用户名: 密码: 验证码:
新型有机二阶非线性光学材料的设计制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的飞速发展,非线性光学材料在高速光通讯,光信息处理以及光学存贮等领域有着广泛的应用前景。与无机晶体相比,有机二阶非线性光学材料具有非线性系数高、响应速度快、易加工、结构可设计等优点,已经成为非线性光学与材料领域的一大研究热点。到目前为止,获得可以满足实用化要求的具有宏观非对称结构和高稳定性的有机聚合物材料,仍然是材料科学家们面临的巨大挑战。
     本文简要介绍了非线性光学的基本原理与应用,以及发色团的分子设计理论,着重评述了有机非线性光学材料的种类、制备技术及其研究进展。在此基础上,设计了新型发色团分子并研究了其光物理特性,制备研究了掺杂型极化聚合物膜和具有较高热稳定性的非线性光学自组装多层膜。论文主要内容包括以下几个方面:
     1.设计、合成了一种带有新型吸电子体D-π-A结构的三腈基二氢呋喃型发色团分子(DCDHF-2-V),并首次研究了其光物理特性。采用UV1700紫外可见分光光度计和F-4500荧光分光光度计,分别研究了该化合物在不同极性溶剂以及薄膜状态下的吸收光谱和荧光光谱特性。结果表明,随溶剂极性的增大,谱带的峰值大幅度红移,呈现明显的正溶致变色现象。在薄膜状态下发色团分子的吸收峰和荧光发射峰与溶液状态时呈现明显不同,这是由于分子聚集状态的改变和光异构化现象所造成的。研究了发色团分子在不同溶剂中的荧光量子产率以及Stocks位移的变化规律。在此基础上计算出DCDHF-2-V分子激发态与基态跃迁偶极矩之差△μ_(eg)=33.09×10~(-30)C·m,并根据双能级模型确定了分子的二阶非线性极化率β随波长的变化情况,当激光基频波长为1064 nm时,β=3323.4×10~(-40)m~4/V。同时采用示差扫描量热法(DSC)和热失重分析法(TGA)研究了DCDHF-2-V分子的热性能。
     2.将新型发色团分子DCDHF-2-V掺入到光学性能良好的聚甲基丙烯酸甲酯(PMMA)中,采用旋涂法制备了掺杂型聚合物光学膜并讨论了膜厚随溶液浓度和旋膜转速的变化规律。研究了发色团分子掺杂含量对膜透光率的影响。采用光谱椭偏仪(Ellipsometer)测量了薄膜折射率随波长的变化情况。研究了PMMA和掺杂型聚合物DCDHF-2-V/PMMA的热性能,并采用Achar方法和Coats-Redfern方法对掺杂型聚合物DCDHF-2-V/PMMA的热降解过程的动力学过程进行了分析。为了得到宏观的二阶非线性响应,利用电晕极化方式,使聚合物膜中的极性分子沿电场方向有序排列,形成宏观的非中心对称。用原子力显微镜和紫外可见分光光度计研究了极化前、后聚合物膜的表面形貌和吸光度的变化。结果表明,极化前聚合物膜表面平整、均匀;极化后聚合物膜表面沿电场方向形成很多尖峰,且膜表面的粗糙程度与极化电压有关。同时根据吸光度的变化可以计算发色团分子的有序度Φ。采用二次谐波法测试了不同掺杂浓度下,极化聚合物膜的二阶非线性光学系数d_(33),研究了二阶非线性光学系数d_(33)和d_(31)的关系,考虑到由发色团分子在倍频光波长处吸收造成的损耗对d_(33)进行了修正。采用同样方法制备和研究了另一种新型发色团分子的PMMA基掺杂型极化聚合物。
     3.通过Friedel-Crafts烷基化反应将新型发色团分子DCDHF-2-V引入聚合物的侧链,合成了含三氰基二氢呋喃结构单元的聚合物材料,并对其非线性光学性能做了初步研究。结果表明,与掺杂型聚合物膜DCDHF-2-V/PMMA相比,虽然材料的二阶非线性系数下降了,但其二阶非线性光学稳定性有了明显提高。
     4.以偶氮型聚阴离子PAZO为发色团分子,与感光型聚阳离子重氮树脂DR进行层层静电自组装,制备具有二阶非线性光学特性的多层组装膜,并采用紫外可见光谱跟踪成膜过程。经过紫外光照,层间的静电相互作用转化为共价酯键连接。对制备的DR/PAZO多层组装膜进行的二阶非线性光学性质、热稳定性及抗溶剂刻蚀能力的研究表明,膜层具有较明显的二次谐波信号,同时曝光后的膜层比未经曝光膜层表现出了更好的热稳定性和抗溶剂稳定性。
     5.以掺杂型极化聚合物DCDHF-2-V/PMMA为芯层材料,以紫外光固化聚合物材料为包层材料制备了倒脊型单模光波导,并模拟了波导的折射率分布和模场分布,并对M-Z型电光调制器进行了初步研究,完成了从材料的设计、制备、表征到应用的整个过程,为制作聚合物波导强度调制器的原型器件提供了实验基础。
With the rapid development of information technology, nonlinear optical (NLO) materials have been of great interest due to their potential applications in the fields of optical information processing, optical sensing, and telecommunications. The advantages of organic NLO materials in contrast to inorganic crystals include higher NLO susceptibility, ultra-fast response characteristics, easier processing into thin films and compatibility with microelectronic processes. It is still considered to be a challenge for researchers to prepare novel polymer lattices with macroscopically non-centrosymmetric structure in which chromophoric dipolar molecules are well arranged with orientation.
