用户名: 密码: 验证码:
SPOT-5遥感影像马尾松毛虫害信息提取技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马尾松毛虫(Dendrolimus Punctatus Walker)是马尾松的主要害虫,严重制约了马尾松的生长,其发生频繁,常猖獗成灾,被称为“无烟的森林火灾”。在我国南方地区,马尾松毛虫常年发生,一般3至5年就成灾一次,为害面积高达2.0x106-3.3×106hm2,减少木材量约3.0x106m3,经济损失达数十亿元,是发生面积最广、为害最为严重的森林害虫,危害很大。实现马尾松毛虫害的有效监测,是防治松毛虫危害的关键,但传统地面抽样调查方法费时费力,已经不能满足林业生产实际需要,而遥感技术具有大面积覆盖且实时探测的优点,具有技术上的可行性与经济上的节约性。为此,本文以沙县作为研究区,以研究区SPOT-5遥感影像多光谱数据与全色数据为基础数据,结合外业调查数据、研究区森林资源数据库、研究区DEM等辅助数据,分析虫害影像的光谱变化与纹理变化,通过光谱指标的选取、纹理特征的分析等,从多方面对影像虫害信息进行提取,从而建立遥感监测森林病虫害的技术体系,构建马尾松毛虫害的遥感监测指标体系,并建立一新的针对马尾松毛虫害的基于片层—面向类的影像分类新方法,为实际生产监测马尾松毛虫害提供技术支持与理论基础,并为高分辨率影像用于森林病虫害的监测提供借鉴。主要研究结果如下:
     (1)参考国土资源部的土地利用一级分类系统,结合研究区实际情况,针对研究需要,确定研究区沙县的土地利用分类系统为:林地与非林地,林地又分为马尾松、杉木和阔叶树。基于影像的光谱特征,基于分层分类的思想,结合阈值设定与决策树分类QUEST算法,提取出林地影像,在此基础上,实现马尾松林专题信息的提取,其提取精度达到92.89%。
     (2)对SPOT-5多光谱影像进行光谱特征分析,发现受害马尾松在2、3、4波段变化明显,基于此,首次构建了马尾松毛虫害的遥感监测指标体系。
     (3)基于构建的光谱指标,采用岭迹分析方法进行监测因子的优选,建立了表征虫害程度的虫情级数的岭回归估测模型,其模型估测精度达到81.69%。进而实现研究区虫情级数的反演,并进行马尾松毛虫害的专题信息提取,其信息提取总精度=70.75%,Kappa=0.6759,分类精度不高,且椒盐现象比较严重,健康林分与轻度受害林分混淆较严重。
     (4)提取图像的纹理特征并分析,分别采用基于像元的最大似然法与面向对象分类方法,进行马尾松毛虫害信息提取。前者分类总精度=72.75%,Kappa=0.6913;后者分类总精度=74.75%,Kappa=0.7283,后者精度高于前者。两者相比于基于光谱信息分类来说,其分类精度有了一定的提高,分别为:基于像元统计提高了2%,面向对象方法提高了4%。说明纹理特征对于图像的分类起关键作用。
     (5)研究进行光谱信息与纹理信息的融合,引入纹理信息参与虫害图像的分类,采用融合多尺度纹理与光谱信息的SVM分类方法进行虫害信息提取,并与单尺度纹理的分类方法进行比较,前者分类总精度=82.50%,Kappa=0.8059,后者分类总精度=80.75%,Kappa=0.7824,前者分类精度高于后者。同时两者相比于单纯基于光谱信息与纹理信息都有了提高,分别为:单尺度纹理分别提高了10%、6%,多尺度纹理提高了11.75%、7.75%。光谱信息与纹理信息的融合显著地增强了马尾松毛虫害的光谱响应能力,其信息量明显增多,同时多源信息的引入有利于提高影像的分类精度。
     (6)融合影像的光谱信息与纹理信息,并考虑影响昆虫发生发展及变化的生态及林木自身因子,首次构建了马尾松毛虫害遥感监测指标体系。基于建立的监测指标体系,通过岭回归建模,实现了马尾松毛虫害专题信息的提取,其分类总精度=85.75%,Kappa=0.8328。相比于没有考虑地形及林木因子的三种方法,其精度分别提高了15%、11%、3%。
     (7)基于虫害影像特征,提出基于生态因子分片—面向类的新算法,该法基于海拔、坡度与坡向,对马尾松进行空间分区划片,然后针对每片影像的特点,综合运用决策树、面向对象等分类方法,进行虫害信息的提取,其分类总精度=87.50%,Kappa=0.8559,其精度高于岭回归建模的方法,其分类总体精度提高了1.75%。该法综合考虑了各方面的因素,消除了地形的影响,有效避免了椒盐现象的发生。
     (8)对于各种程度受害的马尾松来说,从各种方法提取的精度来分析,健康马尾松与重度受害马尾松提取精度最高,而轻度受害马尾松与中度受害马尾松精度稍低。各种提取虫害信息的方法,以生态因子分区划片-面向类的方法精度最高,虫害信息分布图质量也最高,是最佳的信息提取方法。
     (9)森林病虫害的遥感监测不仅仅是一个图像识别的问题,病虫害的发生及发展与其生存的环境有密切的关系,同时遭受病虫害的植被在遥感图像上的响应,还受林木自身的生长规律影响,所以在进行森林病虫害监测时,综合考虑病虫寄主的生态条件及其自身林分状况等因子的影响,才能正确识别病虫害区域,提高监测精度。
Dendrolimus Punctatus Walker (the main insect pests of pinus massoniana) is seriously restrain the growth of pinus massoniana, it occurs frequently, often rampant hazard, known as "the forest fire of smokeless". In southern China region, dendrolimus punctatus perennial happen, cause disaster generally three to five years, as once flood-gates pestcide area 2.0×106~3.3×106hm2, reduce wood quantity about 3.0×106 m3, economic loss of one billion yuan, is the most pest in the case of area of forest pest and serious harm. Realize the effective monitoring of Dendrolimus punctatus Damage, is the key to reduce harm. Traditional ground sampling survey method is time-consuming,and cannot satisfied with forestry production actual need.Remote sensing technology has the advantages of covering and real-time detection of large area, has the technical feasibility and economic save. Therefore, ShaXian was chosen as study area in this paper, based on multi-spectral and panchromatic images of SPOT-5, combined with the field survey data, research area forest resources database, research area DEM auxiliary data, analyze spectral changes and textures change of pests images, the information of Dendrolimus punctatus Damage was extracted with the spectrum index selection and the analysis of the texture characteristics etc. Thus the remote sensing monitoring forest pest technology system was established, and the remote sensing monitoring Dendrolimus punctatus Damage index system was constructed, and a new method based on pests in pinus massoniana slice layer of image classification -- facing classes was established, provide technical support and theoretical basis for production monitoring, and as reference for high resolution images used for forest pest monitoring. The main research results are as follows:
