用户名: 密码: 验证码:
基于冠层反射光谱的水稻氮素营养与籽粒品质监测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素是植物生长的主要营养元素,在水稻产量品质形成及栽培调控中起到重要的作用。利用遥感技术进行作物长势、氮素营养状况、生产力指标的实时监测与快速诊断是信息农业中的关键技术。本研究以系列田间试验为依托,综合运用现代遥感信息、生长分析、生理生化测试以及数理统计分析等手段,分析了不同条件下水稻冠层多光谱和高光谱特征及其与水稻氮素营养和籽粒品质性状的关系,明确了水稻叶片色素含量、植株氮素状况及品质指标的敏感光谱特征参量及定量反演模型,构建了基于植株特征光谱的水稻氮素营养和籽粒蛋白质含量预测模型,为利用遥感技术监测水稻植株生化组分和籽粒品质等提供了理论依据和技术基础。具体研究内容与结果如下:
     首先综合运用多光谱和高光谱辐射仪,比较了不同氮素营养水平、不同生育时期和不同品种条件下两种仪器获得的水稻冠层光谱反射率的变化模式。结果表明,水稻冠层多光谱反射率曲线和高光谱在可见光部分几乎重叠,在近红外波段反射率值高光谱略高于多光谱。随着施氮水平的提高,冠层反射光谱在近红外反射平台(750-1300nm)的反射率呈上升趋势,而可见光部分反射率则下降,并且冠层反射光谱的绿峰和红边位置也随着施氮水平的提高分别向蓝光方向(波长变短)和红光方向(长波方向)移动。水稻从分蘖开始,随生育期推进,冠层反射光谱在可见光波段的反射率先降低后升高,以抽穗期反射率最低,随着叶片变黄反射率又增大,且绿光波段的反射峰逐渐消失。而近红外区反射率则表现相反趋势,以开花期为界先上升然后下降,直到成熟前降为最低。不同品种水稻冠层反射光谱随氮肥和生育期的变化趋势相同,只是反射率值的大小不同。
     系统分析了水稻叶片色素含量与对应冠层多光谱及高光谱反射特征的定量关系。结果表明,不同品种、叶位的叶片色素组分含量均随施氮水平增加而提高。叶绿素a(Chla)、叶绿素b(Chlb)、总叶绿素含量(Chlt)及总叶绿素含量与类胡萝卜素含量之比(Chlt/Car)与可见光波段(350~710 nm)及短波近红外波段(1400~2485 nm)反射率呈负相关,与近红外波段(750~1300 am)反射率呈正相关;类胡萝卜素含量(Car)及叶绿素a与叶绿素b的比值(Chla/Chlb)与冠层单波段反射率的相关趋势与Chla刚好相反。多光谱植被指数RⅥ(660,460)可以较为准确地反演Chla和Chlt;NDVI(610,460)可以反演Chlb;NDⅥ(950,870)可以反演总叶绿素含量与类胡萝卜素含量的比值(Chlt/Car)。高光谱植被指数WI与Chla、Chlb和Chlt均存在极显著线性正相关关系;NDⅥ(610,460)与Chlt/Car存在极显著线性负相关关系。利用不同试验条件下的观测数据对多光谱参数建立的模型进行检验,Ch1a、Ch1b、Ch1t和Ch1t/Car预测值和实测值的拟合斜率(slope)分别为1.062、0.930、1.036和0.983,根均方差(RMSE)均小于20%,表明模型预测值与实测值之间符合度较高,对水稻色素含量具有较好的预测性。
     综合分析了水稻叶片及地上部植株氮素状况与冠层反射光谱的定量关系,建立了水稻叶片及植株氮素含量和积累量的光谱监测模型。结果显示,不同粳稻品种和生育时期的水稻叶片氮素含量可以用归一化植被指数NDⅥ(1220,710)进行反演,水稻叶片氮积累量可以用比值植被指数RⅥ(1100,560)进行估测,植株氮素积累量的最佳反演光谱参数是差值植被指数DⅥ(1220,870),叶片氮积累量反演的决定系数最高,其次为植株氮积累量和叶片全氮含量。利用不同粳稻品种和水肥处理的观测资料对监测方程进行了检验,根均方差均小于20%,拟合斜率为0.908~1.016,表明预测值与实测值之间符合度较高,对不同栽培条件下的水稻氮素指标具有较好的预测性。
     在分析水稻叶片糖氮比值随施氮水平变化规律的基础上,提出了不同生育时期水稻叶片糖氮比与冠层高光谱反射特征的定量关系。结果表明,叶片糖氮比与拔节后不同生育时期冠层原始反射率的相关性趋势一致,进一步建立了高光谱参数ND_(672)与冠层叶片糖氮比(LCNR)的线性回归方程(LCNR=788.33×ND_(672)-4.4326)为水稻冠层叶片碳氮比的最佳监测模型。模型经过不同生育时期数据的交叉测试和独立试验资料的检验,得出对冠层叶片碳氮比的预测精确度范围为0.687-0.986,准确度为0.907-1.126,RMSE为7.07-18.25,表明水稻冠层高光谱特征可以用来定量估测不同栽培条件下叶片碳氮比的变化状况。
     在分析不同年份、品种和氮素水平下水稻籽粒蛋白质含量和积累量差异的基础上,研究了水稻籽粒蛋白质指标与不同时期冠层反射光谱及叶片和地上部植株氮素状况的关系。成熟籽粒蛋白质含量与不同时期冠层反射光谱的相关分析表明,孕穗期冠层单波段反射率与成熟籽粒蛋白质含量的相关性最高,在16个波段中以760 nm波段反射率与籽粒蛋白质含量的拟合效果最好,建立了水稻成熟籽粒蛋白质含量(GPC)监测模型,GPC=-0.15×DⅥ(1500,950)+3.00.利用不同年份不同品种及不同施氮水平下的观测数据对模型的检验显示,模型预测值与实测值之间符合度较高,对水稻成熟籽粒蛋白质含量具有较好的预测性。此外,利用前期植株氮素状况可以预测成熟期籽粒蛋白质水平,但不同植株氮素指标对籽粒蛋白质的预测能力和最佳时期有所不同。另外,同一植株氮素指标对籽粒蛋白质含量和积累量的监测时期也不完全相同。总体上,不同品种不同氮素水平下水稻从孕穗到灌浆中期的植株氮素状况都能用来反映最终籽粒蛋白质性状。
     通过分析冠层多光谱水稻籽粒淀粉含量及其他品质性状的相关性,发现利用冠层反射光谱可以定量反演籽粒直链淀粉含量、垩白米率和垩白度,而对其他籽粒品质指标预测并不理想。进一步分析了籽粒品质指标与叶片氮素状况的关系及籽粒品质性状间的相关关系,为水稻籽粒综合品质指标的光谱监测提出了一条间接途径,即在籽粒蛋白质指标光谱监测的基础上,借助籽粒品质指标之间的相关性来预测预报其他籽粒品质性状。
Nitrogen is one of the most important nutrients plant growth, and plays key roles in grain yield and quality formation and cultural regulation in rice production. Remote sensing is an important tool for estimating crop growth characters, nitrogen status, yield and quality formation. In this study, a series of field experiments with rice including different varieties, nitrogen and water management practices and population treatments were carried out in five years, canopy spectral reflectance were measured with canopy multi-spectral radiometer (CROPSCAN) and hyper-spectral radiometer (FieldSpec Pro FR2500) over the whole growth periods. The characteristics of canopy multi-spectral and hyper-spectral reflectance under different experimental conditions and their correlations to nitrogen status and grain quality traits in rice were investigated, and the sensitive spectrum parameters and quantitative regression models were established for leaf pigment content, nitrogen status and grain quality traits. This work would provide theoretical basis and key techniques for non-destructive monitoring of nitrogen status and grain quality traits in rice plants with remote sensing technology. The main contents and results of the present study are summarized as follows.
