) TRAIL receptor-selective mutants signal to apoptosis via TRAIL-R1 in primary lymphoid malignancies. Cancer research 65:11265-11270.
    [80]Tur V, van der Sloot AM, Reis CR, et al. (2008) DR4-selective tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) variants obtained by structure-based design. The Journal of biological chemistry 283:20560-20568.
    [81]Chuntharapai A, Dodge K, Grimmer K, et al. (2001) Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. Journal of immunology 166:4891-4898.
    [82]Oldenhuis CN, Stegehuis JH, Walenkamp AM, de Jong S, de Vries EG (2008) Targeting TRAIL death receptors. Current opinion in pharmacology 8:433-439.
    [83]Plummer R, Attard G, Pacey S, et al. (2007) Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clinical cancer research:an official journal of the American Association for Cancer Research 13:6187-6194.
    [84]B. I. Sikic HAW, M. von Mehren, N. Lewis, A. H. Calvert, E. R. Plummer, N. L. Fox, T. Howard, S. F. Jones and H. A. Burris, III. (2007) A phase Ib study to assess the safety of lexatumumab, a human monoclonal antibody that activates TRAIL-R2, in combination with gemcitabine, pemetrexed, doxorubicin or FOLFIRI Journal of clinical oncology:official journal of the American Society of Clinical Oncology 25:1670-1676.
    [85]Tolcher AW, Mita M, Meropol NJ, et al. (2007) Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. Journal of clinical oncology:official journal of the American Society of Clinical Oncology 25:1390-1395.
    [86]Leong S, Cohen RB, Gustafson DL, et al. (2009) Mapatumumab, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies:results of a phase I and pharmacokinetic study. Journal of clinical oncology:official journal of the American Society of Clinical Oncology 27:4413-4421.
    [87]Mom CH, Verweij J, Oldenhuis CN, et al. (2009) Mapatumumab, a fully human agonistic monoclonal antibody that targets TRAIL-R1, in combination with gemcitabine and cisplatin:a phase I study. Clinical cancer research:an official journal of the American Association for Cancer Research 15:5584-5590.
    [88]Greco FA, Bonomi P, Crawford J, et al. (2008) Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung cancer 61:82-90.
    [89]Yoshida T, Shiraishi T, Nakata S, et al. (2005) Proteasome inhibitor MG132 induces death receptor 5 through CCAAT/enhancer-binding protein homologous protein. Cancer research 65:5662-5667.
    [90]He Q, Huang Y, Sheikh MS. (2004) Proteasome inhibitor MG132 upregulates death receptor 5 and cooperates with Apo2L/TRAIL to induce apoptosis in Bax-proficient and -deficient cells. Oncogene 23:2554-2558.
    [91]Voortman J, Resende TP, Abou El Hassan MA, Giaccone G, Kruyt FA. (2007) TRAIL therapy in non-small cell lung cancer cells:sensitization to death receptor-mediated apoptosis by proteasome inhibitor bortezomib. Molecular cancer therapeutics 6:2103-2112.
    [92]Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T. (2004) Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 23:6261-6271.
    [93]Earel JK, Jr., VanOosten RL, Griffith TS. (2006) Histone deacetylase inhibitors modulate the sensitivity of tumor necrosis factor-related apoptosis-inducing ligand-resistant bladder tumor cells. Cancer research 66:499-507.
    [94]VanOosten RL, Moore JM, Karacay B, Griffith TS. (2005) Histone deacetylase inhibitors modulate renal cell carcinoma sensitivity to TRAIL/Apo-2L-induced apoptosis by enhancing TRAIL-R2 expression. Cancer biology & therapy 4:1104-1112.
    [95]Butler LM, Liapis V, Bouralexis S, et al. (2006) The histone deacetylase inhibitor, suberoylanilide hydroxamic acid, overcomes resistance of human breast cancer cells to Apo2L/TRAIL. International journal of cancer Journal international du cancer 119:944-954.
    [96]Tang X, Sun YJ, Half E, Kuo MT, Sinicrope F. (2002) Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human colon cancer cells. Cancer research 62:4903-4908.
    [97]Huang Y, He Q, Hillman MJ, Rong R, Sheikh MS. (2001) Sulindac sulfide-induced apoptosis involves death receptor 5 and the caspase 8-dependent pathway in human colon and prostate cancer cells. Cancer research 61:6918-6924.
    [98]Liu X, Yue P, Zhou Z, Khuri FR, Sun SY. (2004) Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. Journal of the National Cancer Institute 96:1769-1780.
    [99]Shankar S, Singh TR, Srivastava RK. (2004) Ionizing radiation enhances the therapeutic potential of TRAIL in prostate cancer in vitro and in vivo:Intracellular mechanisms. The Prostate 61:35-49.
    [100]Gong B, Almasan A. (2000) Apo2 ligand/TNF-related apoptosis-inducing ligand and death receptor 5 mediate the apoptotic signaling induced by ionizing radiation in leukemic cells. Cancer research 60:5754-5760.
    [101]Marini P, Schmid A, Jendrossek V, et al. (2005) Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis. BMC cancer 5:5.
    [102]LeBlanc H, Lawrence D, Varfolomeev E, et al. (2002) Tumor-cell resistance to death receptor--induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nature medicine 8:274-281.
    [103]Naka T, Sugamura K, Hylander BL, Widmer MB, Rustum YM, Repasky EA. (2002) Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients'colon tumors grown in SCID mice. Cancer research 62:5800-5806.
    [104]Dejosez M, Ramp U, Mahotka C, et al. (2000) Sensitivity to TRAIL/APO-2L-mediated apoptosis in human renal cell carcinomas and its enhancement by topotecan. Cell death and differentiation 7:1127-1136.
