用户名: 密码: 验证码:
Ppp2ca条件性剔除小鼠胚胎期贫血的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白磷酸酶2A(PP2A)是细胞内的主要丝/苏氨酸特异性蛋白磷酸酶。它由一个催化亚基(C)和一个结构亚基(A)组成的二聚体核心酶和多种不同的调节亚基(B)所构成。PP2A的催化亚基(PP2Ac)有2种亚型,分别为PP2Acα(由Ppp2ca基因编码)和PP2Ac(3(由Ppp2cb基因编码夕。PP2Acα在大部分小鼠组织中的含量是PP2Acp的十倍,故通常被认为是最主要的PP2Ac亚型。PP2A介导的底物脱磷酸过程参与了细胞增殖、存活、分化、迁移、黏附等一系列生物过程。大量化学抑制剂、动物模型及相关研究表明PP2A磷酸酶活性对肿瘤生成,神经退变,造血发生,心脏功能维持和能量平衡等都是至关重要的。但是,PP2A活性在胚胎发育方面的功能,特别是血管和造血系统的形成,却仍然需要深入研究。
     在本论文中,我们利用Tie2Cre转基因小鼠实现了Ppp2ca基因在内皮和造血祖细胞中的组织特异性剔除。大体上讲,86.7%纯合子胚胎死于或者垂死于10.5-14.5天,其余胚胎都能存活至出生。出乎意料地,纯合子胚胎不表现出任何血管生成障碍。但是,纯合子胚胎的胎肝造血功能却受到扰乱,表现为晚期祖细胞部分缺失,红系分化阻断,球蛋白表达减少。与此同时,纯合子胚胎中红系相关细胞因子的表达量,包括促红细胞生成素(FP())和干细胞因子(SCF),却没有受到影响。以上结果提示PP2Acα对红细胞的调控是以细胞自主性的方式实现的。
     我们进一步分析了Ppp2ca基因剔除是否影响了最初定向造血祖细胞向胚胎肝脏的迁移。我们发现纯合子胎肝中的Linc-Kit+Sca-1+(LSK)细胞的绝对数目在胚胎期12.5天时没有改变,在胚胎期14.5天时甚至有反馈性上调。同时,我们注意到纯合子胚胎红系扩增缺陷是与细胞增殖减少和细胞凋亡增加相关联的。定向红系祖细胞程序性死亡增加是由STAT5酪氨酸磷酸化水平(pY694)降低及下游抗细胞凋亡因子Bcl-xL蛋白表达减少而引起的。与上述结果相符,用okadaic acid(OA)对原代培养的胎肝细胞进行PP2A活性抑制也能下调STAT5-Bcl-xL信号通路。
     总之,本文发现Ppp2ca对胎肝造血系统发育过程具有重要作用。并且,Bcl-xL在纯合子胚胎肝脏中的表达降低可能是定向红系祖细胞存活率下降的主要原因。当然,我们正在建立Ppp2ca基因剔除,STAT5酪氨酸磷酸化水平降低,及最终胚胎期贫血的因果联系。
Protein phosphatase2A (PP2A) is the most abundant phosphatase specific for serine and threonine phosphorylation. It is composed of a common heteromeric core enzyme, that is composed of a catalytic subunit (C) and a scaffolding subunit (A), which associates with a variety of regulatory subunits (B). The catalytic subunit (PP2Ac) has two isoforms:PP2Acα (encoded by the Ppp2ca gene) and PP2Acβ(encoded by the Ppp2cb gene). PP2Acα is considered as the main functional PP2Ac isoform, because of its10-fold abundance than PP2Acβ in most mouse tissues. Dephosphorylation of substrates targeted by PP2A mediates a large variety of biological processes, such as proliferation, survival, differentiation, migration, and adhesion. The vast archive of chemical inhibitors, animal models and related studies demonstrate that PP2A phosphatase activity is important in tumorigenesis, nerve degeneration, hematopoiesis, myocardium contractile maintenance, and energy balance. However, precise knowledge about its function in developmental biology, especially the establishment of the vascular and blood system, needs to be analyzed in detail.
     In this study, we deleted the floxed Ppp2co locus in endothelial and hematopoietic progenitor cells with a Tie2Cre transgene. Briefly,40%Tie2Cre+/Ppp2ca/fl/fl embryos died between E10.5and E14.5, whereas11.6%mutants were born normally. Unexpectedly, PP2Aca-deficient embryos did not manifest any defects in vascular development. However, deletion of Ppp2ca in Tie2+cells perturbed fetal liver erythropoiesis with partial loss of late progenitor cells, blockage of erythroid differentiation, and diminished globin expression. Meanwhile, the erythropoietic cytokines, including erythropoietin and stem cell factor, were not affected by loss of the Ppp2ca allele. These results indicated us that PP2Acα controls erythroid cells in a cell-autonomous manner.