     The change patterns of canopy reflectance under varied nitrogen rates, different eultivars and different growth stages were investigated based on integrated analysis of canopy multi-spectral and hyper-spectral reflectance features in rice. Results showed that reflectance at near infrared reflected flat increased with increasing nitrogen supply, whereas reflectance at visible band decreased, and green peak and red edge position of canopy reflectance spectra also respectively moved to direction of blue light(short wavelength) and red light (long wavelength). Reflectance at visible light initially decreased, then increased with growth progress after tillering, and the lowest value appeared at heading. Reflectance increased and reflectance peak also disappeared gradually in course of leaf yellowing. However, reflectance in near infrared range had opposite trend, which initially increased, then decreased to the lowest from anthesis to maturity. The canopy reflectance also differed with eultivars. These results provide theoretical basis for using canopy reflectance spectra to monitor of growth status, nitrogen status and grain qualities in rice.
     The relationships of leaf pigment contents to canopy spectral reflectance were quantified based on the experiment data. The results showed that the pigment contents of different position leaves increased with increasing nitrogen rates. Leaf chlorophyll a, chlorophyll b, total chlorophyll content and the ratio of total chlorophyll to carotenoid content were negatively correlated to reflectance at 350-710nm and 1400-2485 nm, and positively correlated at 750-1300 nm. Yet carotenoid content and the ratio of chlorophyll a to chlorophyll b content were opposite, negatively correlated to reflectance at 750-1300nm, and positively correlated at 350-710nm and 1400-2485 nm. It is proposed that both leaf chlorophyll a and total chlorophyll can be well monitored by vegetation index RVI(660, 460), chlorophyll b can be well monitored by NDVI(610, 460), and the ratio of total chlorophyll to carotenoid content can be well monitored by NDVI(950, 870). Leaf pigment contents were also significantly correlated with canopy hyper-spectral parameters WI and NDVI(610,460). The derived equations were established as Chla (mg.g~(-1)FW) =-0.5718×RVI (660,460) + 2.9335, Chlb (mg.g~(-1)FW) =-2.0667×NDVI (610,460) + 1.2819, Chlt (mg.g~(-1)FW)=-0.9075×RVI (660,460) + 4.0158, Chlt/Car =-59.051×NDVI (950,870)+ 4.322. Tests with other independent dataset showed the estimation accuracy of 0.930-1.062, and RMSE of 11.277-19.574% under varied growing conditions. It is concluded that the present model was feasible and reliable for estimating leaf pigment contents in rice with different cultivars and nitrogen levels.
     The quantitative relationships between leaf and plant nitrogen status and canopy reflectance spectra in rice were investigated. The results showed that NDVI of R_(1220) and R_(710) is the best parameter for predicting leaf content (LNC), the RVI of R_(1100) and R_(560) is the best parameter for predicting leaf N accumulation (LNA), and the DVI of R_(1220) and R_(870) is the best parameter for predicting plant N accumulation (PNA). The three models were tested by the data from independent field experiments. The RMSEs between the estimated and observed values were all below 20%, and slopes were 0.908~1.016, which indicated the monitoring models were feasible and useful for predicting nitrogen content and accumulation in leaves and plant of rice grown under different cultivars and nitrogen levels.
     Based on the change patterns of leaf sugar and nitrogen content and C/N ratio under different nitrogen supply with growth stages, correlations of leaf C/N to reflectance of single bands, different vegetation indices, derivative indices and parameters normalized by the continuum were analyzed comprehensively. The results showed that there was consistent correlation between C/N ratio and canopy reflectance after jointing in rice. The spectral index of ND_(672) was found to be the best parameter for predicting leaf C/N in rice. The derived equation, LCNRA=788.33×ND_(672)-4.4326, was tested with the observed data of seven growth stages in the field experiment. The estimation precision ranged 0.687-0.986, estimation accuracy 0.907-1.126, and RMSE 7.851-18.25, indicating a good fit between the predicted and observed values of leaf C/N. Tests with other independent dataset showed that the estimation precision was 0.857-0.967, estimation accuracy 0.970-1.049, and RMSE 7.07-16.01. Thus, the present hyper-spectral model was feasible and reliable for estimating leaf C/N in rice with different cultivars and nitrogen levels.
     The relationships of grain protein content to canopy reflectance spectra and leaf and plant N status at different growth stages in rice were quantified based on differences of protein content and accumulation under different years, cultivars and nitrogen rates. The results showed that there were significant negative correlation between grain protein content and canopy spectral reflectance at 460-710 nm and positive correlation at 760-1220 nm after jointing, with best performance from the relationship at 760 nm and booting stage. The differential vegetation index of R_(1500) and R_(950) was found to be the best parameter for predicting grain protein content (GPC) in rice. The derived equation, GPC =0.15×DVI (1500, 950) + 3, was tested with the observed data from the other independent experiments. There was a good fit between the predicted and observed values of grain protein content. Thus, the present spectral index model is feasible and useful for estimating grain protein content in rice with different cultivars and nitrogen levels. In addition, grain protein index at maturity could be estimated by leaf and nitrogen status at prior stage, but estimating capacity and proper time were different for different nitrogen status. In addition, the proper time for estimating grain protein content and accumulation is different with the same plant nitrogen index. Overall, plant nitrogen status from booting to mid-filling could be used to estimating gratin protein index at maturity for different cultivar and different nitrogen levels.
     Relationship of grain amylase content and other quality traits to canopy reflectance spectra were investigated using multi-spectral remote sensing data from different experiments. Results showed that amylase content, chalkiness grain percentage and chalkiness degree could be quantitatively estimated by canopy reflectance spectra, but other quality traits were not satisfied. In addition, relationships of grain quality traits to leaf N status and different quality traits were also analyzed for identifying indirect approach to monitor integrated grain quality in rice. The results revealed that indirect estimation of other grain quality straits could be realized based on quantitative monitoring of grain protein content and mutual relationships of grain quality indices.
引文
1. Choi W Y, Park H K. Cultural practices for improving grain quality of rice in southern plain area. Korean Journal of Crop Science, 1990, 35 (6): 487-491.
    2. Cheong J L, Park H K, Choi W Y. Effects of slow - release fertilizer application on rice grain quality at different culture methods. Korean Journal of Crop Science, 1996, 41 (3): 286-294.
    3. Kim Y D, Kang S Y. Study on the improvement of rice quality 1. Effect of chemical composition in brown rice. Korean Journal of Soil and Fertilizer Science, 1992, 25 (4): 357-363.
    4. Hong K P. Influence of growing location, culture practices and application of organic manure on grain yield and quality in rice. RDA Journal of Agriculture Science, 1993, 35 (2): 41-46.
    5.彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103.
    6.谢建昌.世界肥料使用的现状与前景.植物营养学报,1998,4(4):321-330.
    7.熊正琴,邢光嘉,沈光裕,施书莲,钱薇.人为活动N对太湖地区水体中溶液N_2O的影响.农业环境保护 2002,21(5):389-392.
    8.浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000,8:3-4.
    9.李建龙.信息农业生态学.北京:化学工业出版社,2004:306-307.
    10.童庆禧等。中国典型地物波谱及其特征分析.北京:科学出版社,1990,593-595.
    11.王秀珍,黄敬峰.冬小麦地面光谱监测.新疆气象,1996,19(3):29-33.
    12. Fang H, Liang S, Andres Kuns. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model. Remote Sensing of Environment, 2003, 85: 257-270.