     In this desertation, the basic theories of NLO and molecular design are briefly introduced, and the species, the preparation as well as the research progress of second order NLO materials are also summerized. Based on the preliminary investigation, a novel chromophore was synthesized and the spectroscopic properties of it were investigated. The poled polymer films were prepared and the strip waveguide using it was fabricated successfully. A multilayer NLO assembly film was prepared. The main research results were as follows:
     1. A second-order NLO chromophore (DCDHF-2-V) with a novel electron acceptor was synthesized. The spectroscopic properities of the chromophore in the different polar solutions and polymer matrix were investigated by the absorption spectra and fluorescence emission spectra. It is found that the absorption and fluorescence maxima are largely red-shifted along with the increase of the solvent polarity, which means that the dipole moment of the DCDHF-2-V molecule is higher in the excited state than in the ground state. The absorption spectrum and fluorescence spectrum of the film is quite different from that of the chromophore in the solution. These spectral effects arise from the difference in the aggregate state of DCDHF-2-V molecules and photoisomerization process of DCDHF-2-V molecules in a PMMA matrix respectively. The fluorescence quantum yield and Stocks shift change along with the variation of the polarity of solvent. And the difference in the dipole moment between the ground and the excited states was obtained as 33.09×10~(-30)C·m. The second order polarizability value of DCDHF-2-V was estimated based on the quantum-mechanical two-level model and the calculated value was 3323.4×10~(-40) m~4/V at the wavelength of 1064 nm. The thermal behavior of the chromophore was investigated by thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC), respectively.
     2. Spin-coated films of poly methyl methacrylate (PMMA) doped with DCDHF-2-V were fabricated. The refractive index of the polymer film was measured by an ellipsometer. With the increase of DCDHF-2-V moleculars concentration, the absorbance of the film is also enhanced. The thermal stability of the polymer (DCDHF-2-V/PMMA) was investigated by thermal gravimetry and the kinetic parameters of the degradation processes were calculated. The alignment of the NLO chromophore of the polymeric thin film was carried out by corona poling method. Domain structures of NLO-chromophores for the poled film were obtained using atomic force microscopy (AFM). The surface of the film sample before poling is flat and this good quality film was dramatically changed after poling, resulting in numerous hills and valleys that were aligned the poling direction. Due to the rearrangement of the dipolar molecules, absorption of the polymeric film after poling is less than that of the film before poling. From the absorbance change, the order parameter of the poled film could be estimated, which is related to the poling efficiency. The second-order nonlinear coefficient d_(33) was taken from the second harmonic generation (SHG) experimental setup. When the concentration of chromophore DCDHF-2-V is 15%, the d_(33) value is maximum. The relation between the second-order nonlinear coefficients d_(33) and d_(13) for the poled polymer film was also discussed in detail. In the same way, another chromophore doped PMMA was investigated.
     3. The polymer P1 containing tricyanofuran units was synthesized by Friedel-Crafts reaction. Second-order NLO properties of the polymer were measured by SHG. Compared with the polymer (DCDHF-2-V/PMMA), P1 possesses competitive optical nonlinear stability.
     4. The non-linear optical films were fabricated by means of alternate electrostatic adsorption with positively charged diazoresin (DR) or with negatively charged azo polymer (PAZO). Regular film growth during adsorption was proved by means of UV-vis spectroscopy and quartz crystal microbalance (QCM). Upon the UV irradiation, accompanied with the transition of the ionic bonds between the layers to covalent bonds, the resulting multilayer films possess excellent environmental stability and high thermal stability. The SHG signal can retain 90% when the film is heated up to 200℃.
     5. The strip waveguide using the DCDHF-2-V/PMMA plolymer film was fabricated by semiconductor technology. The refractive index distribution and mode field distribution of the strip waveguide were simulated. These works give a solid foundation for the final realization of the prototype of polymer waveguide Mach-Zehnder modulator.