     We further analyzed whether the initial seeding of fetal liver with definitive hematopoietic progenitor cells was affected by Ppp2ca deletion. We found that absolute Lin-c-Kit+Sca-1+(LSK) cell numbers remained unchanged (at E12.5) or even upregulated at later stage (at E14.5) in mutant fetal livers. Meanwhile, we noticed that loss of PP2Acoα resulted in an impaired expansion of the fetal erythroid compartment that is associated with decreased proliferation and increased apoptosis. The increased programmed cell death of committed erythroid cells was accompanied by reduction in the tyrosine-phosphorylated form of STAT5(Tyr694) and total protein level of anti-apoptotic factor Bcl-xL. Consistent with these observations, inhibition of PP2A activity by okadaic acid (OA) administration on primary fetal liver cells also impaired the STAT5-Bcl-xL pathway.
     Taken together, our data indicate a crucial role for Ppp2ca in fetal liver erythropoiesis during the development of the blood system. The decreased expression of Bcl-xL in mutant fetal liver cells is likely to be a principal cause of their decreased survival. However, we are still on the way to set up the links from deletion of Ppp2ca, to decreased Tyr694phosphorylation of STAT5, and finally to fetal anemia.
引文
1 Olsen, J.V. et al., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127 (3),635-648 (2006).
    2 Johnson, S.A. & Hunter, T., Kinomics:methods for deciphering the kinome. Nat Methods 2 (1),17-25 (2005).
    3 Alonso, A. et al., Protein tyrosine phosphatases in the human genome. Cell 117 (6), 699-711 (2004).
    4 Shi, Y, Serine/threonine phosphatases:mechanism through structure. Cell 139 (3), 468-484 (2009).
    5 Virshup, D.M., Protein phosphatase 2A:a panoply of enzymes. Current opinion in cell biology 12 (2),180-185 (2000).
    6 Janssens, V. & Goris, J., Protein phosphatase 2A:a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. The Biochemical journal 353 (Pt 3),417-439 (2001).
    7 Lechward, K., Awotunde, O.S., Swiatek, W., & Muszynska, G., Protein phosphatase 2A: variety of forms and diversity of functions. Acta biochimica Polonica 48 (4),921-933 (2001).
    8 Hemmings, B.A. et al., alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 29 (13),3166-3173(1990).
    9 Hendrix, P. et al., Analysis of subunit isoforms in protein phosphatase 2A holoenzymes from rabbit and Xenopus. J Biol Chem 268 (10),7330-7337 (1993).
    10 Stone, S.R., Hofsteenge, J., & Hemmings, B.A., Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry 26 (23),7215-7220(1987).
    11 Green, D.D., Yang, S.I., & Mumby, M.C., Molecular cloning and sequence analysis of the catalytic subunit of bovine type 2A protein phosphatase. Proceedings of the National Academy of Sciences of the United States of America 84 (14),4880-4884 (1987).
    12 Arino, J., Woon, C.W., Brautigan, D.L., Miller, T.B., Jr., & Johnson, G.L., Human liver phosphatase 2A:cDNA and amino acid sequence of two catalytic subunit isotypes. Proceedings of the National Academy of Sciences of the United States of America 85 (12),4252-4256 (1988).
    13 Khew-Goodall, Y, Mayer, R.E., Maurer, F., Stone, S.R., & Hemmings, B.A., Structure and transcriptional regulation of protein phosphatase 2A catalytic subunit genes. Biochemistry 30 (1),89-97 (1991).
    14 Jones, T.A. et al., Localization of the genes encoding the catalytic subunits of protein phosphatase 2A to human chromosome bands 5q23-->q31 and 8p12-->p11.2, respectively. Cytogenet Cell Genet 63 (1),35-41 (1993).
    15 Khew-Goodall, Y. & Hemmings, B.A., Tissue-specific expression of mRNAs encoding alpha- and beta-catalytic subunits of protein phosphatase 2A. FEBS letters 238 (2), 265-268(1988).
    16 Cormier, P. et al., Protein phosphatase 2A from Xenopus oocytes. Characterization during meiotic cell division. FEBS letters 295 (1-3),185-188 (1991).
    17 Van Hoof, C. et al., Molecular cloning and developmental regulation of expression of two isoforms of the catalytic subunit of protein phosphatase 2A from Xenopus laevis. Biochem Biophys Res Commun 215 (2),666-673 (1995).
    18 Orgad, S. et al., The structure of protein phosphatase 2A is as highly conserved as that of protein phosphatase 1. FEBS letters 275 (1-2),44-48 (1990).
    19 MacKintosh, R.W., Haycox, G., Hardie, D.G., & Cohen, P.T., Identification by molecular cloning of two cDNA sequences from the plant Brassica napus which are very similar to mammalian protein phosphatases-1 and -2A. FEBS letters 276 (1-2),156-160 (1990).
    20 Arino, J. et al., Protein phosphatases in higher plants:multiplicity of type 2A phosphatases in Arabidopsis thaliana. Plant Mol Biol 21 (3),475-485 (1993).