    13. Pearson R L, Miller D L. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. In: Proceedings of the Eighth International Symposium on Remote Sensing of Environment. Michigan: Ann Arbor, 1972, 2: 1357-1381.
    14. Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 1977, 43(12): 1541-1552.
    15. Rouse J W, Haas R H, Schell J A. Monitoring the vernal advancement of retrogradation of natural vegetation, NASA/GSFC, Type Ⅲ, Final Report, Greenbelt, MD, USA, 1974: 1-371.
    16.张晓阳,李劲峰.利用垂直植被指数推算作物叶面积系数的理论模式,遥感技术与应用,1995 10(3):13-18.
    17.王延颐,陈玉泉等.水稻长势、产量结构与水稻光谱参数的关系及模式,环境监测与作物估产的遥感研究论文集,北京大学出版社,1991.
    18. Clevers J G P W. The Derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sensing of Environment, 1988, 25: 53-69.
    19. Clevers J G P W, Verhoef W. LAI estimation by means of the NDVI: a sensitivity analysis with a combined prospect- soil model. Remote Sensing Reviews, 1993, 7: 43-64.
    20.金仲辉,张建军.用六维光谱绿度值估算小麦的叶面积指数.遥感技术与应用,1993,8(3):15-20.
    21. Clark R N, Roush T L. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 1984, 89: 6329-6340.
    22. Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. International Journal of Remote Sensing, 1994, 15: 1459-1470.
    23. Mauser W, Bach H. Imaging spectroscopy in hydrology and agriculture-determination of model parameters. In: J. Hill, & J. Megier (Eds.), Imaging spectrometry—a tool for environmental observations. Dordrecht, The Netherlands: Kluwer Academic Publishing, 1995, 261-283.
    24. Prasad S T, Ronald B, Smith and Eddy De Pauw, Hyperspectral vegetation indices and their relationship with agricultural crop characteristics. Remote Sensing Environment, 2000, 71: 158-182.
    25.刘伟东,项月琴.郑兰芬,童庆棺,吴长山.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析,遥感学报,2000,4(4):279-283.
    26.王秀珍,黄敬峰,李云梅,沈掌泉,王人潮.高光谱数据与水稻农学参数之问的相关分析,浙江大学学报(农业与生命科学版),2002,28(3):283-288.
    27.宋开山,张柏,李方,段洪涛,王宗明.高光谱反射率与大豆叶面积及地上鲜生物量的相关分析,农业工程学报,2005,(21)1:36-40.
    28.薛利红,曹卫星,罗卫红,王绍华.光谱植被指数与水稻叶面积指数相关性的研究,植物生态学报,2004,28(1):47-52.
    29.谭昌伟,黄义德,黄文江,王纪华,赵春江,刘良云.夏玉米叶面积指数的高光谱遥感植被指数法研究,安徽农业大学学报,2004,31(4):392-397.
    30.唐延林,王秀珍,王福民,王人潮.农作物LAI和生物量的高光谱法测定,西北农林科技大学学报(自然科学版),2004,32(11):100-104.
    31.王秀珍,黄敬峰,李云梅,王人潮.水稻叶面积指数的多光谱遥感估算模型研究,遥感技术 与应用,2003,18(2):57-65.
    32. Wiegand C L, Maas S J, Aase J K, Hatfield J L, et al. Multisite analyses of spectral-biophysical data for wheat. Remote Sensing of Environment, 1992: 42: 1-21.
    33.王秀珍,黄敬峰,李云梅,王人潮.水稻叶面积指数的高光谱遥感估算模型,遥感学报,2004,8(1):82-88.
    34. Elvidge C, Chen Z. Comparison of broadband and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, 1995, 54: 38-48.
    35. Gitelson A A, Merzlyak M N. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J Plant Physinl, 1996, 148: 494-500.
    36. Broge N H, Mortensen J V. Deriving crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote sensing Environ, 2002, 81:45-57.
    37. Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 2000, 76: 156-172.
    38. Gilabert, M A, and Melia J. Solar angle and sky light effects on ground reflectance measurements in a citrus canopy. Remote Sensing of Environment, 1993, 44: 281-293.
    39. Dusek D A, Jackson R D, and Musick J T. Winter wheat vegetation indices calculated from combinations of seven spectral bands. Remote Sensing of Environment, 1985, 18: 255-267.
    40. Gardner B R, Blad B L, Thompson D R, et al. Evaluation and interpretation of Thematic Mapper rations in equations for estimating corn growth parameters. Remote Sensing of Environment, 1985, 18: 225-234.
    41. Shibayama M, Aldyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sensing of Environment, 1989, 27: 119-127.
    42. Shibayama M, Akiyama T. Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurements. Remote Sensing of Environment, 1991, 36: 45-53.
    43. Takahashi W, Nguyen C V, Kawaguchi S, et al. Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies.. Plant Produce Science. 2000, 3 (4): 377-386.
    44. Elvidge C D, Chen Z, Groenevild D P. Detection of trace quantities of green vegetation in 1990 AVIRIS data. Remote sensing Environment, 1993, 44:271-279.
    45. Gitelson A A, Kaufman Y J, Robert Stark, Don Rundquist. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80:76-87.
    46. Inoue Y, Moran S M, and Horie T A. Analysis of spectral measurements in paddy field for predicting rice growth and yield based on simple crop simulation model. Plant Produce Science, 1998, 1(4): 269-279.
    47.唐延林,王秀珍,王珂.利用光谱法测定水稻生物物理参数及其与光谱变量的相关性研究,贵州大学学报(农业与生物科学版),2002,21(5):327-331.
    48.李劲峰.江汉平原水稻光谱参数与水稻长势及遥感估产的关系模式.小麦、玉米和水稻遥感估产技术试验研究文集.北京:中国科学技术出版社,1993:158-162.
    49.王秀珍,黄敬峰,李云梅,王人潮.水稻地上鲜生物量的高光谱遥感估算模型研究,作物学报,2003,29(6):815-821.
    50. Al-Abbas,A.H, R. Barr, J.D. Hall, F.L. Crane and M.F. Baumgardner. Spectra of normal and nutrient-deficient maize leaves. Agronmy Journal, 1974, 66: 1-20.
    51. Hinzman L D, Bauer M E, Daughtry C S T. Effects of Mtrogen Fertilization on Growth and Reflectance Characteristics of Winter Wheat. Renrote Sensing of Enviromrent, 1986, 19: 47 -61.
    52. Thomas J R, Gausman H W..Leaf Reflectance vs .Leaf Chlorophyll and Carotenoid Concentration for eight Crop. Agronmy Journal, 1977, 69: 799-802.
    53. Walburg G, Bauer M E, Daughtry C S T, et al.. Effects of N nutrition on the growth, yield, and reflectance characteristics of corn canopies. Agronomy Journal, 1982, 74: 677-683.
    54. Wang Ke, Shen Zhangquan, Wang Renchao. Effects of Nitrogen Nutrition on the Spectral Reflectance Characteristics of Rice Leaf and Canopy. Journal of Zhejiang Agricultural University, 1998, 24:93-97.
    55.王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究.Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择.浙江农业大学学报,1993,19(增刊):7-14.
    56. Chubachi N R, Asanol OikavaT. The Diagnosis of Nitrogen of Rice Plants Using Chlorophyll meter. Japanese Journal of Soil Science and Plant Nutrition, 1986, 57: 109~193.
    57. Shibayama M, Akiyama T. A Spectroradiometer for Field Use. Ⅵ. Radiometric estimation for chlorophyll index of rice canopy. Japanese Journal of Crop Science, 1986, 55 (4): 433-438.