引文
[1]R.Service.Nonlinear competition heats up.Science, 1995, 267: 1918-1921
    [2]唐天同,王兆宏.集成光学.北京:科学出版社,2005
    [3]叶成,J.习斯.分子非线性光学的理论与实践.北京:化学工业出版社,1996
    [4]D.L.Albert, T.J.Marks, M.A.Ratner.Large molecular hyperpolarizabilities quantitative analysis of aromaticity and auxiliary donor-acceptor effects.J.Am.Chem.Soc., 1997, 119(28): 6575-6582
    [5]沈元壤(Y.R.Shen)著,顾世杰译.非线性光学原理.北京:科学出版社,1987
    [6]P.A.Franken, C.W.Peters, G.Weinreich.Generation of optical harmonics.Phys.Lett., 1961,7(4): 118-120
    [7]S.R.Marder, J.W.Perry.Nonlinear optical polymers:discovery to market in 10 Years.Science, 1994, 263(5154): 1706-1707
    [8]石顺祥,陈国夫,赵卫等.非线性光学.西安:西安电子科技大学出版社,2005
    [9]N.Bloembegren.Polymers in nonlinear optics: fundamentals and applications.Int.J Nonlinear.opt.phys., 1994, 3:439-446
    [10]P.N.Prasad, D.J.Williams.Introduction to nonlinear optical effects in molecules and polymers.New York: John Wiley&Sons, 1991
    [1 1]J.Zyss, I.Ledoux.Nonlinear optics in multipolar media: theory and experiments.Chem.Rev., 1994, 94: 77-105
    [12]L.R.Dalton, A.W.Harper, R.Steier Ghosn, et al.Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics.Chem.Mater., 1995, 7: 1060-1081
    [13]王奎雄.非线性光学.北京:国防工业出版社,1988
    [14]游效曾.分子材料-光电功能材料.上海:上海科学技术出版社,2001
    [15]侯阿临.极化聚合物电光调制器的基础研究.吉林大学博士学位论文,2007
    [16]Larry Dalton.Nonlinear optical polymeric materials: from chromophore design to commercial applications.Advances in Polymer Science, 2002, 158: 1-86
    [17]王坚,梁兆熙.二阶非线性光学聚合物材料.功能高分子学报,1999,12(4):479-485
    [18]J.L.Oudar, D.S.Chemla.Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment.J.Chem.Phys., 1977, 66(6):2664-2668
    [19]D.S.Chemla, J.L.Oudar.Origin of the second-order optical susceptibilities of crystalline substituted benzene.Phys.Rev., 1975, 12: 4543-4548
    [20]S.R.MARDER, D.N.BERATAN, L.T.CHENG.Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules.Science, 1991,252: 103-106
    [21]朱道本,王佛松.有机固体.上海:上海科学出版社,1999
    [22]叶佩弦,司金海.有机聚合物的非线性光学.物理,2000,29(6):344-348
    [23]Markus Ahlheim, Marguerite Barzoukas, Peter V.Bedworth, et al.Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient Science, 1996, 271:335-337
    [24]Marius Albota, David Beljonne, Jean-Luc Br(?)das, et al.Design of organic molecules with large two-photon absorption cross sections.Science, 1998, 281:1653-1656
    [25]Meredith G.R., Van Dusen J.G., Williams D.J.Nonlinear optical properties of organic and polymer materials.D.Williams Ed.,Acs Symp.Series, 1983,233:109-115
    [26]Y.Bai, N.Song, J.P.Gao, X.Sun, et a].A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant.J.Am.Chem.Soc., 2005, 127: 2060-2061
    [27]J.Y.Lee, H.B.Bang, T.S.Kang, et al.Molecular design, synthesis and electro-optic properties of novel Y-type polyurethanes with high thermal stability of second harmonic generation.Eur.Polym.J., 2004, 40(8): 1815-1822
    [28]G.Koeckelberghs, S.Sioncke, T.Verbiest, et al.Synthesis and properties of chiral chromophore-functionalized polybinaphthalenes for nonlinear optics: influence of chromophore concentration.Macromolecules, 2003, 36(26): 9736-9741
    [29]H.Reis, M.Makowska-Janusika, M.G.Papadopoulos.Nonlinear optical susceptibilities of poled guest-host systems: a computational approach.J.Phys.Chem.B, 2004, 108(26): 8931-8940
    [30]Shi Y., Wang W., Olson D.J., et al.Electro-optic polymer modulators: manufacturing, packaging, and testing.Proc.SPIE, 1996, 2852:258
    [31]Chen D, Fetterman H R, Chen A, et al.High-bandwidth polymer modulators.Proc.SPIE, 1997, 3006:314
    [32]L.R.Dalton.Polymeric electro-optic modulators.Chemistry &Industry, 1997,7:510-518
    [33]叶成,朱培旺,王鹏,二阶非线性光学高分子研究的瓶颈—材料性能的综合优化.高分子通报,1999,3,43-46
    [34]L.Dalton, A.Harper, A.Ren, et al.Polymeric electro-optic modulators: from chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics.Ind.Eng.Chem.Res., 1999, 38: 8-33
    [35]Seth R.Marder, Lap-Tak Cheng, Bruce G.Tiemann, et al.Large first hyperpolarizabilities in push-pull polyenes by tuning of the bond length alternation and aromaticity.Science, 1994, 263: 511-514
    [36]Donald Lupo, Werner Prass, Ude Scheunemann.Second-harmonic generation in Langmuir-Blodgett monolayers of stilbazium salt and phenylhydrazone dyes.J.Opt.Soc.Am.B, 1988, 5(2):300-308
    [37]赵成大.固体量子化学.北京:高等教育出版社,1997