    21 Kinoshita, N., Ohkura, H., & Yanagida, M., Distinct, essential roles of type 1 and 2A protein phosphatases in the control of the fission yeast cell division cycle. Cell 63 (2), 405-415 (1990).
    22 Sneddon, A.A., Cohen, P.T., & Stark, M.J., Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes. The EMBO journal 9 (13),4339-4346 (1990).
    23 Cohen, P.T., Brewis, N.D., Hughes, V.,& Mann, D.J., Protein serine/threonine phosphatases; an expanding family. FEBS letters 268 (2),355-359 (1990).
    24 Wadzinski, B.E., Eisfelder, B.J., Peruski, L.F., Jr., Mumby, M.C., & Johnson, G.L., NH2-terminal modification of the phosphatase 2A catalytic subunit allows functional expression in mammalian cells. J Biol Chem 267 (24),16883-16888 (1992).
    25 Baharians, Z. & Schonthal, A.H., Autoregulation of protein phosphatase type 2A expression. J Biol Chem 273 (30),19019-19024 (1998).
    26 Strack, S., Chang, D., Zaucha, J.A., Colbran, R.J., & Wadzinski, B.E., Cloning and characterization of B delta, a novel regulatory subunit of protein phosphatase 2A. FEBS letters 460 (3),462-466 (1999).
    27 Zolnierowicz, S. et al., Diversity in the regulatory B-subunits of protein phosphatase 2A:identification of a novel isoform highly expressed in brain. Biochemistry 33 (39), 11858-11867 (1994).
    28 Mayer, R.E. et al., Structure of the 55-kDa regulatory subunit of protein phosphatase 2A:evidence for a neuronal-specific isoform. Biochemistry 30 (15),3589-3597 (1991).
    29 Healy, A.M. et al., CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis:identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Molecular and cellular biology 11 (11), 5767-5780(1991).
    30 Nagase, T. et al., Tissue and subcellular distributions, and characterization of rat brain protein phosphatase 2A containing a 72-kDa delta/B" subunit. J Biochem 122 (1),178-187(1997).
    31 Zolnierowicz, S. et al., The variable subunit associated with protein phosphatase 2A0 defines a novel multimember family of regulatory subunits. The Biochemical journal 317 (Pt 1),187-194(1996).
    32 Tehrani, M.A., Mumby, M.C., & Kamibayashi, C., Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. J Biol Chem 271 (9), 5164-5170 (1996).
    33 Tanabe,O. et al., Molecular cloning of a 74-kDa regulatory subunit (B" or delta) of human protein phosphatase 2A. FEBS letters 379 (1),107-111 (1996).
    34 McCright, B., Rivers, A.M., Audlin, S., & Virshup, D.M., The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem 271 (36),22081-22089 (1996).
    35 Csortos, C., Zolnierowicz, S., Bako, E., Durbin, S.D., & DePaoli-Roach, A.A., High complexity in the expression of the B'subunit of protein phosphatase 2A0. Evidence for the existence of at least seven novel isoforms. J Biol Chem 271 (5),2578-2588 (1996).
    36 McCright, B. & Virshup, D.M., Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem 270 (44),26123-26128 (1995).
    37 McCright, B., Brothman, A.R., & Virshup, D.M., Assignment of human protein phosphatase 2A regulatory subunit genes b56alpha, b56beta, b56gamma, b56delta, and b56epsilon (PPP2R5A-PPP2R5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12,3p21,6p21.1, and 7p11.2-->p12. Genomics 36 (1),168-170(1996).
    38 Hendrix, P. et al., Structure and expression of a 72-kDa regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. J Biol Chem 268 (20),15267-15276 (1993).
    39 Moreno, C.S. et al., WD40 repeat proteins striatin and S/G(2) nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A. J Biol Chem 275 (8),5257-5263 (2000).
    40 Sontag, E., Nunbhakdi-Craig, V., Bloom, G.S., & Mumby, M.C., A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle. J Cell Biol 128 (6),1131-1144 (1995).
    41 Inagaki, N., Ito, M., Nakano, T., & Inagaki, M., Spatiotemporal distribution of protein kinase and phosphatase activities. Trends in biochemical sciences 19 (11),448-452 (1994).
    42 Pitcher, J.A., Payne, E.S., Csortos, C, DePaoli-Roach, A.A., & Lefkowitz, R.J., The G-protein-coupled receptor phosphatase:a protein phosphatase type 2A with a distinct subcellular distribution and substrate specificity. Proceedings of the National Academy of Sciences of the United States of America 92 (18),8343-8347 (1995).
    43 Ludowyke, R.I., Hoist, J., Mudge, L.M., & Sim, AT., Transient translocation and activation of protein phosphatase 2A during mast cell secretion. J Biol Chem 275 (9), 6144-6152 (2000).