    58. Tracy M B, James S S, Gary E V. Light Reflectance Compared with Other Nitrogen Stress Measurements in Corn Leaves. Agronomy Journal, 1994, 86: 934 -938.
    59. Tracy M B, Ja mes S S, Gary E, et al.. Nitrogen Deficiency Detection Using Reflected Short-wave Radiation from Irrigated Corn Canopies. Agronomy Journal, 1996, 88: 1-5.
    60. Munden R, Curran P J, Catt J A. The Relationship between the red edge and chlorophyll concentration in the broadbalk winter wheat experiment at Rothamsted. International Journal of Remote Sensing, 1994, 15: 705-709.
    61. Arne Jensen, Bent Lorenzen.. Radiometric Estimation of Biomass and Nitrogen Content of Barley Grown at Different Nitrogen Levels. International Journal of Renrote Sensing, 1990, 11(10): 1809-1820.
    62.周启发,王人潮.水稻氮素营养水平与光谱特征的关系.浙江农业大学学报,1993,19(增刊):40-46.
    63. Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy Journal, 1972, 64: 11-13.
    64. Fernandez S, Vidal D, Simon E, et al.. Radiometric Characteristics of Triticumaestivum cv. Astral under Water and Nitrogen Stress. International Journal of Remote Sensing, 1994, 15(9): 1867-1884.
    65. Johnson L F, Billow C R. Spectrometric estimation of total nitrogen concentration in Douglaafir foliage. Remote Sensing of Fnvironment, 1996, 17(4): 489-500.
    66. Johnson L F. Nitrogen influence on fresh-leaf NIR spectra remote sensing of environment, 2001, 78: 314-32.
    67. Lee Tarpley, Raia K Reddy, Gretchen F Sassenrath-Cole. Reflectance Indices with Precision and Accuracy in Predicting Cotton Leaf Nitrogen. Crop Science, 2000, 40: 1814-1819.
    68. Stone M L, Soile J B, Raun W R, Whitney R W, Taylor S L, Ringer J D. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of ASAE, 1996, 39: 1623-1631.
    69.薛利红,曹卫星,罗卫红,张宪.小麦叶片氮素状况与光谱特性的相关性研究,植物生态学报,2004,28(2):172-177.
    70. Kokaly R, Root R, Brown K, Anderson G L, and Hager S. Calibration of compact airborne sepctrographic imager (CASI) data to surface reflectance at Theodore Roosevelt National Park. Abstract: 221st Annual Meeting of the American Chemical Society. San Diego, CA. 2001, 4: 1-5.
    71.王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择,浙江农业大学学报,1993,19(Suppl.):7-14.
    72.周启发,王人潮.水稻氮素营养水平与光谱特性的关系,浙江农业大学学报,1993,19(Suppl.):40-46.
    73.杨长明,杨林章,韦朝领等.不同品种水稻群体冠层光谱特征比较研究,应用生态学报,2002,13(6):689-692.
    74.浦瑞良,宫鹏.森林生物化学与CASI高光谱分辨率遥感数据的相关分析.遥感学报,1997,1(2):115-123.
    75.牛铮,陈永华,隋洪智,等.叶片化学组分成像光谱遥感探测机理分析.遥感学报,2000,4(2):125-129.
    76. Stone, M L, Solie J B, Raun W R, et al. Use of spectral radiance for correcting In-season fertilizer nitrogen deficiencies in winter wheat. Transaction of the ASAE, 1996, 39(5): 1623-1631.
    77. Wolf, D W, Henderson, Hsiao T C, and Alvino A. Interactive water and nitrogen effects on senescences of maize. Ⅱ. Photosynthetic decline and longevity of individual leaves. Agronomy Journal., 1988, 80: 865-870.
    78. Thomas J R, Crausman H W. Leaf Reflectance vs. Leaf chlorophyll and carotenoid concentration for eight crops. Agronomy Journal, 1977, 60: 799-802.
    79. Maas S J, Dunlap J R. Reflectance, transmittance, and absorbance of light by normal etiolated and albino corn leaves. Agronomy Journal, 1989, 81: 105-110.
    80. Penuelas J, Baret F, Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 1995, 31: 221-230.
    81. Penuelas J, Filella. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science, 1998, 3: 151-156.
    82. Chappelle E W, Kim M S, McMurtrey J E. Ratio analysis of reflectance spectra (PARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote sensing of Environment, 1992, 39: 239-247.
    83.张金恒,王珂,王人潮.叶绿素计SPAD-502在水稻氮素营养诊断中的应用.西北农林科技大学学报,2003,31(2):30-33.
    84. Penuelas J, Filella I, Gamon J A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 1995, 131: 291-296.
    85. Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn foliar chlorophyll content from leaf and canopy reflectance. Remote Sensing of Environment. 2000, 74: 229-239.
    86. Johnson L F, Hlavaka C A, Peterson D L. Multivariate analysis of AVIRIS data for canopy, biochemical estimation along the Oregon transect. Remote Sensing of Environment. 1994, 47:216-230.
    87. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of features and stepwise multiple linear regression. Remote Sensing of Environment. 1999, 67: 267-287.
    88.牛铮,陈永华,隋洪智等.叶片化学成分成像光谱遥感探测机理分析,遥感学报,2000,4(2):125-129.
    89. Blackburn G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sensing of Environment. 1998, 66: 273-285.
    90. Madeira A C, Mendonca A, Ferreira M E, et al. Relationship between spectroradiometric and chlorophyll measurements in green beans. Communication in Soil Science and Plant Analysis. 2000, 31(5-6): 631-643.
    91. Tian Q, Tong Q, Pu R, et al. Spectroscopic determination of wheat water status using 1650-1850nm spectral absorption features. International Journal of Remote Sensing. 2001, 22(12): 2329-2338.
    92. Bonham-Carter G F. Numerical procedures and computer program for fitting an inverted Ganssian model to vegetation reflectance data. Computers & Geosciences. 1988, 14(3): 339-356.
    93. Rock B N, Hoshizaki T, Miller J R. Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sensing of Environment. 1988, 24: 109-127.
    94. Pinar A. Grass chlorophyll and the reflectance red edge. International Journal of Remote Sensing. 1996, 17(2): 351-357.
    95.李建龙.信息农业生态学,北京:化学工业出版社,2004:301-302.
    96.吴长山,项月琴,郑兰芬等.利用高光谱数据对作物群体叶绿素密度估算的研究,遥感学报,2000,4(3):228-232.
    97. Everitt J H, Pettit R D, Alaniz M A. Remote sensing of broom snake weed (Gutierrezia sarothrae) and spiny aster (Aster spinosus ). Weed Science, 1987, 35 (2): 295-302.
    98. Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 1995, 53: 199-211.
    99. Xue L H, Cao W X, Luo W H, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal. 2004, 96(1): 135-142.
    100. Martin M E, Aber J D. High spectral resolution remote sensing of forest canopy lignin, nitrogen and ecosystem processes. Ecological Applications. 1997, 7: 431-443.
    101. Curran P J. Remote sensing of foliar chemistry. Remote Sensing of Environment. 1989, 30: 271-278.
    102. Neilla A L, Kupiecb J A, Curran P J. Biochemical and reflectance variation throughout a Sitka spruce canopy. Remote Sensing of Environment. 2002, 80: 134-142.
    103. Serranoa L, Penuelasa J, Susan L U. Remote seining of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sensing of Environment. 2002, 81: 355-364.
    104.施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究—以2100nm吸收特征的碳氮比反演为例,遥感学报,2005,9(1):1-7.
    105.施润和,牛铮,庄大方.利用高光谱数据估测植物叶片碳氮比的可行性研究,遥感技术与应用,2003,18(2):76-80.