     (1) Referenced to land use classification system of ministry of land resources, combined with actual situation of study area, according to research needs, the land use classification system of Shaxian county was determined:woodland and unwoodland, woodland were divided into Pinus assoniana, fir,and hardwood Based on the spectral features of images and sub-region and hierarchical theory, combining the threshold set and decision tree algorithm of QUEST classification, the woodland image was extracted, on this basis, the pinus massoniana project information was extracted, the extraction accuracy reached 92.89%.
     (2) The victims of pinus massoniana of images changed greatly in 2,3,4 band with SPOT-5 spectral analysis. Based on this, the remote sensing monitoring index system of Dendrolimus punctatus Damage was firstly constructed.
     (3) Based on the spectral index, the insect scouting series estimation model that Characterizing pest degree was established, its model estimation accuracy reached 81.69%. So as to realize the inversion of insect scouting series and extract the project information of pinus massoniana damage, the information extraction total precision was 70.75%, Kappa=0.6759, the classification accuracy was not high, Salt-pepper phenomenon was serious, and Health stand with mild victims stand confused seriously.
     (4) The image texture feature were extracted and analysised, and the information of pinus massoniana wool pests were extracted with the maximum likelihood method and object-oriented classification method. The former classification total precision was 72.75%, Kappa=0.6913,The latter classification total precision was 74.75%, Kappa=0.7283, the latter is higher than that of the former. compared to the classification that based on spectral information, both classification accuracy have improved, as followed:the classification method that based on pixel statistics raised 2%, object-oriented method increased 4%.It showed that the texture characteristics for image classification played a key role.
     (5) Study on fusion algorithms of spectral information and texture information, introducing texture information to the image classification of Dendrolimus punctatus damage, extracting pests information with SVM classification method based on multi-scale texture and spectrum fusion, compared to the single yardstick texture method, the former classification total precision was 82.50%, Kappa=0.8059, the latter classification total precision was 80.75%, Kappa= 0.7824, the latter classification accuracy was higher than the former. Meanwhile compared to only based on spectral information and texture information, both classification precision had increased, as followed:monoscale texture respectively increased by 10%、6%, multi-scale texture improved 11.75%,7.75%. Spectrum information and texture information fusion significantly enhanced the pests spectral response, and the introduction of multi-source information were helpful to improve the image classification accuracy.
     (6) Fusing spectrum information and texture information of image, considering the ecological and forest itself factor that impacting occurrence and development and change of insects, the remote sensing monitoring index system of Dendrolimus punctatus damage were firstly constructed. Based on the monitoring index system, the project information of Dendrolimus punctatus damage were extracted by ridge regression model its classification total precision was 85.75%, Kappa=0.8328. Compared to the method without terrain and forest factor, its accuracy increased 15%,11%,3%.