    [105]Wen J, Ramadevi N, Nguyen D, Perkins C, Worthington E, Bhalla K. (2000) Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells. Blood 96:3900-3906.
    [106]Mitsiades CS, Treon SP, Mitsiades N, et al. (2001) TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98:795-804.
    [107]Wang TT, Jeng J. (2000) Coordinated regulation of two TRAIL-R2/KILLER/DR5 mRNA isoforms by DNA damaging agents, serum and 17beta-estradiol in human breast cancer cells. Breast cancer research and treatment 61:87-96.
    [108]Kim H, Kim EH, Eom YW, et al. (2006) Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5. Cancer research 66:1740-1750.
    [109]Jung EM, Park JW, Choi KS, et al. (2006) Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through CHOP-independent DR5 upregulation. Carcinogenesis 27:2008-2017.
    [110]Di Pietro R, Secchiero P, Rana R, et al. (2001) Ionizing radiation sensitizes erythroleukemic cells but not normal erythroblasts to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)--mediated cytotoxicity by selective up-regulation of TRAIL-R1. Blood 97:2596-2603.
    [111]Kabore AF, Sun J, Hu X, McCrea K, Johnston JB, Gibson SB. (2006) The TRAIL apoptotic pathway mediates proteasome inhibitor induced apoptosis in primary chronic lymphocytic leukemia cells. Apoptosis:an international journal on programmed cell death 11:1175-1193.
    [112]Fandy TE, Shankar S, Ross DD, Sausville E, Srivastava RK. (2005) Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma. Neoplasia 7:646-657.
    [113]Singh TR, Shankar S, Srivastava RK. (2005) HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 24:4609-4623.
    [114]Sinicrope FA, Penington RC. (2005) Sulindac sulfide-induced apoptosis is enhanced by a small-molecule Bcl-2 inhibitor and by TRAIL in human colon cancer cells overexpressing Bcl-2. Molecular cancer therapeutics 4:1475-1483.
    [115]Singh TR, Shankar S, Chen X, Asim M, Srivastava RK. (2003) Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer research 63:5390-5400.
    [116]Xiang H, Fox JA, Totpal K, et al. (2002) Enhanced tumor killing by Apo2L/TRAIL and CPT-11 co-treatment is associated with p21 cleavage and differential regulation of Apo2L/TRAIL ligand and its receptors. Oncogene 21:3611-3619.
    [117]Shankar S, Chen X, Srivastava RK. (2005) Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo. The Prostate 62:165-186.
    [118]Wu XX, Kakehi Y, Mizutani Y, et al. (2003) Enhancement of TRAIL/Apo2L-mediated apoptosis by adriamycin through inducing DR4 and DR5 in renal cell carcinoma cells. International journal of cancer Journal international du cancer 104:409-417.
    [119]Evdokiou A, Bouralexis S, Atkins GJ, et al. (2002) Chemotherapeutic agents sensitize osteogenic sarcoma cells, but not normal human bone cells, to Apo2L/TRAIL-induced apoptosis. International journal of cancer Journal international du cancer 99:491-504.
    [120]Guan B, Yue P, Clayman GL, Sun SY. (2001) Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. Journal of cellular physiology 188:98-105.
    [121]Kondo K, Yamasaki S, Sugie T, et al. (2006) Cisplatin-dependent upregulation of death receptors 4 and 5 augments induction of apoptosis by TNF-related apoptosis-inducing ligand against esophageal squamous cell carcinoma. International journal of cancer Journal international du cancer 118:230-242.
    [122]Siervo-Sassi RR, Marrangoni AM, Feng X, et al. (2003) Physiological and molecular effects of Apo2L/TRAIL and cisplatin in ovarian carcinoma cell lines. Cancer letters 190:61-72.
    [123]Johnston JB, Kabore AF, Strutinsky J, et al. (2003) Role of the TRAIL/APO2-L death receptors in chlorambucil-and fludarabine-induced apoptosis in chronic lymphocytic leukemia. Oncogene 22:8356-8369.
    [124]Jin Z, McDonald ER,3rd, Dicker DT, El-Deiry WS. (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. The Journal of biological chemistry 279:35829-35839.
    [125]Sun SY, Yue P, Hong WK, Lotan R. (2000) Augmentation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by the synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) through up-regulation of TRAIL receptors in human lung cancer cells. Cancer research 60:7149-7155.
    [126]Qin J, Chaturvedi V, Bonish B, Nickoloff BJ. (2001) Avoiding premature apoptosis of normal epidermal cells. Nature medicine 7:385-386.
    [127]Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. The Journal of biological chemistry 271:12687-12690.
    [128]Walczak H, Miller RE, Ariail K, et al. (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature medicine 5:157-163.
    [129]Schneider P, Holler N, Bodmer JL, et al. (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. The Journal of experimental medicine 187:1205-1213.
    [130]Ashkenazi A, Pai RC, Fong S, et al. (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. The Journal of clinical investigation 104:155-162.
    [131]Bremer E, van Dam GM, de Bruyn M, et al. (2008) Potent systemic anticancer activity of adenovirally expressed EGFR-selective TRAIL fusion protein. Molecular therapy:the journal of the American Society of Gene Therapy 16:1919-1926.
    [132]Griffith TS, Rauch CT, Smolak PJ, et al. (1999) Functional analysis of TRAIL receptors using monoclonal antibodies. Journal of immunology 162:2597-2605.
    [133]Ashkenazi A. (2008) Targeting the extrinsic apoptosis pathway in cancer. Cytokine & growth factor reviews 19:325-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700