    106.田永超,朱艳,曹卫星.用冠层反射光谱预测小麦叶片糖氮量及糖氮比,作物学报,2005,31(3):355-360.
    107.#12
    108. Basnet B, Apan A, Kelly R, Jensen T, Strong W, Butler D, Relating satellite imagery with grain protein content of grain crops. In: Proceedings of the Spatial Sciences Conference, Canberra, Australia, 2003, 22-27.
    109. Hansen P M, Jorgensen J R, Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. Journal of Agriculture Science, 2002, 139:307-318.
    110.薛利红,朱艳,张宪,曹卫星.利用冠层反射光谱预测小麦籽粒品质指标的研究,作物学报,2004,30(10):1036-1041.
    111.李映雪,朱艳,田永超,等.小麦冠层反射光谱与籽粒蛋白质含量及相关品质指标的定量关系.中国农业科学,2005,38(7):1332-1338.
    112.王纪华,黄文江,赵春江,杨敏华,王之杰.利用光谱反射率估算叶片生化组分和籽粒品质指标研究,遥感学报,2003,7(4):276-284.
    113.田永超,朱艳,曹卫星,范雪梅,刘小军.利用冠层反射光谱和叶片SPAD值预测小麦籽粒蛋白质和淀粉的积累,中国农业科学,2004,37(6):808-813.
    114.黄文江,王纪华,刘良云,等.小麦品质指标与冠层光谱特征的相关性初步研究.农业工程学报,2004,20(4):203-207.
    115. Zhijie Wang, Jihua Wang, Liangyun Liu, et al. Prediction of grain protein content in winter wheat using plant pigment ratio (PPR). Field Crops Research, 2004, 90 (2-3): 311-321.
    116.#12
    117. Lamb D W, Weedon M M, and Bramley R G V. Using remote sensing to predict grape phenolics and colour at harvest in a Cabernet Sauvignon vineyard: Timing observations against vine phenology and optimizing image resolution. Predicting grape phenolics and colour at harvest. Australian Journal of Grape and Wine Research. 2004, 10: 46-54.
    118. Gupta R K, Vijayan D, Prasad T S. New hyperspectral vegetation characterization parameters. Advance Space Research, 2001A, 28 (1): 201-206.
    119. Gupta R K, Vijayan D, Prasad T S. Characterization of red-near infrared transition for wheat and Chickpea using 3 nm bandwidth data. Advance Space Research, 2001B, 28 (1): 189-194.
    120. Asner G P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment. 1998, 64: 234-253.
    121. Roberts D A, Green g O, Adams J B. Temporal and spatial patterns in vegetation and atmospheric properties from AVIRIS. Remote Sensing of Environment. 1997, 62: 223-240.
    1. CROPSCAN Inc. Data logger controller, User's guide and technical reference. CROPSCAN Inc. Rochester, MN. 2000.
    2. Analytical Spectral Devices. Inc. FieldSpec Pro User's guide. 2002.
    3.张振清.植物材料中可溶性糖的测定.植物生理学实验手册.上海:上海科学技术出版社,1982:134-138.
    4.上海植物生理学会.现代植物生理学实验指南.北京:科学技术出版社.1999,12:131-132.
    5.李强,赵伟.MATLAB数据处理与应用 北京:国防工业出版社.2001,1.
    6. Pearson R L, Miller D L. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. In: Proceedings of the Eighth International Symposium on Remote Sensing of Environment. Michigan: Ann Arbor. 1972, 2: 1357-1381.
    7. Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing. 1977, 43 (12): 1541-1552.
    8. Rouse J W, Haas R H, Schell J A. Monitoring the vernal advancement of retrogradation of natural vegetation, NASA/GSFC, Type Ⅲ, Final Report, Greenbelt, MD, USA. 1974, 1-371.
    9. Justice, C O, Vermote E, Townshend J R G, Defries R, Roy D P, Hall D K, Salomonsen V V, Privette J L, Rggs G, Strahler A, Lucht W, Myneni R B, Knyazikhin Y, Running S W, Nemani R R, Wan Z, Huete A R, van Leeuwen W, Wolfe R E, Giglio L, Muller J P, Lewis P, Barnsley M J. The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing. 1998, 36 (4): 1228-1250.
    10. Penuelas J, Filella I, Gamon J A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 1995, 131: 291-296.
    11. Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment. 2002, 80: 76-87.
    12. Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn foliar chlorophyll content from leaf and canopy reflectance. Remote Sensing of Environment. 2000, 74: 229-239.
    13. Guyot G, Baret F. Utilisation de la haute resolution spectrale pour suivre l'état des couverts végétaux. In: Proceedings of the 4th International Conference on Spectral Signatures of Objects in Remote Sensing, Aussois, France. 1988, January, 18-22.
    14. Hutet A R, Jackson R D, Post D F. Spectal response of a plant canopy with different soil backgrounds. Remote Sensing of Environment. 1985, 17: 37-53.
    15. Richardson A. J, Wiegand C L. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 1977, 43: 1541-1552.
    16. Baret F, Guyot G, Major D J. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proc. IGARRS '89. 12th Canadian Symposium on Remote Sensing, (vol. 3, 1355-1358). Vancouver, Canada, 1989, 4 (10-14July).
    17. Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment. 1996, 55: 95-107.
    18. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using Band-Depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment. 1999, 67: 267-287.
    19. Metternich G. Vegetation indices derived from high-resolution airborne videography for precision crop management. International Journal of Remote Sensing. 2003, 24: 2855-2877.
    20. Gitelson A A, Merzlyak M N. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology. 1996, 148: 494-500.
    21. Schleicher T D, Bausch W C, Delgado J A, et al. Evaluation and refinement of the nitrogen reflectance index (NRI) for site-specific fertilizer management. 2001 ASAE Annual International Meeting, St. Joseph, MI, USA. ASAE Paper No. 1101-1115.
    22. Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. 1988, 25: 295-309.
    23. Haboudane D, Miller J, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment. 2002, 81: 416-426.
    24. Tsai F, Philpot W. Derivative analysis of hyperspectral data. Remote Sensing of Environment. 1998, 66: 41-51.
    25. Horler D N H, Dockray M, Barber J. The red edge of plant reflectance. International Journal of Remote Sensing. 1983, 4: 273-288.
    26. Curran P J, Windham W R and Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine Ⅱ. Tree physiology. 1995, 15: 203-206.
    27. Filella I, Penuelas J. The red edge position and shape as indicators plant chlorophyll content, biomass and hydric status. International journal of remote sensing. 1994, 15: 1459-1470.
    28. Munden R, Curran P J, and Catt J A. The relationship between red edge and chlorophyll concentration in the broadbalk winter wheat experiment at Rothamsted. International Journal of Remote Sensing. 1994, 15: 705-709.
    29. Miller J R, Hare E W, Wu J. Quantitative Characterization of the Vegetation Red Edge Reflectance Model, International Journal of Remote Sensing. 1990, 11 (10): 1755-1773.
    30.陆海燕.不同水肥条件冬小麦主要农艺理化参量变化及其遥感反演.中国农业大学硕士学位论文.2003,6.
    31. Lichtenthaler H K. Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. Methods in Enzymology. San Diego, CA: Academic Press. 1987, 148, 350-382.
    1.吕国楷,洪启旺,郝允充等.遥感概论,北京:高等教育出版社,1997,21-22.
    2.杨长明,杨林章,韦朝领,丁超尘.不同品种水稻群体冠层光谱特征比较研究,应用生态学报,2002,13(6):689-692.