    44 Xu, Y. et al., Structure of the protein phosphatase 2A holoenzyme. Cell 127 (6), 1239-1251 (2006).
    45 Xu, Y, Chen, Y, Zhang, P., Jeffrey, P.D., & Shi, Y, Structure of a protein phosphatase 2A holoenzyme:insights into B55-mediated Tau dephosphorylation. Mol Cell 31 (6), 873-885 (2008).
    46 Xing, Y. et al., Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127 (2),341-353 (2006).
    47 Ogris, E., Gibson, O.M., & Pallas, D.C., Protein phosphatase 2A subunit assembly:the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen. Oncogene 15 (8),911-917 (1997).
    48 Tolstykh, T., Lee, J., Vafai, S., & Stock, J.B., Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. The EMBO journal 19 (21),5682-5691 (2000).
    49 Xie, H. & Clarke, S., Protein phosphatase 2A is reversibly modified by methyl esterification at its C-terminal leucine residue in bovine brain. J Biol Chem 269 (3), 1981-1984(1994).
    50 Xie, H. & Clarke, S., Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. J Biol Chem 268 (18),13364-13371 (1993).
    51 Lee, J. & Stock, J., Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J Biol Chem 268 (26),19192-19195 (1993).
    52 De Baere, I. et al., Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue. Biochemistry 38 (50),16539-16547 (1999).
    53 Lee, J., Chen, Y, Tolstykh, T., & Stock, J., A specific protein carboxyl methylesterase that demethylates phosphoprotein phosphatase 2A in bovine brain. Proceedings of the National Academy of Sciences of the United States of America 93 (12),6043-6047 (1996).
    54 Xie, H. & Clarke,S., An enzymatic activity in bovine brain that catalyzes the reversal of the C-terminal methyl esterification of protein phosphatase 2A. Biochem Biophys Res Commun 203 (3),1710-1715 (1994).
    55 Chen, J., Martin, B.L., & Brautigan, D.L., Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science (New York, N.Y 257 (5074), 1261-1264(1992).
    56 Li, M., Guo, H., & Damuni, Z., Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney. Biochemistry 34 (6),1988-1996 (1995).
    57 Fornerod, M. et al., Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene 10 (9),1739-1748 (1995).
    58 Vaesen, M. et al., Purification and characterization of two putative HLA class II associated proteins:PHAPI and PHAPII. Biol Chem Hoppe Seyler 375 (2),113-126 (1994).
    59 Li, M., Makkinje, A., & Damuni, Z., Molecular identification of I1PP2A, a novel potent heat-stable inhibitor protein of protein phosphatase 2A. Biochemistry 35 (22), 6998-7002 (1996).
    60 Zolnierowicz, S., Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochem Pharmacol 60 (8),1225-1235 (2000).
    61 Douglas, P., Moorhead, G.B., Ye, R., & Lees-Miller, S.P., Protein phosphatases regulate DNA-dependent protein kinase activity. J Biol Chem 276 (22),18992-18998 (2001).
    62 Yan, Y. & Mumby, M.C., Distinct roles for PP1 and PP2A in phosphorylation of the retinoblastoma protein. PP2a regulates the activities of G(1) cyclin-dependent kinases. J Biol Chem 274 (45),31917-31924 (1999).
    63 Ishihara, H. et al., Calyculin A and okadaic acid:inhibitors of protein phosphatase activity. Biochem Biophys Res Commun 159 (3),871-877 (1989).
    64 Cohen, P., Holmes, C.F., & Tsukitani, Y., Okadaic acid:a new probe for the study of cellular regulation. Trends in biochemical sciences 15 (3),98-102 (1990).
    65 Ishihara, H. et al., Calcium-independent activation of contractile apparatus in smooth muscle by calyculin-A. J Pharmacol Exp Ther 250 (1),388-396 (1989).
    66 Li, M. & Damuni, Z., Okadaic acid and microcystin-LR directly inhibit the methylation of protein phosphatase 2A by its specific methyltransferase. Biochem Biophys Res Commun 202 (2),1023-1030 (1994).
    67 Floer, M. & Stock, J., Carboxyl methylation of protein phosphatase 2A from Xenopus eggs is stimulated by cAMP and inhibited by okadaic acid. Biochem Biophys Res Commun 198 (1),372-379 (1994).
    68 Namboodiripad, A.N. & Jennings, M.L., Permeability characteristics of erythrocyte membrane to okadaic acid and calyculin A. Am J Physiol 270 (2 Pt 1), C449-456 (1996).
    69 Janssens, V., Goris, J., & Van Hoof, C., PP2A:the expected tumor suppressor. Curr Opin Genet Dev 15 (1),34-41 (2005).
    70 Suzuki, K. & Takahashi, K., Reduced expression of the regulatory A subunit of serine/threonine protein phosphatase 2A in human breast cancer MCF-7 cells. Int J Oncol 23 (5),1263-1268 (2003).
    71 Ruediger, R., Pham, H.T., & Walter, G., Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene 20 (15),1892-1899 (2001).