    [38]A.E.Stiegman, E.Graham, K.J.Perry, et al.The electronic structure and second-order nonlinear optical properties of donor-acceptor acetylenes: a detailed investigation of structure-property relationships.J.Am.Chem.Soc., 1991,113:7658-7666
    [39]朱道本,王佛松.有机固体.上海:上海科学技术出版社,1999
    [40]M.L.Yang, B.Champagne.Large off-diagonal contributions to the second-order optical nonlinearities of shaped molecules.J.Phys.Chem.A, 2003, 107: 3942-3951
    [41]刘永军,刘英,赵显等.新型双重电荷转移分子的二阶非线性光学性质的理论研究.化学学报, 2001,59(1):48-55
    [42]Y.J.Liu, Y.Liu, D.J.Zhang, et al.Theoretical investigation on second-order nonlinear optical properties of (dicyanomethylene)-pyran derivatives.J.Mol.Struct.,2001, 570: 43-51
    [43]B.R.Cho, S.B.Park, S.J.Lee, et al.1,3, 5-Tricyano- 2, 4, 6- tris (vinyl)benzene erivatives with large second-order nonlinear optical properties.J.Am.Chem.Soc.,2001,123: 6421-6422
    [44]王曜.新型二阶非线性光学聚合物膜材料的设计制备与性能研究.吉林大学博士学位论文,2005
    [45]A.W.Harper, S.Sun, L.R.Dalton, et al.Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: the roleof chromophore-chromophore electrostatic interactions.J.Opt.Soc.Am.B, 1998,15(1): 329-337
    [46]Verbiest T., Clays, K., Samyn C, et al.Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems.J.Am.Chem.Soc., 1994, 116:9320-9323
    [47]G.Meredith, J.Vandusen, D.Williams.Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers.Macromolecules, 1982, 15: 1385-1389
    [48]Donald M.Burland, Robert D.Miller, Cecilia A.Walsh.Second-order nonlinearity in poled-polymer systems.Chem.Rev., 1994, 94: 31-75
    [49]Takayoshi Kobayashi, Masayuki Yoshizawa, Uwe Stamm, et al.Relaxation dynamics of photoexcitations in polydiacetylenes and polythiophene.J.Opt.Soc.Am.B, 1990, 7: 1558-1578
    [50]E.E.Havinga, P.Vanpelt.Intramolecular charge transfer studied by electrochromism of organic molecules in polymer matrices, Molecules Crystal liquid Crystal, 1979, 52:145-156
    [51]Saujanyn C, Anita Dhumal, Anjana Mitra, et al.Structure, growth, and morphology in para nitroaniline dispersed polymethyl methacrylate guest-host NLO composites.Journal of Applied polymer Science, 1999, 74(14): 3522-3534
    [52]Lin J.T., Hubbard M.A., Marks T.J., et al.Poled polymeric nonlinear optical materials.exceptional second harmonic generation temporal stability of a chromophore-functionalized polyimide.Chem.Mater., 1992, 4: 1148-1150
    [53]Becker M.W., Sapochak L.S., Ghosen R., et al.Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore.Chem.Mater., 1994.6: 104-106
    [54]T.Verbiest, D.M.Burland, M.C.Jurich, et al.Exceptionally thermally stable polyimides for second-order nonlinear optical applications.Science, 1995, 268:1604-1606
    [55]A.K.-Y.Jen, T.A.Chen, Y.M.Cai, et al.Electrical, opticaL and magnetic properties of organic solid state materials III.Mater.Res.Soc.Symp.Proc., 1996,413: 165-168
    [56]W.N.Leng, Y.M.Zhou, Q.H.Xu, et al.Synthesis and characterization of nonlinear optical side-chain polyimides containing the benzothiazole chromophores.Macromolecules, 2001,34(14): 4774-4779
    [57]隋郁,郭晓截,印杰等.高Tg可溶含偶氮三嘴染料基团的侧链型共聚聚酞亚胺的合成与表征.高等学校化学学报,2000, 21(12): 1944-1947
    [58]朱维菊.非线性光学聚合物材料的合成及其性能研究,安徽大学硕士学位论文,2004
    [59]C.K.Park, J.Zieba, C.F.Zhao, et al.Highly Ccross-linked polyurethane with enhanced stability of second-order nonlinear optical properties.Macromolecules,1995, 28: 3713-3717
    [60]K.S.Lee, S.W.Choi, H.Y.Woo, et al.Second-order nonlinear optical properties andrelaxationdynamicsofalignedcross-linkedpolyurethaneswith hemicyanine-type chromophores.J.Opt.Soc.Am.B, 1998, 15: 393-400
    [61]Zhu X., Chen Y.M., Li L., et al.Photocrosslinkable polymers with stable second-order optical nonlinearity.OptCommun., 1992, 88: 77-80
    [62]Hong-Quan Xie, Zhi-Hong Liu, Hao Liu, et al.Nonlinear optical crosslinked polymers and interpenetrating polymer networks containing azo-benzothiazole chromophore groups.Polymer, 1998, 39(12): 2393-2398
    [63]Sung-Hoon Kim, Chi-Hee Ahn, Sam-Rok Keum, et al.Synthesis and properties of spiroxazine polymer having photocrosslinkable chalcone moiety.Dyes and Pigments, 2005, 65: 179-182
    [64]Levy D, Esquivias L.Sol-gel processing of optical and electrooptical materials.Adv.Mater., 1995,7(2):120-129
    [65]A.J.Ikushima, T.Fujiwara, K.Saito.Silica glass: A material for photonics.J.Appl.Phys., 2000, 88(3): 1201