     (7) Based on the characteristics of image of pests, the new method-based on the ecological factors patches for class was put forward.Based on the altitude, slope and aspect, the pinus massoniana were partited in space, then according to the characteristics of each piece, the decision-making tree, object-oriented classification method were used comprehensively to extract information of pests, the classification total precision was 87.50%, Kappa=0.8559, its precision was higher than ridge regression modeling method, and the classification total accuracy improved 1.75%. This method considered comprehensively many factors, eliminated the influence of terrain, effectively avoid salt-pepper happening.
     (8) Analysising various methods to extracting information of Pinus massoniana wool pest, the infonnation extraction accuracy of health stand and severe suffer stand were highest, the information extraction accuracy of mild suffer stand and moderate suffer stand were slightly lower. Among various method of extracting pest information, the classification precision of new method -based on the ecological factors patches for class was highest, This new method was the best information extraction method.
     (9) The remote sensing monitoring of forest diseases and pests is not just a question of image recognition, the plant diseases and pests occurrence and development have a close relationship with its survival environment, and the spectrum responses of pests were influenced by the forest itself. So remote sensing monitoring the forest diseases and pests, the ecological conditions and its own stand condition factor of host should be considered, thus the pest areas are correctly identified and the monitoring accuracy are improved.
引文
[1]Aldrich R C, Heller R C, Bailey W F. Observation limits for aerial sketch-mapping southern pine beetle damage in the southern appalachians[J]. J.For.,1958,56(3):200-202.
    [2]Bowers W W, Franklin S E, Hudak J, et al. Forest structure damage analysis using image semivariance[J]. Can J Remote Sensing.1994,20(1):28-36.
    [3]Boyer M, et al. Senescence and spectral reflectance in leaves of Northern Pin Oak[J]. Remote Sensing of Environment,1988, (25):71-87.
    [4]Brocldaaus J A, Khorram S. A comparision of Landsat TM and SPOT HRV data for Use in the development of forest defoliation modes[J]. International Journal of Remote Sensing.1992, 13(6):3235-3240.
    [5]BRUZZONE L, CONESE C, MASELLI F, et al. Multisouce clsasiifcation of complex rural areas by statistical and neural-net-work apporaches[J]. Pohtorgammetrei Engineerign & Reomte Sensing,1997, 63(5):523-533.
    [6]BrycesonK P,1989. The use of Landsat MSS data to determine the distribution of locust eggbeds in the Riverina region of New South Wales, Australia[J].Int.J.Remote Sensing,10 (11):1749-1762.
    [7]Buchheim M P, Maclean A L, Lillesand T M. Forest cover type mapping and spruce budworm defoliation detection using simulated SPOT imagery[J]. PE&RS,1985, (51):1115-1122.
    [8]Caccetta P,Campbell N C, Evans F, et al. Mapping and monitoring land use and condition change in the southwest of Western Australia using remote sensing and other data [C].Processing of the Europa 2000 Conference,Barcelona,2000.
    [9]Calork P M.Calculations in the Oil Palm Plantations of African Derived Savannas Using IKONOS Data [J].International Journal of Remote Sensing,2004,25(23):5447-5472.
    [10]Clark D B, Clark D A.Landscape-scale variation in forest structure and biomass in a tropical rain forest[J].Forest Ecology and Management,2000,137(13):243-254.
    [11]Ehlers M. Multisensor Image Fusion Techniques in Remote Sensing[J]. ISPRS Journal of Programmetry and Remote Sensing,1991,46(2):9-30.
    [12]Ekstrand S P. Detection of Moderrate Damage on Noway Spruce Using Landsat TM and Digital Stand Data[J].IEEE Transaction on Geoscience and Remote Sensing,1990,28(4):685-692.
    [13]Ernst C L. Hoffer R M.Using Landant Mss Data with soil Information to Identify Wetland Habitats [J]. Satellite Hydrologr,1979.
    [14]Franklin S E. Classification of hemlock looper defoliation using SPOT HRV imagery[J].Can J Remote Sensing,1989,20:37-48.
    [15]Fraster R H, et al. Mapping insect—induced tree defoliation and mortality using coarse spatial resolution satellite imagery. International Journal of Remoteing Sensing.2005,26(1):193-200.
    [16]Gills M D, Pick R D, leckie DG.Satellite imagery assists in the assessment of hail damage for salvage harvest. The Forestry Chronicle.1990,(10):463-468.
    [17]Gregory Koeln. Cross correlation analysis:mapping land Cover changes with a Historic land Cover database and a recent single date, multi-spectral image[C]. In:Proc.2000 ASPRSAnnual Convention, Washington, DC 8 P.
    [18]Hankerson D,HarrisG A, Johnson P D. Introduction to information theory and data compression[M].New York:CRC Press,1997.
    [19]Harris J R, Murray T H. IHS Transform for the Integration of Radar Imagery with other Remotely Sense data[J].PE&RS,1990,36(2):1631-1641.
    [20]Heller R C. Detection of forest diseases by remote sensing[J]. Forest,1973,71:18-21.