    3.周学秋,朱雨杰,严衍禄.生育阶段小麦冠层的反射光谱特征及其模糊聚类的研究,激光生物学,1996,5(3):870-873.
    4.朱雨杰,周学秋,严衍禄.不同灌溉条件下小麦冠层的反射光谱特征及其模糊聚类研究,激光生物学,1996,5(3):874-877.
    5.薛利红,曹卫星,罗卫红.不同栽培措施下拔节期水稻冠层反射光谱特征及其模糊聚类分析,中国水稻科学,2004,18(2):151-155.
    6. Thomas J R, Gausman H W. Leaf reflectance vs. leaf chlorophyll and carotenoid concentration for eight crops. Agronomy Journal. 1977, 69: 799-802.
    7. Shibayama M, Akiyama T. A Spectroradiometer for Field Use. Ⅵ. Radiometric estimation for chlorophyll index office canopy. Japanese Journal of Crop Science. 1986, 55(4): 433-438.
    8.唐延林,王人潮,黄敬峰,孔维姝,程乾.不同供氮水平下水稻高光谱及其红边特征研究,遥感学报,2004,8(2):185-192.
    9.程一松,胡春胜,郝二波,于贵瑞.氮素胁迫下的冬小麦高光谱特征提取与分析,资源科学,2003,25(1):86-93.
    10.赵春江,黄文江,王纪华,杨敏华,薛绪掌.不同品种、肥水条件下冬小麦光谱红边参数研 究,中国农业科学,2002,35(8):980-987.
    11.黄文江,王纪华,刘良云,赵春江,王锦地,杜小鸿.冬小麦红边参数变化规律及其营养诊断,遥感技术与应用,2003,18(4):206-211.
    12.陈述彭,赵英时.遥感地学分析,北京:测绘出版社.1990.
    13.游先祥.遥感原理及在资源环境中的应用,北京:中国林业出版社.2003.
    14.田国良,郭世忠.水稻光谱反射特性.自然资源.1992,(2):73-81.
    15.王延颐,陈玉泉.水稻长势、产量结构与水稻光谱参数的关系.环境监测与作物估产的遥感研究论文集.北京:北京大学出版社,1991.
    16.王人潮,黄敬峰.水稻遥感估产.北京:中国农业出版社,2002,29,60-61.
    1. Collins W. Remote sensing of crop type and maturity. Photogrammetric Engineering and Remote Sensing, 1978 (44): 43-55.
    2.李云梅,倪绍祥,王秀珍.线性回归模型估算水稻叶片叶绿素含量的适宜性分析.遥感学报,2003,9(5):364-371.
    3. Curran P J. Remote sensing of foliar chemistry. Remote Sensing of Environment, 1989, 30: 271-278.
    4. Card D H, Peterson D L, Matson P A, Abet J D. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing of Environment, 1988, 26: 123-147.
    5. Thomas J R, Gausman H W. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy Journal, 1977, 60: 799-802.
    6. Datt B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves. Remote Sensing of Environment, 1998, 66: 111-121.
    7. Horler D N H, Barber J P, Ferns D C, Barringer A R. Approaches to detection of geochemical stress in vegetation. Advanced Space Research, 1983, 3: 175-179.
    8. Horler D N H, Dockray M, Barber J, Barringer A R. Red edge measurements for remotely sensing plant chlorophyll content. Advanced Space Research, 1983, 3: 273-277.
    9. Horler D N H, Dockray M, Barber J. The red edge ofplant leaf reflectance. International Journal of Remote Sensing, 1983, 4: 273-288.
    10.刘伟东,项月琴,郑兰芬,童庆僖,吴长山.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析.遥感学报,2000,4(4):279-283.
    11.王秀珍,王人潮,李云梅,沈掌泉.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业与生命科学版),2001,27(3):301-306.
    12.李云梅,倪绍祥,黄敬蜂.高光谱数据探讨水稻叶片叶绿素含量对叶片及冠层光谱反射特性的影响[J].遥感技术与应用,2003,18(1):1-5.
    13.刘彦卓,黄农荣,黄秋妹,陈钊明,刘斌,梁祖扬,邱润恒,张旭.晚季不同类型高产水稻品种光合速率和叶绿素含量变化研究初报.广东农业科学,2000,(1):2-4.
    14. Lee F J. Nitrogen influence on fresh-leaf NIR spectra. Remote Sensing of Environment, 2001, 78: 314-320.
    15. Gitelson A A, Merzlyak M N. Spectral reflectance changes associate with autumn senescence of Aesulus hippocastanum L. and Acer platanoides L. leaves spectral features and relation to chlorophyll estimation. Journal of plant physiology, 1994, 143: 286-292.
    16. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81: 331-354.
    17.王秀珍,黄敬峰,李云梅,王人潮.水稻生物化学参数与高光谱遥感特征参数的相关分析.农业工程学报,2003,19(2):144-148.
    18. Asnrt G P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment. 1998, 64: 234-253.
    19. Roberts D A, Greeb R O, Adams J B. Temporal and spatial pattems in vegetation and atmospheric properties from AVIRIS. Remote Sensing of Environment. 1997, 62: 223-240.
    20. Thenkkabail P S, Smith B B, Pauw E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment. 2000, 71:158-182.
    21. Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment. 2000, 76:156-172.
    22. Elvidge C, Chen Z. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment. 1995,54:38-48.
    23. Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment. 2002, 81:45-57.
    1 薛利红,罗卫红,曹卫星,田永超.作物水分和氮素光谱诊断研究进展.遥感学报.2003,7(1):73-80.
    2 Takebe M, Yoneyama T, Inada K, Murakami T. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant and Soil. 1990, 122: 295-297.
    3 Pattey E, Strachan I B, Boisvert J B, et al. Detecting effects of nitrogen rate and weather on com growth using microme-teorological and hyperspectral reflectance measurements. Agricultural and Forest Meteorology. 2001, 108:85-99.
    4 Strachan I B, Pattey E, Boisvert J B. Impact of nitrogen and environment conditions on corn as detected by hyperspectral reflectance. Remote Sensing of Environment, 2002, 80:213-224.
    5 Thomas J R, Gausman H W. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy Journal. 1977, 69:799-802.
    6 Takebe M, Yoneyama T, Inada K, et al. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant and Soil. 1990, 122: 295-297.
    7 王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究——Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择.浙江农业大学学报.1993,19(sup):7-14.
    8 周启发,王人潮.水稻氮素营养水平与光谱特性的关系.浙江农业大学学报,1993,19(sup):40-46.
    9 薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测.作物学报.2006,32(3):430-435.
    10 Chappelle E W, Kim M S, McMurtrey J E. Ratio analysis of reflectance spectra (PARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote sensing of Environment, 1992, 39: 239-247.
    11 程乾,黄敬峰,王人潮,唐延林.MODIS植被指数与水稻叶面积指数及叶片叶绿素含量相关性研究.应用生态学报.2004,15(8):1363-1367.
    12 Bonham-Carter G F. Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data. Computers & Geosciences. 1988, 14(3): 339-356.
    13 吴长山,项月琴,郑兰芬,童庆禧.利用高光谱数据对作物群体叶绿素密度估算的研究.遥感学报.2000,4(3):228-232.
    14 赵春江,黄文江,王纪华,杨敏华,薛绪掌.不同品种、肥水条件下冬小麦光谱红边参数研究.中国农业科学.2002,35(8):980-987
    15 CROPSCAN Inc. 2000. Data logger controller, User's guide and technical reference. CROPSCAN Inc. Rochester, MN
    16 Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55: 95~107
    17 薛利红,曹卫星,罗卫红,姜东,孟亚利,朱艳.基于冠层反射光谱的水稻群体叶片氮素状况监测.中国农业科学.2003,36(7):807-812.