    72 Colella, S. et al., Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. Int J Cancer 93 (6),798-804 (2001).
    73 Calin, G.A. et al., Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene 19 (9),1191-1195 (2000).
    74 Wang, S.S. et al., Alterations of the PPP2R1B gene in human lung and colon cancer. Science (New York, N.Y 282 (5387),284-287 (1998).
    75 Takagi, Y. et al., Alterations of the PPP2R1B gene located at 11q23 in human colorectal cancers. Gut 47 (2),268-271 (2000).
    76 Goedert, M., Jakes, R., Qi, Z., Wang, J.H., & Cohen, P., Protein phosphatase 2A is the major enzyme in brain that dephosphorylates tau protein phosphorylated by proline-directed protein kinases or cyclic AMP-dependent protein kinase. J Neurochem 65 (6),2804-2807 (1995).
    77 Sontag, E., Nunbhakdi-Craig, V., Lee, G., Bloom, G.S., & Mumby, M.C., Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron 17 (6),1201-1207 (1996).
    78 Gong, C.X. et al., Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J Biol Chem 275 (8),5535-5544 (2000).
    79 Liu, F., Grundke-lqbal, I., Iqbal, K., & Gong, C.X., Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22 (8),1942-1950 (2005).
    80 Gotz, J. & Schild, A., Transgenic and knockout models of PP2A. Methods Enzymol 366, 390-403 (2003).
    81 Gotz, J., Probst, A., Mistl, C., Nitsch, R.M., & Ehler, E., Distinct role of protein phosphatase 2A subunit Calpha in the regulation of E-cadherin and beta-catenin during development. Mech Dev 93 (1-2),83-93 (2000).
    82 Gotz, J., Probst, A., Ehler, E., Hemmings, B., & Kues, W., Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. Proceedings of the National Academy of Sciences of the United States of America 95 (21),12370-12375 (1998).
    83 Brewis, N. et al., Dilated cardiomyopathy in transgenic mice expressing a mutant A subunit of protein phosphatase 2A. Am J Physiol Heart Circ Physiol 279 (3), H1307-1318(2000).
    84 Everett, A.D., Kamibayashi, C., & Brautigan, D.L., Transgenic expression of protein phosphatase 2A regulatory subunit B56gamma disrupts distal lung differentiation. Am J Physiol Lung Cell Mol Physiol 282 (6), L1266-1271 (2002).
    85 Kins, S. et al., Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem 276 (41),38193-38200 (2001).
    86 Schild, A., Ittner, L.M., & Gotz, J., Altered phosphorylation of cytoskeletal proteins in mutant protein phosphatase 2A transgenic mice. Biochem Biophys Res Commun 343 (4),1171-1178 (2006).
    87 Orkin, S.H., Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 1(1),57-64(2000).
    88 Godin, I. & Cumano, A., The hare and the tortoise:an embryonic haematopoietic race. Nat Rev Immunol 2 (8),593-604 (2002).
    89 Richmond, T.D., Chohan, M., & Barber, D.L., Turning cells red:signal transduction mediated by erythropoietin. Trends Cell Biol 15 (3),146-155 (2005).
    90 Lin, C.S., Lim, S.K., D'Agati, V., & Costantini, F., Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev 10 (2),154-164 (1996).
    91 Wu, H., Liu, X., Jaenisch, R., & Lodish, H.F., Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83 (1),59-67 (1995).
    92 Ebert, B.L. & Bunn, H.F., Regulation of the erythropoietin gene. Blood 94 (6), 1864-1877 (1999).
    93 Ludwig, H. & Strasser, K., Symptomatology of anemia. Semin Oncol 28 (2 Suppl 8), 7-14(2001).
    94 Gregory, C.J.& Eaves, A.C., Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood 51 (3),527-537 (1978).
    95 Gregory, C.J.& Eaves, A.C., Human marrow cells capable of erythropoietic differentiation in vitro:definition of three erythroid colony responses. Blood 49 (6), 855-864 (1977).
    96 Witthuhn, B.A. et al., JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74(2),227-236(1993).
    97 Fisher, J.W., Erythropoietin:physiology and pharmacology update. Exp Biol Med (Maywood) 228 (1),1-14 (2003).
    98 Ashman, L.K., The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol 31 (10),1037-1051 (1999).
    99 Nocka, K. et al., Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice--evidence for an impaired c-kit kinase in mutant mice. Genes Dev 3 (6),816-826 (1989).
    100 Harrison, D.E. & Russell, E.S., The response of W-W v and SI-SI d anaemic mice to haemopoietic stimuli. Br J Haematol 22 (2),155-168 (1972).
    101 Broudy, V.C., Lin, N.L., Priestley, G.V., Nocka, K., & Wolf, N.S., Interaction of stem cell factor and its receptor c-kit mediates lodgment and acute expansion of hematopoietic cells in the murine spleen. Blood 88 (1),75-81 (1996).
    102 Muta, K., Krantz, S.B., Bondurant, M.C., & Dai, C.H., Stem cell factor retards differentiation of normal human erythroid progenitor cells while stimulating proliferation. Blood 86 (2),572-580 (1995).