    [21]Hielkema J U. Application of Landsat Data in Desert Locust Survey and Control. AGP/LCC/77/11[R]. FAO, Rome, Italy,1977.
    [22]Hielkema J U, Roffey J, Tucker C J. Assessment of ecological conditions associated with the 1980/81 desert locust plague upsurge in West Africa using environmental satellite data[J].Int J Remote Sensing, 1986.(11):1609-1622.
    [23]Hielkema J U. Remote Sensing Techniques and Methodologies for Monitoring Ecological Conditions for Desert Locust Population Development[R]. FAO/USAID Final Report. FAO, Rome, Italy,1980.
    [24]Jing L,Iju H,Cheng, L.Morphological ordered gray-scale erosion for optical image processing[J].Optical Engineering,1998,37(6):256-261.
    [25]Jobbagy E,Paruclo J M,Leon R.Vegetation heterogeneity and diversity in flat and mountain landscapes of Patagonia (Argentima)[J].Journal of Vegetation Science,19967(4):599-608.
    [26]Joria P E. Ahearn S C etal. A Comparision of the SPOT and Landsat Thematic Mapper Satellite Systems for Detecting Gypsy Moth Defoliation in Michigan[J]. Photogrammetric Engineering & Remote Sensing.1991,57(12):1605-1612.
    [27]Kaneyukii nakane, yoshinori kimura. Assessment of pine forest damage by blight based on Landsat TM data and correlation with environmental factors[J]. Ecological Research,1992,(7):9-18.
    [28]Katdman,Kaufman Y J,Tanre D.Strategy for Direct and Indirect Method for Correcting the Aerosol Effect on Remote Sensing:from AVHRR to EO-MODIS[J]. Remote Sens Environ,1996(55):65-79.
    [29]Kharuk V I,et al. NOAA/AVHRR satellite detection of Siberian silkmoth outbreaks in eastern Siberia.INTJ Remote Sensing,2004,25(24),5543-5555.
    [30]Kok R, Buck A, Chneider T, et al. Advanced classification of remote sensing imagery[J].GIM International:The worldwide Magazine for Geomatics,2000,4(12):77-79.
    [31]Leckie D G. Factors affecting defoliation assessmens using Airborne Multispectral Scanner data[J]. PE& RS,1987,53(12):1665-1674.
    [32]Leckie D G, Ostaff D P, Teillet P M, et al. Spectral characteristics of tree components of balsam for and spruce damaged by spruce budworm[J]. For Science,1989, (35):582-600.
    [33]LIU Xue-hua. Skidmore A K,Van Oosten H. Integration of classification methods for improvement of land-cover map accuracy[J].ISPRS Journal of Photogrammetry&Remote Sensing,2002.(56):257-268.
    [34]Luther J E. Franklin S E, Judak J, et al. Forecasting the susceptibility and valneability of balsam fir stands to insect defoliation with Landsat Thematic Mapper data[J]. Remote Sensing Environ,1997, (59):77-91.
    [35]McCulloch L, Hunter DM. Identification and monitoring of Australian plague locust habitats from Landsat[J].Remote Sensing of Environment,1983,13(1):95-102.
    [36]Miller J R, et al. Detection of spectral effects in individual tree crowns of Metal-injected trees using high-resolution Pushbroom imagery[J]. Proceedings of the 16th International Congress Of Photogrammetry and Remote Sensing,1988, (27):847-856.
    [37]Muchoney D M, Haack B N. Change detection for monitoring forest defoliation[J]. PE&RS,1994,60(6): 1243-1251.
    [38]Mukai Y. Sugimura T, Watanabe H, et al. Extraction of areas infested by pine bark beetle using Lansat MSS data[J]. PE&RS.,1987, (54):77-81.
    [39]Nailand P. The feasibility of using remote sensing to predict and monitor irruptions of the brown locust,Locustana pardalina(Walker)[J].S.Afr.J.Sci.,1993,89 (9):425-426.
    [40]Nelson R F. Detecting forest canopy change due to insect activity using Landsat MSS[J]. PE&RS,1983, (49):1303-1314.
    [41]Price K P,Jakubauskas M E.Spectral retrogression and insect damage in lodgepole pine successional forests[J].Int J Remote Sensing,1998,19 (8):1627-1632.
    [42]Quegan S, Caves R, Harley P. Automated Knowledge-based segmentation of SAR images[M]. In:Mather P M. ed. TERR-1:Underatanding the Teresria Environment. London-Washington, DC:Taylor & Francis. 1992,221-232.
    [43]Quinlan R J. C4.5:Programs for machine learning [M].San Mateo, California:Morgan Kaufmann,1993.
    [44]Radeloff V C,M landenoff D J,Boyce M S.Detecting jack pine budworn defoliation using spectral mixture analysis:sparating effects from determinants[J].Remote Sense Envion,1999(69):156-169.
    [45]Rencz A N,Nemeth J.Defection of Mountain Pine Beetle Infestation Using Landsat Mss and Simulated Thematic Mapper Data[J].Canadian Journal of Remote Sensing,1985,(11):50-58.