    [66] Decher G, Hong J D, Schmitt J. Buildup of ultrathin multiplayer films by a self-assembly process: Ⅲ. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 1992,210/211:831-837
    [67] Decher G, Lvov Y, Schmitt J. Proof of multilayer structural organization in self-assembled polycation-polyanion molecular films. Thin Solid Films, 1994,244(1-2):772-777
    [68] J. U. Choi, C. B. Lim, J. H. Kim, et al. Self-assmebly of nonlinear optical chromophoric layers throgh the ionic interaction. Synthetic Metals, 1995, 71:1729-1730
    [69] Dequan Li, Xiaoguang Yang, Duncan Mcbranch. Molecular architecture of calixarenes and their self-assembled mono- and multi-layers for nonlinear optical (NLO) applications. Synthetic Metals, 1997, 86: 1849-1850
    [70] Leiming Li, Eugene R. Zubarev, Brad A. Acker, et al. Chemical structure and nonlinear optical properties of polar self-assembling films. Macromolecules, 2002,35(7): 2560-2565
    [71] Jingdong Luo, Marnie Haller, Hong Ma, et al. Nanoscale Architectural control and macromolecular engineering of nonlinear optical dendrimers and polymers for electro-optics. J. Phys. Chem. B, 2004,108(25): 8523-8530
    [72] Ali N. Rashid, Peter Gunter. Self-assmebled organic supramolecular thin films for nonlinear optics. Organic Electronics, 2004, 5: 147-155
    [73] Tillman N., Ulman A., Penner T. L. Formation of multilayers by self-assembly.Langmuir, 1989,5:101-111
    [74] Lee H., Kepley L.J., Hong H.G, et al. Inorganic analogues of Langmuir-Blodgett films: adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers on silicon surfaces. J.Am.Chem.Soc, 1988,110: 618-620.
    [75]Lee H., Kepley L.J., Hong H.G., et al. Adsorption of ordered zirconium phosphonate multilayer films on silicon and gold surfaces. J. Phys. Chem. 1988,92:2597-2601.
    [76] Blonder R., Sheeney L., Willner I. Three-dimensional redox-active layered composites of Au-Au, Ag-Ag and Au-Ag colloids. Chem. Commun. 1998,13:1393-1394
    [77]Bharathi S., Nogami M, Ikeda S.Layer by layer self-assembly of thin films of metal hexacyanoferrate multilayers.Langmuir 2001,17:7468-7471
    [78]陈鹭剑,王民权,钱国栋,等.逐层自组装技术制备二阶非线性光学薄膜的研究进展.材料导报,2004,18(4): 1-4
    [79]Ariga K., Onda M., Lvov Y., et al.Alternate layer-by-layer assembly of organic dyesand proteinsisfacilitatedbypre-mixingwithlinearpolyions.Chem.Lett.1997(1): 25-26
    [80]Lin W B., Lin W P., Wong G K., et al.Supramolecular approaches to second-order nonlinear optical materials: self-assembly and microstructural characterization of intrinsically acentric[(aminophenyl)azo]pyridinium superlattices.J.Am.Chem.Soc.,1996,118: 8034-8042
    [81]Yuri Lvov, Sunao Yamada, Toyoki Kunitake.Non-linear optical effects in layer-by-layer alternate films of polycations and an azobenzene-containing polyanion.Thin Solid Films, 1997, 300: 107-112
    [82]Antonio Facchetti, Alessandro Abbotto, Luca Beverina, et al.Layer-by-layer self-assembled pyrrole-based donor-acceptor chromophores as electro-optic materials.Chem.Mater., 2003, 15(5):1064-1072
    [83]Yao Wang, Xinjiao Wang, Ying Guo, et al.Electric-field-induced layer-by-layer fabrication of second-order nonlinear optical films with high thermal stability.Langmuir, 2004, 20(21): 8952-8954
    [84]Lvov Y, Yamada S, Kunitake T.Non-linear optical effects in layer-by-layer alternate films of polycations and anazobenzene-containing polyanion.Thin Solid Films., 1997, 300(1):107-112
    [85]Wang X G, Balasubramanian S, Kumar J, et al.Azochromophore-functionalized polyelectrolytes.1 .Synthesis, characterization, and photoprocessing.Chem Mater,1998, 10(6):1546-1553
    [86]Lasehewsky A, Wischerhoff E, Kauranen M, et al.Layer-by-layer deposition: a tool for polymer surface modification.Macromoleules, 1997, 30:8304-8309
    [87]Roberts M J, Lindsay G A, Herman W N, et al.Thermally stable nonlinear optical films by alternating polyelectrolyte deposition on hydrophobic substrates.J.Am.Chem.Soc.1998.120(43):11202-11203
    [88]徐志凌,刘丽英,刘秀等.掺杂型极化聚合物薄膜电光特性及弛豫过程研究.中国激光,2000,27(8):746-750
    [89]D Jungbauer, I Teraok, DY Yoon,et al.Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores.Applied Physics Letters,1991(69): 8011-8014
    [90]I.Muzikante, E.Fonavs, A.Tokmakov, et al.Studies of relaxation processes in poled dipolar dye-doped polymeric films.Materials Science and Engineering C.,2002,22: 213-217