    103 Muta, K., Krantz, S.B., Bondurant, M.C., & Wickrema, A., Distinct roles of erythropoietin, insulin-like growth factor I, and stem cell factor in the development of erythroid progenitor cells. The Journal of clinical investigation 94 (1),34-43 (1994).
    104 Yu, H., Bauer, B., Lipke, G.K., Phillips, R.L., & Van Zant, G., Apoptosis and hematopoiesis in murine fetal liver. Blood 81 (2),373-384 (1993).
    105 Jacobs-Helber, S.M., Penta, K., Sun, Z., Lawson, A., & Sawyer, ST., Distinct signaling from stem cell factor and erythropoietin in HCD57 cells. J Biol Chem 272 (11), 6850-6853 (1997).
    106 Wu, H., Klingmuller, U., Besmer, P., & Lodish, H.F., Interaction of the erythropoietin and stem-cell-factor receptors. Nature 377 (6546),242-246 (1995).
    107 Dessypris, E.N., Gleaton, J.H., & Armstrong, O.L., Effect of human recombinant erythropoietin on human marrow megakaryocyte colony formation in vitro. Br J Haematol 65 (3),265-269 (1987).
    108 Cheung, J.Y. & Miller, B.A., Molecular mechanisms of erythropoietin signaling. Nephron 87 (3),215-222 (2001).
    109 Wojchowski, D.M., Gregory, R.C., Miller, C.P., Pandit, A.K., & Pircher, T.J., Signal transduction in the erythropoietin receptor system. Exp Cell Res 253 (1),143-156 (1999).
    110 Constantinescu, S.N., Ghaffari, S., & Lodish, H.F., The Erythropoietin Receptor: Structure, Activation and Intracellular Signal Transduction. Trends Endocrinol Metab 10 (1),18-23 (1999).
    111 Parganas, E. et al., Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93 (3),385-395 (1998).
    112 Neubauer, H. et al., Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93 (3),397-409 (1998).
    113 Rane, S.G. & Reddy, E.P., JAKs, STATs and Src kinases in hematopoiesis. Oncogene 21 (21),3334-3358(2002).
    114 Halupa, A. et al., A novel role for STAT1 in regulating murine erythropoiesis:deletion of STAT1 results in overall reduction of erythroid progenitors and alters their distribution. Blood 105 (2),552-561 (2005).
    115 Lee, C.K. et al., STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17 (1),63-72 (2002).
    116 Liu, X., Robinson, G.W., Gouilleux, F., Groner, B., & Hennighausen, L., Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proceedings of the National Academy of Sciences of the United States of America 92 (19),8831-8835 (1995).
    117 Silva, C.M., Lu, H., & Day, R.N., Characterization and cloning of STAT5 from IM-9 cells and its activation by growth hormone. Mol Endocrinol 10 (5),508-518 (1996).
    118 Teglund, S. et al., Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93 (5),841-850 (1998).
    119 Socolovsky, M. et al., Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 98 (12),3261-3273 (2001).
    120 Udy, G.B. et al., Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proceedings of the National Academy of Sciences of the United States of America 94 (14),7239-7244 (1997).
    121 Liu, X. et al., Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11 (2),179-186 (1997).
    122 Socolovsky, M., Fallon, A.E., Wang, S., Brugnara, C., & Lodish, H.F., Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice:a direct role for Stat5 in Bcl-X(L) induction. Cell 98 (2),181-191 (1999).
    123 Snow, J.W. et al., STAT5 promotes multilineage hematolymphoid development in vivo through effects on early hematopoietic progenitor cells. Blood 99 (1),95-101 (2002).
    124 Feldman, G.M. et al., STAT5A-deficient mice demonstrate a defect in granulocyte-macrophage colony-stimulating factor-induced proliferation and gene expression. Blood 90 (5),1768-1776 (1997).
    125 Bradley, H.L., Hawley, T.S., & Bunting, K.D., Cell intrinsic defects in cytokine responsiveness of STAT5-deficient hematopoietic stem cells. Blood 100 (12), 3983-3989 (2002).
    1 Schlaeger, T.M. et al., Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 94 (7),3058-3063 (1997).
    2 Davis, S. et al., Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87 (7),1161-1169 (1996).
    3 Sato, T.N., Qin, Y., Kozak, C.A., & Audus, K.L., Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proceedings of the National Academy of Sciences of the United States of America 90 (20),9355-9358 (1993).
    4 Hamaguchi, I. et al., In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta-gonad-mesonephros region. Blood 93 (5),1549-1556 (1999).
    5 Hsu, H.C. et al., Hematopoietic stem cells express Tie-2 receptor in the murine fetal liver. Blood 96 (12),3757-3762 (2000).