    18 Shibayama M, Akiyama T. A spectroradiometer for field use. Ⅶ. Radiometric estimation of nitrogen levels in field rice canopies. Japanese Journal of Crop Science. 1986, 55 (4): 439-445.
    19 Daughtry C S T, Walthall C L, Kin M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of Environment. 2000, 74: 229-239.
    20 Yoshio I, Moran M S, Takeshi H. Analysis of spectral measurements in paddy field for predicting rice and yield based on simple crop simulation model. Plant Production Science.1998, 1 (4): 269-279.
    1.李建龙.信息农业生态学.北京:化学工业出版社,2004:306-307.
    2. Everitt J H, Pettit R D, Alaniz M A. Remote Sensing of Broom Snake Weed (Gutierrezia sarothrae) and Spiny Aster (Aster spinosus). Weed Science, 1987, 35 (2): 295-302.
    3. Yoder B J, Pettigrew-Crosby R E. Predicting Nitrogen and Chlorophyll Concentrations from Reflectance Spectra (400-2500nm) at Leaf and Canopy Scales. Remote Sensing of Environment, 1995, 53:199-211.
    4. Stone M L, Soile J B, Raun W R, et al. Use of Spectral Radiance for Correcting in-season Fertilizer Nitrogen Deficiencies in Winter Wheat. Transactions of ASAE, 1996, 39: 1623-1631.
    5.薛利红,曹卫星,罗卫红等.小麦叶片氮素状况与光谱特性的相关性研究.植物生态学报,2004,28(2):172-177.
    6. Xue L H, Cao W X, Luo W H, et al. Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance. Agronomy Journal, 2004, 96(1): 135-142.
    7. Martin M E, Aber J D. High Spectral Resolution Remote Sensing of Forest Canopy Lignin, Nitrogen and Ecosystem Processes. Ecological Applications, 1997, 7:431-443.
    8. Curran P J. Remote Sensing of Foliar Chemistry. Remote Sensing of Environment, 1989, 30: 271-278.
    9. Neill A L, Kupiec J A, Curran P J. Biochemical and Reflectance Variation throughout a Sitka Spruce Canopy. Remote Sensing of Environment, 2002, 80: 134-142.
    10. Serranoa L, Penuelas J, Susan L U. Remote Sensing of Nitrogen and Lignin in Mediterranean Vegetation from AVIRIS Data: Decomposing Biochemical from Structural Signals. Remote Sewing of Environment, 2002, 81: 355-364.
    11.施润和,牛铮,庄大方.利用高光谱数据估测植物叶片碳氮比的可行性研究.遥感技术与应用,2003,18(2):76-80.
    12.薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测.作物学报,2006,32(3):430-435.
    13.田永超,朱艳,曹卫星.用冠层反射光谱预测小麦叶片糖氮量及糖氮比.作物学报,2005,31(3):355-360.
    14. Asnrt G P. Biophysical and Biochemical Sources of Variability in Canopy Reflectance. Remote Sensing of Environment, 1998, 64: 234-253.
    15. Roberts D A, Greeb R O, Adams J B. Temporal and Spatial Patterns in Vegetation and Atmospheric Properties from AVIRIS. Remote Sensing of Environment, 1997, 62: 223-240.
    16. Thenkkabail P S, Smith B B, Pauw E. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sensing of Environment. 2000, 71:158-182.
    17.李酉开.土壤农业化学常规分析方法.北京科学出版社,1983,79-272.
    18. Huete A R. A Soil-adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 1988, 25: 295-309.
    19. Massart D L, Vandeginste B G M, Deming S M, et al. Chenometrics: A Textbook. Elsevier, Amsterdam, 1988.
    20. Lee J A, Harmer R, Ignaciuk R. Nitrogen as an Ecological Factor. Oxford: Blackwell, 1983.
    21. Curran P J, Dungan J L, Peterson D L. Estimating the Foliar Biochemical Concentration of Leaves with Reflectance Spectrometry. Remote Sensing of Environment, 2001, 76: 349-359.
    1. Ladha J K, Tirol-Padre A, Punzalan G C, Castillo E, Singh U, Reddy C K. Nondestructive estimation of shoot nitrogen in different rice genotypes. Agronomy Journal, 1998, 90: 33-40.
    2. Takebe M, Yoneyama T, Inada K, Murakami T. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant Soil, 1990, 122: 295-297.
    3. Wiegand C, Shibayama M, Yamagata Y, Akiyama T. Spectral observations for estimating the growth and yield office. Japanese Journal of Crop Science, 1989, 58 (4): 673-683.
    4.刘伟东,项月琴,郑兰芬,童庆禧,吴长山.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析.遥感学报,2000,4(4):279-283.
    5. Card D H, Peterson D L, Matson P A. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing of Environment, 1988, 26: 123-147.
    6.牛铮,陈永华,隋洪智,张庆员,赵春江.叶片化学组分成像光谱遥感探测机理分析.遥感学报,2000,4(2):125-130.
    7. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of features and stepwise multiple linear regression. Remote Sensing of Environment, 1999, 67: 267-287.
    8. Kokaly R F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment, 2001, 75: 153-161.
    9. Curran P J, Dungan J L, Gholz H L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry. Remote Sensing of Environment, 2001, 76: 349-359.
    10.陈能,罗玉坤,朱智伟,张伯平,郑有川,谢黎虹.优质食用稻米品质的理化指标与食味的相关性研究.中国水稻科学,1997,11(2):70-76.
    11.程方民,钟连进.不同气候生态条件下稻米品质性状的变异及主要影响因子分析.中国水稻科学,2001,15(3):187-191.
    12. Matsunaka T, Watanabe Y, Miyawaki T. Prediction of grain protein content in winter wheat through leaf color measurements using a chlorophyll meter. Soil Science & Plant Nutrition, 1997, 43(1): 127- 134
    13.王纪华,黄文江,赵春江,杨敏华,王之杰.利用光谱反射率估算叶片生化组分和籽粒品质指标研究.遥感学报,2003,7(4):277-284.
    14.黄文江,赵春江,王纪华,王锦地,马智宏.红边参数在作物营养诊断和品质预报上的应用.农业工程学报,2004,20(6):1-5.
    15.唐延林,黄敬峰,王人潮.利用高光谱法估测稻穗稻谷的粗蛋白质和粗淀粉含量.中国 农业科学,2004,37(9):1282-1287.
    16.薛利红,曹卫星,李映雪,周冬琴,李卫国.水稻冠层反射光谱特征与籽粒品质指标的相关性研究.中国水稻科学,2004,18(5):431-436.
    17. Massart D L, Buydens L, Peeters A. Knowledge representation for the selection of methods in analytical chemistry. Chemometrics and Intelligent Laboratory Systems, 1988, 5: 73-79.
    18. Cruz L J. Biochemical factors affecting protein accumulation in the rice grain. Plant Physiol, 1970, 46: 743 - 747.
    1. Hong T P. Influence of fertilizer levels and cultivated regions on changes of chemical components in rice grains. RDA Journal of Agriculture Science, 1994, 36 (1): 38-51.
    2. Kim Y D, Kang S Y. Varietal and environmental variation of gel consistency of rice flour. Korean Journal of Crop Science , 1993, 38 (1): 38-45.
    3. Choi W Y, Park H K. Cultural practices for improving grain quality of rice in southern plain area. Korean Journal of Crop Science, 1990, 35 (6): 487-491.
    4. Cheong J L, Park H K, Choi W Y. Effects of slow - release fertilizer application on rice grain quality at different culture methods. Korean Journal of Crop Science, 1996, 41 (3): 286-294.