    [46]Rilay J R. Remote Sensing in Entomology Amm[J].Rev.Entomology,1980(34):247-271.
    [47]Rock B N, et al. Remote sensing of forest damage[J]. Bioscience,1986,36(7):439-445.
    [48]Rock B N, et al. Spectral characterization of forest damage occurring on Whiteface Mountain, NY-studies with the Fluorescence Line Imager(FLI) and ground-based spectrometers[J]. SPIE Proceedings volume 1298, Imaging Spectroscopy of the Terrestrial environment,1990.
    [49]Royle D D, Lathrop R G. Monitoring hemlock forest health in new jersey using landsat TM data and change detection techniques[J]. For Sci,1997,43(3):327-335.
    [50]Ryherd S, Woodcock C E. Combining spectral and texture data in the segmentation of remotely sensed image[J].Photogramm Eng Remote Sensing,1997,(62):181-194.
    [51]Scargle, Jeffrey D. Bayesian blocks in two or more dimensions:Image segmentation and cluster analysis[J]. AIP Conference Proceedings,2002,617(1):163-174.
    [52]Schell S P, Lockwood J A. Spatial analysis optimizes grasshopper management[J].GIS World,1995,8 (11):68-73.
    [53]Sergio D. Servtto, K. Ramchandran. Image Coding Based on a Morphological Representation of Wavelet Data[J]. IEEE Transactionson Image Processing,1999,8(9):203-106.
    [54]Simard M,De Grandi G,Saatchi,et al. Mapping tropical coastal vegetation using JERS-1 and ERS-lradar data with a decision tree classifier[J].Int J Remote Sensing,2002,23(7):1461-1474.
    [55]Stehman S V. Use of auxiliary data to improve the precision of estimators of thematic map accuracy [J].Remote Sens Environ,1996,(58):169-176.
    [56]Tucker C J, Hielkema J U, Roffey J. The potential of satellite remote sensing of ecological conditions for survey and forecasting desert locust activity[J].Int.J.Remote Sensing,1985,6 (1):127-138.
    [57]Tremeau A, Borel N. A region growing and merging algorithm to color segmentation[J]. Pattern Recognition,1997,30(7):1191-1203.
    [58]Vogelmann J E, Rock B N. Assessing forest decline in coniferous of Vermont using ZS-001 thematic mapper simulator data[J]. International Journal of Remote Sensing,1986,7(10):1303-1321.
    [59]Vogelmann J E, Rock B N. Assessing forest damage in high elevation coniferous forest in Vermont and New Hampsphire using the thematic mapper data[J]. Remote Sensing of Environment,1988, (24): 227-246.
    [60]VogelmannJ E, Rock B N, et al. Use of thematic mapper data for the detection of forest damage caused bythepear thrips[J]. Remote Sensing of Environment,1989,30(2):217-225.
    [61]Yoram J,Kufuman, Chris Justice. MODEIS Fire Products[D]. Algorithm Technical Background Document,1998.
    [62]Zhou J. A Wavelet Transform Method to Merge Landsat ETM+ and SPOT Panchromatic Data[J]. Int J Remote Sensing 1998,19(4):743-757.
    [63]陈超,江涛,岳远平,徐修浩.像素级遥感图像融合方法研究[J].国土资源信息化,2008,31(3):24-27.
    [64]陈超.遥感数据融合智能化处理方法研究[D].青岛:山东科技大学硕士学位论文,2009.
    [65]陈德超,周海波.ETM+与SPOT影像融合算法比较研究[J].遥感技术与应用,2001,16(2):110-115.
    [66]陈高,代力民,姬兰柱,等.森林生态系统健康评估模式、计算方法和指标体系[J].生态应用学报,2004,15(10):1743-1749
    [67]陈桃源.马尾松毛虫防治指标的初步研究[J].林业科学,1985,21(2):211-216.
    [68]陈希孺,工松桂.近代回归分析——原理方法及应用[M].合肥:安徽教育出版社,1987:242-260.
    [69]陈艳华,张万昌.地理信息系统支持下的山区遥感影像决策树分类[J].国土资源遥感,2006,(11):69-74.
    [70]程高峰,李秉柏,李萍萍等,作物红边位置算法评述[J].江苏农业科学,2009(2):34-37.
    [71]池天河,苏亚芳.重大自然灾害遥感监测评估集成系统[M].北京:中国科学技术出版社,1995,71-75.
    [72]储彬彬,庞璐璐,漆德宁,工琛,陈永.基于多尺度分析的图像融合技术综述[J].航空电子技术,2009,40(3):29-33.
    [73]戴昌达,雷莉萍,胡德永,等.卫星遥感监测松毛虫灾害[J].遥感信息,1991(3):32-34.
    [74]戴昌达,唐伶俐,陈刚,等.应用TM图像监测及评估林火、虫害和洪涝灾害的理论与实践[J].环境遥感,1993,8(2)102-111.