    6 Takakura, N. et al., Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis. Immunity 9 (5),677-686 (1998).
    7 Schlaeger, T.M., Mikkola, H.K., Gekas, C., Helgadottir, H.B., & Orkin, S.H., Tie2Cre-mediated gene ablation defines the stem-cell leukemia gene (SCL/tall)-dependent window during hematopoietic stem-cell development. Blood 105 (10),3871-3874 (2005).
    8 Virshup, D.M., Protein phosphatase 2A:a panoply of enzymes. Current opinion in cell biology 12 (2),180-185 (2000).
    9 Xing, Y. et al., Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell 133 (1),154-163 (2008).
    10 Ortega-Gutierrez, S., Leung, D., Ficarro, S., Peters, E.C.,& Cravatt, B.F., Targeted disruption of the PME-1 gene causes loss of demethylated PP2A and perinatal lethality in mice. PLoS One 3 (7), e2486 (2008).
    11 Zhang, D., Kanthasamy, A., Yang, Y, & Anantharam, V., Protein kinase C delta negatively regulates tyrosine hydroxylase activity and dopamine synthesis by enhancing protein phosphatase-2A activity in dopaminergic neurons. J Neurosci 27 (20),5349-5362 (2007).
    12 Khew-Goodall, Y. & Hemmings, B.A., Tissue-specific expression of mRNAs encoding alpha- and beta-catalytic subunits of protein phosphatase 2A. FEBS letters 238 (2), 265-268 (1988).
    13 Gotz, J., Probst, A., Ehler, E., Hemmings, B., & Kues, W., Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. Proceedings of the Notional Academy of Sciences of the United States of America 95 (21),12370-12375 (1998).
    14 Zolnierowicz, S. & Bollen, M., Protein phosphorylation and protein phosphatases. De Panne, Belgium, September 19-24,1999. The EMBO journal 19 (4),483-488 (2000).
    15 Seeling, J.M. et al., Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science (New York, N.Y 283 (5410),2089-2091 (1999).
    16 Hsu, W., Zeng, L., & Costantini, F., Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J Biol Chem 274 (6),3439-3445 (1999).
    17 Ikeda, S., Kishida, M., Matsuura, Y, Usui, H., & Kikuchi, A., GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene 19 (4), 537-545 (2000).
    18 Koni, P.A. et al., Conditional vascular cell adhesion molecule 1 deletion in mice: impaired lymphocyte migration to bone marrow. The Journal of experimental medicine 193 (6),741-754 (2001).
    19 Soriano, P., Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1),70-71 (1999).
    20 Graupera, M. et al., Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 453 (7195),662-666 (2008).
    21 Springer, T., Galfre, G., Secher, D.S., & Milstein, C., Monoclonal xenogeneic antibodies to murine cell surface antigens:identification of novel leukocyte differentiation antigens. European journal of immunology 8 (8),539-551 (1978).
    22 Socolovsky, M. et al., Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 98 (12),3261-3273 (2001).
    23 Zhang, J., Socolovsky, M., Gross, A.W., & Lodish, H.F., Role of Ras signaling in erythroid differentiation of mouse fetal liver cells:functional analysis by a flow cytometry-based novel culture system. Blood 102 (12),3938-3946 (2003).
    24 Ikuta, K. et al., A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62 (5),863-874 (1990).
    25 Neubauer, H. et al., Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93 (3),397-409 (1998).
    26 Ikuta, K. & Weissman, I.L., Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proceedings of the National Academy of Sciences of the United States of America 89 (4),1502-1506 (1992).
    27 Whitelaw, E., Tsai, S.F., Hogben, P., & Orkin, S.H., Regulated expression of globin chains and the erythroid transcription factor GATA-1 during erythropoiesis in the developing mouse. Molecular and cellular biology 10 (12),6596-6606 (1990).
    28 Wu, H., Liu, X., Jaenisch, R., & Lodish, H.F., Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83 (1),59-67 (1995).
    29 Nocka, K. et al., Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice--evidence for an impaired c-kit kinase in mutant mice. Genes Dev 3 (6),816-826 (1989).
    30 Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G., & Downing, J.R., AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84 (2),321-330 (1996).
    31 Pevny, L. et al., Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349 (6306),257-260 (1991).
    32 Tsai, F.Y. et al., An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371 (6494),221-226 (1994).
    33 Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R., & Grosveld, F., Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375 (6529),316-318 (1995).
    34 Perkins, A.C., Sharpe, A.H., & Orkin, S.H., Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375 (6529),318-322 (1995).
    35 Strack, S., Cribbs, J.T., & Gomez, L., Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. J Biol Chem 279 (46),47732-47739 (2004).
    36 Wu, F. & Wilson, J.X., Peroxynitrite-dependent activation of protein phosphatase type 2A mediates microvascular endothelial barrier dysfunction. Cardiovasc Res 81 (1),38-45 (2009).
    37 Bize, I., Guvenc, B., Robb, A., Buchbinder, G., & Brugnara, C., Serine/threonine protein phosphatases and regulation of K-CI cotransport in human erythrocytes. Am J Physiol 277 (5 Pt 1), C926-936 (1999).