    5. Kim Y D, Kang S Y. Study on the improvement of rice quality 1. Effect of chemical composition in brown rice. Korean Journal of Soil and Fertilizer Science, 1992, 25 (4): 357-363.
    6. Hong K P. Influence of growing location, culture practices and application of organic manure on grain yield and quality in rice. RDA Journal of Agriculture Science, 1993, 35 (2): 41-46.
    7.陈亚琴,刘喜,董国忠.不同断水期对水稻产量和品质的影响.中国农学通报,1998,14(6):80-81.
    8.金正勋,秋太权,孙艳丽,赵久明,金学泳.氮肥对稻米垩白及蒸煮食味品质特性的影响.植物营养与肥料学报,2001,7(1):31-35.
    9. Umemoto T, Nakamura Y, Ishikura N. Activity of starch synthase and the amylose content in rice endosperm. Phytochemistry, 1995, 40 (6): 1613-1616.
    10. Hansen P M, Jorgensen J R, Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. Journal of Agriculture Science. 2002, 139: 307-318.
    11.薛利红,朱艳,张宪,曹卫星.利用冠层反射光谱预测小麦籽粒品质指标的研究,作物学报,2004,30(10):1036-1041.
    12.李映雪,朱艳,田永超,等.小麦冠层反射光谱与籽粒蛋白质含量及相关品质指标的定量关系.中国农业科学,2005,38(7):1332-1338.
    13.王纪华,黄文江,赵春江,杨敏华,王之杰.利用光谱反射率估算叶片生化组分和籽粒品质指标研究,遥感学报,2003,7(4):276-284.
    14.田永超,朱艳,曹卫星,范雪梅,刘小军.利用冠层反射光谱和叶片SPAD值预测小麦籽粒蛋白质和淀粉的积累,中国农业科学,2004,37(6):808-813.
    15.黄文江,王纪华,刘良云,等.小麦品质指标与冠层光谱特征的相关性初步研究.农业工程学报,2004,20(4):203-207.
    16. Zhijie Wang, Jihua Wang, Liangyun Liu, et al. Prediction of grain protein content in winter wheat using plant pigment ratio (PPR). Field Crops Research, 2004, 90 (2-3): 311-321.
    1. Hong T P. Influence of fertilizer levels and cultivated regions on changes of chemical components in rice grains. RDA Journal of Agriculture Science, 1994, 36 (1): 38-51.
    2. Kim Y D, Kang S Y. Varietal and environmental variation of gel consistency of rice flour. Korean Journal of Crop Science, 1993, 38 (1): 38-45.
    3. Choi W Y, Park H K. Cultural practices for improving grain quality of rice in southern plain area. Korean Journal of Crop Science, 1990, 35 (6): 487-491.
    4. Cheong J L, Park H K, Choi W Y. Effects of slow - release fertilizer application on rice grain quality at different culture methods. Korean Journal of Crop Science, 1996, 41 (3): 286-294.
    5. Kim Y D, Kang S Y. Study on the improvement of rice quality 1. Effect of chemical composition in brown rice. Korean Journal of Soil and Fertilizer Science, 1992, 25 (4): 357-363.
    6. Hong K P. Influence of growing location, culture practices and application of organic manure on grain yield and quality in rice. RDA Journal of Agriculture Science, 1993, 35 (2): 41-46.
    7.陈亚琴,刘喜,董国忠.不同断水期对水稻产量和品质的影响.中国农学通报,1998,14(6):80-81.
    8.金正勋,秋太权,孙艳丽,赵久明,金学泳.氮肥对稻米垩白及蒸煮食味品质特性的影响.植物营养与肥料学报,2001,7(1):31-35.
    9. Umemoto T, Nakamura Y, Ishikura N. Activity of starch synthase and the amylose content in rice endosperm. Phytochemistry, 1995, 40 (6) : 1613-1616.
    10. Humburg D S, Stange K W, Robert P C. 1999. Spectral properties of sugarbeets related to sugar content and quality. Proceedings of the Fourth International Conference on Precision Agriculture, St. Paul, Minnesota, USA, 19-22 July 1998. Part A and Part B, 1593-1602.
    11. Basnet B, Apan A, Kelly R, Jensen T, Strong W, Butler D, Relating satellite imagery with grain protein content of grain crops. In: Proceedings of the Spatial Sciences Conference, Canberra, Australia, 2003, 22-27.
    12. Hansen P M, Jorgensen J R, Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. Journal of Agriculture Science. 2002, 139: 307-318.
    13.薛利红,朱艳,张宪,曹卫星.利用冠层反射光谱预测小麦籽粒品质指标的研究,作物学报,2004,30(10):1036-1041.
    14.王纪华,黄文江,赵春江,杨敏华,王之杰.利用光谱反射率估算叶片生化组分和籽粒品质指标研究,遥感学报,2003,7(4):276-284.
    15.李映雪,朱艳,田永超,尤小涛,周冬琴,曹卫星.小麦冠层反射光谱与籽粒蛋白质含量及相关品质指标的定量关系,中国农业科学,2005,38(7):1332-1338.
    16.#12
    1.王正兴,刘闯,HUETE Afredo.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI.生态学报,2003,23(5):979-987.
    2.田庆久,闵祥军.植被指数研究进展.地球科学进展,1998,13(4):327-333.
    3. Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment. 2002, 80: 76-87.
    4. Schleicher T D, Bausch W C, Delgado J A, et al. Evaluation and refinement of the nitrogen reflectance index (NRI) for site-specific fertilizer management. 2001 ASAE Annual International Meeting, St. Joseph, MI, USA. ASAE Paper No. 1101-1115.
    5. Richardson A. J, Wiegand C L. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 1977, 43: 1541-1552.
    6. Collins W. Remote sensing of crop type and maturity. Photogrammetric Engineering and Remote Sensing, 1978 (44): 43-55.
    7. Lee F J. Nitrogen influence on fresh-leaf NIR spectra. Remote Sensing of Environment, 2001, 78: 314-320.
    8. Shibayama M and Akiyama T A. A spectroradiometer for field use. Ⅶ. Radiometric estimation of nitrogen levels in field rice canopies. Japanese Journal of Crop Science. 1986, 55: 439-445.
    9. Takebe M, Yoneyama T, Inada K, et al. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant Soil. 1990, 122: 295-297.
    10.王秀珍,王人潮,李云梅.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究.浙江大学学报(农业与生命科学版),2001,27(3):301-306.
    11. Gitelson A A, Merzylak M N, and Lichtenthaler H K. Detection of red edge position and chlorophyll content by reflectance measurements near 700nm. Journal of physiology, 1996.148: 501-508.
    12. Jacquemoud S, Baret F. PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment, 1990, 24: 75-91.
    13. Asner G P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment. 1998, 64: 234-253.
    14. Dawson T P, Curran P J, Plummer S E. LIBERTY: modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sensing of Environment. 1998, 65: 50-60.
    15.施润和,牛铮,庄大方.利用高光谱数据估测植物叶片碳氮比的可行性研究.遥感技术与应用,2003,18(2):76-80.
    16.田永超,朱艳,曹卫星.用冠层反射光谱预测小麦叶片糖氮量及糖氮比.作物学报,2005,31(3):355-360.
    17.北海道立中央农业试验场环境化学部土壤资源科(2000):利用卫星遥感图像区分水稻米粒蛋白质含量,平成11年度北海道农业试验场会议资料.
    18. Gibaert M A, Gandía S, Melía J. Analyses of spectral-biophysical relationships for a corn canopy. Remote Sensing of Environment, 1996, 55 (1): 11-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700