    [75]戴昌达.植物病虫害的遥感探测[J].自然灾害学报,1992,1(2):40-46.
    [76]党安荣,王晓栋ERDASIMAGINE遥感图像处理方法[M].北京:清华大学出版社,2002,69-84.
    [77]刁淑娟,孙星和,袁崇桓.山区植被类型信息提取方法研究[J].国土资源遥感,1995,(3):34-39.
    [78]段福洲,朱琳,高立.遥感像片中多投影变换的实现与优化[J].中国图象图形学报,,2005,10(5):608-611.
    [79]范运年,任波,周建中ERDAS IMA GINE8中影像几何校正法初探[J].计算机仿真,2003,20(10):49-51.
    [80]冯建辉,杨玉静.基于灰度共生矩阵提取纹理特征图像的研究[J].北京测绘,2007,(3):19-22.
    [81]冯钟葵,叶晓端Landsat7卫星快速格式数据产品[J].遥感技术与应用,2000,15(4):270-273.
    [82]福建森林昆虫[M].北京:中国农业科技出版社,1991.
    [83]高永刚,刘丹,张福娟,杨晓丽.卫星遥感在森林病虫害监测上的研究进展[J].中国农学通报,2006,22(2):1102-1108.
    [84]郭雷.图像融合[M].北京:电子工业出版社,2008.
    [85]郭志华,肖文发,蒋有绪.遥感在林冠动态监测研究中的应用[J].植物生态学报,2003,27(6):851-858
    [86]郭志华,肖文发,张真,等.RS在森林病虫害监测研究中的应用[J].自然灾害学报,2003,12(4):73-81.
    [87]国家林业局.森林病虫害防治知识问答[M].北京:中国林业出版社,1999:2-5.
    [88]国家林业局.林业有害生物发生及成灾标准.中华人民共和国林业行业标准,LY/T,1681-2006.
    [89]国家林业局森防总站.2005年全国林业有害生物发生情况及2006年发生趋势预测[EB/OL]. (2006-02-24) [2009-05-04]. http://www.hebly.gov.cn/showarticle.php?id=4055.
    [90]韩瑞东,何忠,戈峰.影响松毛虫种群动态的因素[J].昆虫知识,2004,41(6):879-883.
    [91]黄二辉,潘德炉,李淑菁,等.水下剖面光谱原始数据异常值的判断方法[J].海洋学研究,2006.
    [92]黄麟,张晓丽,石韧.森林病虫害遥感监测技术研究的现状与问题[J].遥感信息,2006(2):71-75
    [93]贾永红,李德仁,孙家柄,等.四种IHS变换用于SAR与TM影像融合的比较[J].遥感学报,1998,2(2):103-106.
    [94]焦李成,侯彪,王爽,刘芳.图像多尺度几何分析理论及应用[M].西安:西安电子科技大学出版社,2008.
    [95]焦学军.对森林健康和生态监测发展的认识[J].防护林科技,2003(3):41-42
    [96]金瑞华,等.浅谈生物灾害遥感监测[J].遥感信息,1991(3):35-37
    [97]李弼程,魏俊,彭天强,等.遥感影像融合效果的客观分析与评价[J].计算机工程与科学,2004,1(2):42-46.
    [98]李崇贵,赵宪文,李春干.森林蓄积量遥感估测理论与实现[M].北京:科学出版社,2005:56-88.
    [99]李登科.遥感技术在病虫害调查中的应用[J].陕西气象,1998,(3):27-30.
    [100]李金莲,刘晓玫,李恒鹏SPOT-5影像纹理特征提取与土地利用信息识别方法[J].遥感学 报,2006,10(6):926-931.
    [101]李静,吴连喜,周珏.遥感变化检测技术发展综述[J].水利科技与经济,2007,(3):198-202.
    [102]李开丽,蒋建军,茅荣正.植被叶面积指数遥感监测模型[J].生态学报,2005,25(6):1491-1496.
    [103]李伟.像素级图像融合方法及应用研究[D].广州:华南理工大学博士论文,2006.
    [104]李永刚,张玉善.对松毛虫防治技术措施的研究[J].科技资讯,2008,(29):123-126.
    [105]林丽群,舒宁,肖俊.基于MODIS 250m遥感影像的变化检测[J].测绘科学,2006,(9):189-192.
    [106]刘清旺,武红敢,石进,等.基于TM影像的森林病虫灾害遥感监测系统[J].遥感应用,2007(2):46-49.
    [107]刘志丽,陈曦.基于ERDAS IMAGINE软件的TM影像几何精校正方法初探[J].干旱区地理,2001,24(4):353-358.
    [108]刘志明,晏明,张旭东,等.用气象卫星监测大范围森林虫害方法研究[J].自然灾害学报,2002,11(3):109-114.
    [109]刘志明,晏明,李铁.冰雹灾害的卫星遥感监测方法初探[J].气象科学,2004,30(9):50-53.