    [91]W Ren, S Bauer, S Yilmaz.Optimized poling of nonlinearoptical polymers based on dipole-oriedtation and dipole-relexation studies.J.Appl.Phys., 1994.75(11):7211-7219
    [92]徐建东,鲍信先,李淳飞.非线性光学聚合物的极化技术.高技术通讯,1997,10:59-61
    [93]Takashi Fukuda, Hiro Matsuda, Hitoshi Someno,et al.An effective poling of high T_g NLO polymer.Molecular Crystals and Liquid Crystals., 1998.15(3):105-110
    [94]D.Singer, M.G.Kuzyk, W.R.Holland.Electro-optic phase modulation and optical second-harmonic generation in corana-poled polymer films.Appl.Phys.Let., 1988, 53(19): 1800-1802
    [95]Sekkat, E.F.Aust, W.Knoll.Room temperature photo-induced polar oder.A new method for poling polymeric film containing Polar azo dyes for second order application Polym.Prepr., 1994.35(2): 176-177
    [96]Z.Sekkat, E.F.Aust, W.Knoll.Photo-induced poling of polar azo deys in polymeric films.Toward second-order appliants.ACS.Symp.Ser.1995.60(1):255-274
    [97]夏钟福.驻极体.北京:科学出版社,2001
    [98]徐建东,王瑞波,张雷等.非线性光学聚合物的电晕极化与弛豫特性研究.光子学报,1995, 24: 30-34
    [99]Z.Sekkat, W.Knoll.Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films:theoretical study of steady-state and transient properties.Journal of Optical Society of America B.,1995,12(10):1855-1867
    [100]F Charra,F Kajzar,J M Nunzi, et al.Light-induced second harmonic generation in Azo-gye polymers.Optics Letters, 1993,18(12): 941-943
    [101]W Chalupczak,C Fiorini,F Charra, et al.Efficient all-optical poling of an azo-Dye copolymer rusing a low power laser.Optics Commun., 1996,126: 103-107
    [102]钱鹰,孙岳明,刘举正等.非线性光学活性分子的EFISH研究.功能材料,1997,28(6): 637-640
    [103]汪昕,崔一平.研究分子非线性光学特性的新技术—超瑞利散射技术.中国激光,1999, 26(1): 15-20
    [104]P.Dahiya, M.Kumbhakar, D.K.Maity, et al.Solvent polarity and intramolecular hydrogen baonding effects onthe photophysical properties of 1-amino-9,10-anthraquinone dye.Journal of Photochemistry and Photobiology A:Chemistry, 2006, 181:338-347
    [105]黄维桓,闻建勋.高技术有机高分子材料进展.北京:化学工业出版社,1994
    [106]沈玉全,付兴发,邱玲等.极化聚合物薄膜中二阶非线性系数的测定和稳定性研究.光学学报,1994, 14(1): 1-7
    [107]K.D.Singer, J.E.Sohn, S.Lalama.Second harmonic generation in poled polymer Films.Appl.Phys.Let., 1986, 49: 248-250
    [108]M.A.Mortazavi, A.Knoesen, S.T.Kowel, et al.Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures.J.Opt.Soc.Am.B, 1989, 6(4): 733-741
    [109]J.D.Luo, J.G.Qin, H.Kang, et al.A postfunctionalization strategy to develop PVK-based nonlinear optical polymers with a high density of chromophores and improved processibility.Chem.Mater., 2001,13(3): 927-931
    [110]Z.Q.Lu, P.Shao, J.Li, et al.Two novel fluorinated poly(arylene ether)s with pendantchromophoresforsecond-ordernonlinearopticalapplication.Macromolecules, 2004, 37(19): 7089-7096
    [111]J Jerphagnon,SK Kurtz.Optical nonlinear susceptibilities: accurate relative values forquartz,ammonium dihydrogenphosphate,and potassiumdihydrogen phosphate.Physical Review B,1970,1(4) : 1739-1744
    [112]M.I.Barnik, L.M.Blinov, Y.K.Clink,et al.Stark-spectroscopy(electroabsorption)as a tool for the characterization of poled polymers for non-linear optics.MLCL S&T,Sect.C, 1994.3(4):319-325
    [113]马建标.功能高分子材料.北京:化学工业出版社,2000
    [114]Teng C.C., Man H.T.Simple reflection technique for measuring the electro-optic coefficient of poled polymers.Appl.Phys.Lett.1990,56:1734-1739
    [115]D.Morichere, P.-A.Chollet, W.Fleming, et al.Electro-optic effects in two tolane side-chain nonlinear-optical polymers: comparison between measured coefficients and second-harmonic generation.J.Opt.Soc.Am.B.1993, 10(10): 1894-1900
    [116]A.W.Harper, S.Sun, L.R.Dalton, et al.Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: the roleof chromophore-chromophore electrostatic interactions.J.Opt.Soc.Am.B.1998,15(1): 329-337
    [117]H.E.Katz, M.L.Schilling, G.E.Washington.Solution-phase dielectric characterization of the 4-amino-4'-dicyanovinyl-azobenzene nonlinear optical chromophore.J.Opt.Soc.Am.B.1990, 7: 309-312
    [118]B.N.Khare, S.S.Mitra, G.Lengyel, Infrared and dielectric strdies of chloroform as proton donor in hydrogenbond formation.J.Chem.Phys., 1967,47: 5173-5179
    [119]A.Piekara.The existence of intermolecular coupling of the second kond in liquids, Z.Phys, 1938, 108: 395-400.