    38 Godin, I. & Cumano, A., The hare and the tortoise:an embryonic haematopoietic race. Nat Rev Immunol 2 (8),593-604 (2002).
    1 Johnson, G.R.& Moore, M.A., Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature 258 (5537),726-728 (1975).
    2 Lenox, L.E., Perry, J.M., & Paulson, R.F., BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood 105 (7),2741-2748 (2005).
    3 Socolovsky, M., Fallon, A.E., Wang, S., Brugnara, C., & Lodish, H.F., Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice:a direct role for Stat5 in Bcl-X(L) induction. Cell 98 (2),181-191 (1999).
    4 Chida, D., Miura,O., Yoshimura, A., & Miyajima, A., Role of cytokine signaling molecules in erythroid differentiation of mouse fetal liver hematopoietic cells: functional analysis of signaling molecules by retrovirus-mediated expression. Blood 93 (5),1567-1578 (1999).
    5 Pircher, T.J., Zhao, S., Geiger, J.N., Joneja, B., & Wojchowski, D.M., Pim-1 kinase protects hematopoietic FDC cells from genotoxin-induced death. Oncogene 19 (32), 3684-3692 (2000).
    6 Sasaki, A. et al., CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 275 (38),29338-29347 (2000).
    7 Jegalian, A.G. & Wu, H., Differential roles of SOCS family members in EpoR signal transduction. J Interferon Cytokine Res 22 (8),853-860 (2002).
    8 Yoshimura, A. et al., Mouse oncostatin M:an immediate early gene induced by multiple cytokines through the JAK-STAT5 pathway. The EMBO journal 15 (5), 1055-1063 (1996).
    9 Wagner, K.U. et al., Conditional deletion of the Bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly. Development (Cambridge, England) 127 (22),4949-4958 (2000).
    10 Hammerman, P.S., Fox, C.J., Birnbaum, M.J., & Thompson, C.B., Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood 105 (11),4477-4483 (2005).
    11 Koury, M.J. & Bondurant, M.C., Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science (New York, N.Y 248 (4953), 378-381 (1990).
    12 Kelley, L.L. et al., Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities:a mechanism for controlled rates of erythrocyte production. Blood 82 (8),2340-2352 (1993).
    13 Landschulz, K.T., Boyer, S.H., Noyes, A.N., Rogers, O.C., & Frelin, L.P., Onset of erythropoietin response in murine erythroid colony-forming units:assignment to early S-phase in a specific cell generation. Blood 79 (10),2749-2758 (1992).
    14 Kelley, L.L. et al., Apoptosis in erythroid progenitors deprived of erythropoietin occurs during the G1 and S phases of the cell cycle without growth arrest or stabilization of wild-type p53. Molecular and cellular biology 14 (6),4183-4192 (1994).
    15 Douglas, P., Moorhead, G.B., Ye, R., & Lees-Miller, S.P., Protein phosphatases regulate DNA-dependent protein kinase activity. J Biol Chem 276 (22),18992-18998 (2001).
    16 Yan, Y. & Mumby, M.C., Distinct roles for PP1 and PP2A in phosphorylation of the retinoblastoma protein. PP2a regulates the activities of G(1) cyclin-dependent kinases. J Biol Chem 274 (45),31917-31924 (1999).
    17 Socolovsky, M. et al., Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 98 (12),3261-3273 (2001).
    18 Chao, D.T. & Korsmeyer, S.J., BCL-2 family:regulators of cell death. Annu Rev Immunol 16,395-419 (1998).
    19 Adams, J.M. & Cory, S., The Bcl-2 protein family:arbiters of cell survival. Science (New York, N.Y 281 (5381),1322-1326 (1998).
    20 Boise, L.H. et al., bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74 (4),597-608 (1993).
    21 Gonzalez-Garcia, M. et al., bcl-XL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development (Cambridge, England) 120 (10),3033-3042 (1994).
    22 Fang, W., Rivard, J.J., Mueller, D.L., & Behrens, T.W., Cloning and molecular characterization of mouse bcl-x in B and T lymphocytes. J Immunol 153 (10), 4388-4398(1994).
    23 Gregoli, P.A. & Bondurant, M.C., The roles of Bcl-X(L) and apopain in the control of erythropoiesis by erythropoietin. Blood 90 (2),630-640 (1997).
    24 Motoyama, N., Kimura, T., Takahashi, T., Watanabe, T., & Nakano, T., bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. The Journal of experimental medicine 189 (11),1691-1698 (1999).
    25 Motoyama, N. et al., Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science (New York, N.Y 267 (5203),1506-1510 (1995).
    26 Gregory, T. et al., GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 94 (1),87-96 (1999).
    27 Ross, J.A., Cheng, H., Nagy, Z.S., Frost, J.A., & Kirken, R.A., Protein phosphatase 2A (PP2A) regulates interleukin-2 receptor complex formation and JAK3/STAT5 activation. J Biol Chem (2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700