    [110]潘琛,杜培军,张海荣.决策树分类法及其在遥感图像处理中的应用[J].测绘科学,2008,(5):22-26.
    [111]彭辉.基于纹理特征的图像分类识别[J].计算机与信息技术开发与应用,2006,1(1)16-20.
    [112]亓兴兰,刘健,陈国荣,等.应用MODIS遥感数据监测马尾松毛虫害研究[J].西南林学院学报,2010,30(1):42-46.
    [113]任若恩,王惠文.多元统计数据分析—理论、方法、实例[M].北京:国防工业出版社,1997:92-111.
    [114]尚晓清.多尺度分析在图像处理中的应用研究[D].西安:西安电子科技大学博士论文,2004.
    [115]史培军,宫鹏,等.土地利用/覆盖变化研究的方法与实践[M].北京:科学出版社,2000.
    [116]史忠植.高级人工智能(第二版)[M].北京:科学出版社,2006.
    [117]史忠植.知识发现[M].北京:清华大学出版社,2002.
    [118]苏簪铀,邱炳文,陈崇成.基于面向对象分类技术的景观信息提取研究[J].遥感信息,2009,(2):42-46.
    [119]粟丽,赵伟,王志福.在解决多重共线性问题上岭回归法比LS法的优越性[J].渤海大学学报(自然科学版),2006,27(2):62-68.
    [120]孙丹峰IKONOS全色与多光谱数据融合方法的比较研究[J].遥感技术与应用.2002,17(1):41-45.
    [121]孙家柄,舒宁,关泽群.遥感原理、方法和应用[M].北京:测绘出版社,1997:188-199.
    [122]孙永军,童庆禧,秦其明.利用面向对象方法提取湿地信息[J].国土资源遥感,2008,(1):79-82.
    [123]谭永生,沈掌泉,贾春燕,王新辉,邓劲松.中高分辨率遥感影像融合研究[J].遥感技术与应用,2007,22(4):536-542.
    [124]谭永生.像素级中高分辨率遥感影像融合研究[D].杭州:浙江大学硕士学位论文,2007.
    [125]腾骏华,刘宇,顾德宇.红树林遥感智能分类方法研究[J].台湾海峡,1997,16(3):331-338.
    [126]田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998(4):327-333.
    [127]童庆禧,张兵,郑兰芬,等.高光谱遥感的多学科应用[M].北京:电子工业出版社,2006,64-65.
    [128]王海晖,彭嘉雄,吴巍,等.多源遥感图像融合效果评价方法研究[J].计算机工程与应用,2003,25(2):33-37.
    [129]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999:220-235.
    [130]王建梅,李德仁QuickBird全色与多光谱数据融合方法用于土地覆盖分类中的比较研究[J].遥感技术与应用,2005,2(10):37-43.
    [131]王蕾,黄华国,张晓丽,等.3S技术在森林病虫害动态监测中的应用研究[J].世界林业研究,2005,18(2):51-56.
    [132]王蕾,黄华国,张晓丽,等.基于知识规则的马尾松林遥感信息提取技术研究[J].北京林业大学学报,2007,29(3):124-130.
    [133]王鑫,赵春晖.基于ERDAS IMAGINE软件系统在图像配准中的应用[J].电站系统工程,2005,21(2):15-19.
    [134]王照利,黄生,张敏中.森林资源调查中SPOT-5遥感图像处理方法探讨[J].陕西林业科技,2005,(1):27-29.
    [135]王子迎,吴芳芳,檀根甲.生态位理论及其在植物病害研究中的应用前景[J].安徽农业大学学报,2006,2(1):67-81.
    [136]吴枞林,潘象尧,方应中.子午岭油松立地质量评估[J].甘肃林业科技,1994,(3):1-6.
    [137]吴继友,倪健.松毛虫危害的光谱特征与虫害早期探测模式[J].环境遥感,1995,10(4):250-258.
    [138]吴连喜.多源遥感数据融合与评价[M].南昌:江西科学技术出版社,2003.
    [139]吴孟泉,崔青春,张丽,赵娜.复杂山区烟草种植遥感监测及信息提取方法研究[J].遥感技术与应用,2008,23(1):41-46.
    [140]武红敢,黄建文,乔彦友,等.松毛虫早期灾害点遥感监测研究初报[J].林业科学,1995,31(4):379-384.
    [141]武红敢,乔彦友,陈林洪,等.马尾松林叶面积指数动态变化的遥感监测研究[J].植物生态学报,1997,21(5):485-488.
    [142]武红敢,乔彦友,黄建文.利用陆地卫星TM数据评估森林病虫害[J].遥感技术与应用,1994(4):46-51.
    [143]武红敢,石进.松毛虫灾害的TM影像监测技术[J].遥感学报,2004(2):172-177.
    [144]武红敢.利用航天遥感资料监测森林失叶量的可行性研究[J].林业科技通讯,1994,(7):25-30.
    [145]武红智,陈改英.基于GIS的马尾松毛虫灾害空间扩散规律分析[J].遥感学报,2004(9):475-480.