    [120]Steier W H, Chen A, Lee S S, et al.Polymer electro-optic devices for integrated optics.Chem Phys, 1999, 245(1-3):487-506
    [121]吴世康.具有荧光发射能力有机化合物的光物理和光化学问题研究.化学进展,2005, 17(1): 15-39
    [122]V.K.Indirapriyadharshini, P.Ramamurthy, V.Raghukumar,et al.Spectral and photophysical properties of 1,6-naphthyridine derivatives: a new class of compounds for nonlinear optics.Spectrochim.Acta.Part A,2002, 58(8):1535-1543
    [123]周名成,俞汝勤.紫外与可见分光光度分析法.北京:化学工业出版社,1986
    [124]吴世康.超分子光化学导论.北京:科学出版社,2005
    [125]叶芳芳.香豆素系荧光色素的合成与荧光光谱性能研究.浙江工业大学硕士学位论文,2007
    [126]樊美公.光化学基本原理与光子学材料科学.北京:科学出版社,2001
    [127]朱培旺,王传广,王鹏等.溶剂化变色法测定有机分子β的若干问题.物理化学学报,1998, 14(4): 369-374
    [128]Leutheusser E.Dynamical model of the liquid-glass transition.Phys Rev.A, 1984,29:2765-2773
    [129]He M.Q., Thomas M.Leslie, John A.Sinicropi, et al.Synthesis of chromophores with extremely high electro-optic activities.2.isophorone- and combined isophorone-thiophene-based chromophores Chem.Mater., 2002, 14(11):4669- 4675
    [130]Melikian G, Rouessac F.P., Alexandre C.Synthesis of substituted Dicyanomethylen- dihydrofurans.Synthetic Communications,1995, 25(19):3045-3051
    [131]杨洗,潘祖亭,马勇.罗丹明.用B作标准物测定二氯荧光素的荧光量子产率.分析科学学报,2003, 19(6): 588-589
    [132]戴松晖,李萍,杨晓占等.不同溶剂中番茄红素的荧光光谱及其特性研究.光学学报,2006, 26(1): 141-146
    [133]Stanislav L.Bondarev, Sergei A.Tikhomirov, Valeri N.Knyukshto, et al..Fluorescence and solvatochromism of a high quadratic polarizability in solutions and polymer films Journal of Luminescence, 2007, 124(1): 178-186
    [134]Ch.Bosshard, G.kn(o|¨)pfle, P.Pr(?)tre, et al.Second-order polarizabilities of nitropyridine derivativesderivatives determinedwithelectric-field-induced second-harmonic generation and a solvatochromic method: A comparative study.J.Appl.Phys, 1992, 71(4): 1594-1605
    [135]Immirizi A, Perini B.Prediction of density in organic crystals.Acta Crystallographica Section A, 1977, 33:216-218
    [136]Kuwabara Y, Ogawa H, Inada H, et al.Thermally stable multilayered organic electroluminescent devices using novel starburst molecules, 4,4',4"-tri(N-carbazolyl)triphenylamine(TCTA)and4,4',4"-tris(3-methylphenyl phenylamino) triphenylamine (m-MTDATA), as hole-transport materials.Adv.Mater., 1994,6:667-679
    [137]A.K.Dutta, K.Kamada, K.Ohta.Spectroscopic studies of nile red in organic solvents and polymers.J.Photochem.Photobiol.A 1996,93(16): 57-64
    [138]Shirota Y, Kobata T, Noma N.Starburst molecules for amorphous molecular materials.4,4',4"-Tris(N,N-diphenylamino)triphenylamine and 4,4',4"-Tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine.Chem.Lett.,1989,18(7):1145-1149
    [139]慈云详,贾欣.荧光量子效率的简化测量方法.分析化学.1986,14(8):616-617
    [140]Vlasta Bonacic-Koutecky, Josef Michl.Charge-transfer-biradical excited states: relation to anomalous fluorescence.“Negative” S1-T1 splitting in twisted aminoborane.J.Am.Chem.Soc., 1985, 107(6): 1765-1766
    [141]Nilmoni Sarkar, Kaustuv Das, Deb Narayan Nath, et al.Twisted charge transfer processes of nile red in homogeneous solutions and faujasite zeolite.Langmuir,1994, 10(1): 326-329
    [142]Atanu Barik, Manoj Kumbhakar, Sukhendu Nath, et al.Evidence for the TICT mediated nonradiative deexcitation process for the excited coumarin-1 dye in high polarity protic solvents Chemical Physics, 2005, 315(3): 277-285
    [143]Xuan Cao, Robert W.Tolbert, Jeanne L.McHale, et al.Theoretical study of solvent effects on the intramolecular charge transfer of a hemicyanine dye.J.PhysChem.A, 1998, 102(17): 2739-2748
    [144]Fulong Tang, Congshan Zhu, Fuxi Gan.Effect of solvent vapour on optical properties of Pr_4VOPc in polymethylmethacrylate.J.Appl.Phys.1995, 78(10):5884-5887
    [145]M.Kaholek, P.Hrdlovi (?),J.Barto (?).Singlet probes based on coumarin derivatives substituted in position 3; spectral properties in solution and polymer matrices.Polymer, 2000, 41(3): 991-1001