    [146]肖风劲,欧阳华,孙江华,等.森林生态系统健康评价指标与方法[J].林业资源管理,2004(1):26-30.
    [147]肖世强,肖艳,郑红旗.应用航天遥感技术大面积监测松毛虫灾情初探[J].四川林业科技,25(4):46-51.
    [148]谢大洋.福建省主要森林病虫害发生特点与规律[J].林业科技开发,2000,(1):40-41.
    [149]许榕峰,徐涵秋.ETM+全色波段及其多光谱波段图像的融合研究[J].地球信息科学,2004,6(1):99-102.
    [150]薛文杰,刘宏屏.云南省主要林业有害生物发生现状及综合治理发展方向[J].林业调查规划,2007,32(5):94-98.
    [151]杨存建,陈德清,魏一鸣.遥感和GIS在森林病虫害监测管理中的应用模式[J].灾害学,1999(1):6-10.
    [152]杨树文,薛重生.航片二次几何校正的应用研究[J].遥感技术与应用,2002,17(3):1 54-157.
    [153]杨双保,潘德乾.小陇山林区林地立地类型划分与林地质量评价的研究[J].甘肃林业科技,2000, 25(4):20-26.
    [154]尹华军,刘庆,森林生态系统健康诊断研究进展及亚高山针叶林健康诊断的思考.世界科技研究与发展,2003,25(5):25-30.
    [155]游先祥.森林资源调查、动态监测、信息管理系统的研究[M].北京:中国林业出版社,1995.
    [156]游先祥.遥感原理及在资源环境中的应用[M].北京:中国林业出版社,2003.
    [157]虞献平,贺红仕.生态与环境遥感研究[M].北京:科学出版社,1990,5-72.
    [158]曾兵兵,张晓丽.路常宽,等.森林病虫害遥感监测研究的现状与展望[J].中国森林病虫害,2008,27(2):24-29.
    [159]曾志远.卫星遥感图像计算机分类与地学应用研究[M].北京:科学出版社,2004.
    [160]张建国,李宪文,吴延磊.面向对象的冬小麦种植面积遥感估算研究[J].农业工程学报,2008,24(5):156-160.
    [161]张娟,关于卫星影像多项式法纠正中若干问题的分析[J],成果与方法,2004,20(2):67-69.
    [162]张世利,刘健,余坤勇,等.基于ERDAS几何校正及在闽江流域影像处理中应用[J].福建林学院学报,2007,10(4):368-372.
    [163]张玮,刘禄勤.线性回归模型的一种有偏估计[J].武汉大学学报(理学版),2006,52(3):281-285.
    [164]张文彤,吴擢春.分类树中QUEST算法与多水平logistic模型的联合应用与比较[J].中国卫生统计,2004,21(1):28-35.
    [165]张友静,高云霄,黄浩,等.基于SVM决策支持树的城市植被类型遥感分类研究[J].遥感学报,2006,10(2):191-196.
    [166]张玉书,班显秀,陈鹏狮,等.应用NOAA/AVHRR资料监测松毛虫危害研究初探[J].应用生态学报,2005,16(5):870-874.
    [167]张振龙,曾志远,李硕,胡子付.遥感变化检测方法研究综述[J].遥感信息,2005,5(2):185-189.
    [168]张志诚,欧阳华,谢仲伦.典型胁迫的生态系统健康理论模型的研究.宁夏大学学报(自然科学版),2004,25(3):255-259.
    [169]章杨清,刘政凯.利用分维向量改进神经网络在遥感模式识别中的分类精度[J].遥感学报,1994,1(9):68-72.
    [170]赵萍,冯学智,林广发SPOT卫星影像居民地信息自动提取的决策树方法研究[J].遥感学报,2003,7(4):309-315
    [171]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:194-201.
    [172]赵勇强,周国娜,李明,袁胜亮,高宝嘉.松毛虫发生程度影响因素分析[J].河北林果研究,2005,20(3):35-40.
    [173]中国科技成果库.遥感森林资源分布的计算机自动分类[C],西安交通大学,2000.
    [174]钟仕全,胡自宁,石剑龙SPOT卫星数据图像处理方法及应用[J].广西地质,2002,15(4):23-26.
    [175]周成虎,骆剑承等.高分辨率卫星遥感影像地学计算[M].北京:科学出版社,2009.
    [176]周国娜.基于gis的森林病虫害生态地理因素分析与区划[D].河北农业大学,2006.
    [177]周坚华,周一凡,夏希纳.虫害水平与植物影像色调的相关性研究[J].植物保护,2005,31(4):24-283.
    [178]周立.森林灾害动态监测防治与预测模型研究[J].林业科技,1998,7(4):256-160.
    [179]朱建华,陈顺立,张再福.森林病虫害预测预报[M].厦门:厦门大学出版社,2002.
    [180]朱述龙,张占睦.遥感图像获取与分析[M].北京:科学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700