    [146]王光斌,干福熹,王建岗,等.偶氮染料掺杂高分子薄膜的荧光光谱特性.光学学报,2001, 21(4): 495-498
    [147]G.J.Lee, D.Kim, M.Lee.Photophysical properties and photoisomerization processes of methyl red embeded in rigid polymer.Appl.Opt., 1995, 34(1): 138-143
    [148]Wang G., Gan F., Wang J., et al..Spectroscopic investigations of a novel push-pull azo compound embedded in rigid polymer.Journal of Physics and Chemistry of Solids, 2002, 63(3): 501-506
    [149]曹阳.量子化学引论.北京:人民教育出版社,1980
    [150]胡容.光学薄膜折射率和厚度测试技术及研究.南京理工大学硕士学位论文,2004
    [151]C.D.Doyle.Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis.Analytical Chemistry, 1961,33: 77-79
    [152]B.N.Achar, G.W.Brindley, J.H.Sharp.Thermal decomposition kinetics of some new unsaturated polyesters.Proc.Int.Clay.Conf., 1966,(1):67-69
    [153]A.W.Coats, J.P.Redfern.Kinetic parameters from thermogravimetric data.Nature, 1694, 201:68-69
    [154]Singerkd Kingla.Relaxation phenomena in polymer nonlinear optical marerials.Journal of Applied Physics, 1991,70(6): 3251-3255
    [155]R.H.Page, M.C.Jurich, B.Reck, et al.Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films.Journal of the Optical Society of America B, 1990, 7(7): 1239-1250
    [156]M.A.Pauley, H.-W.Guan, C.H.Wang.Determination of first hyperpolarizability of nonlinear optical chromophores by second harmonic scattering using an external reference.The Journal of Chemical Physics, 1996, 104: 7821-7825
    [157]黄旭东,谢洪泉.带发色侧基的非线性光学聚合物的合成、极化和稳定性的研究,高分子材料科学与工程,1995, 11(5): 36-41
    [158]P.D.Maker, R.W.Terhune, M.Nisenoff, et al.Effects of dispersion and focusing on the production of optical harmonics Physical Review Letters, 1962, 8: 21-22
    [159]Z.H.Qin, C.S.Fang, Q.W.Pan, et al.Optical properties of NAEC-PMMA nonlinear polymeric thin film.J.Mater.Sci., 2002, 37:4849-4852
    [160]M.Amano, T.Kaino.Second-order nonlinearity of a novel diazo dye attached polymer.J.Appl.Phys., 1990,68: 6024-6027
    [161]Cao Shuguang, Zhao Chao, Cao Weixiao.Synthesis of diazoresin and its photocrosslinking reaction.Polymer International, 1998, 45(2): 142-146
    [162]Campbell Victoria E, Chiarelli Peter A, Kaur Sanjit, et al.Coadsorption of a polyanion and an azobenzene dye in self-assembled and spin-assembled polyelectrolyte multilayers.Chem.Mater., 2005, 17(1): 186-190
    [163]罗皡,陈金玉,罗国斌等.羧基负离子型聚电解质与重氮树脂的自组装及自组装膜的光和热反应.高分子学报,1999, 6(12): 770-773
    [164]R.T.Chen, P.S.Guilfoyle.Optoelectronic Interconnects and Packaging.SPIE.Bellingham, 1996, 62: 472-479
    [165]Hong Ma, Alex K.Y.Jen, Larry R.Dalton.Polymer-based optical waveguides:materials processing and devices, 2002, 14(19): 1339-1365
    [166]L.Eldada, Shacklette L W.Advances in polymer integrated optics.IEEE journal of selected topics in quantum electronics, 2000,6(1):54-68
    [167]R.A.Norwood, R.Blomquist, L.Eldada, et al.Polymer integrated optical devices for telecommunications applications.Proc.SPIE-Int.Soc.Opt.Eng.1998,3281:2-12
    [168]蔡伯荣,谭志飞,孙守瑶,等.集成光学.成都:电子科技大学出版社,1990
    [169]Siong-ku Kim, H.Zhang, D.H.Chang, et al.Electrooptic polymer modulators with an inverted-rib waveguide structure.Photonics Technology Letters, 2003,15(2): 218-220
    [170]黄龙旺,杨春生,丁桂甫.反应离子刻蚀PMMA的各向异性刻蚀研究.微细加工技术,2002, 4: 54-57
    [171]来五星,廖广兰,史铁林,等.反应离子刻蚀加工工艺技术的研究.半导体技术,2006, 31(6): 414-417
    [172]张国伟,鄂书林,邓文渊,等.聚合物阵列波导光栅的制作技术.发光学报,2006, 27(3): 413-416
    [173]M.Hochberg, T.Baehr-Jones, G.Wang, et al.Towards a millivolt optical modulator with nano-slot waveguides.Optics Express, 2007, 15(3): 8401-8410
    [174]Tom Baehr-Jones, Michael Hochberg, Chris Walker, et al.Analysis of tuning sensitivity of SOI optical ring resonatior.Journal of Lightwave Technology, 2005,23(12):4215-4221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700