用户名: 密码: 验证码:
纳米金属和荧光量子点复合体系的局域表面等离子体增强荧光的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属纳米颗粒的光学性质及其在表面增强荧光中的应用是当今纳米科学研究中的一个热点。为了克服金属胶体颗粒薄膜在荧光增强应用中存在的荧光湮灭的问题,本论文工作的中心是研究Au和Ag的金属胶体颗粒薄膜的形状,尺寸以及金属胶体颗粒薄膜和荧光量子点的复合方式对金属颗粒和荧光量子点复合体系的荧光增强的影响,进而探讨与此密切相关的表面等离子体共振引起的电磁场增强机理。
     在绪论中,对表面等离子体增强荧光的主要特点、研究进展和研究意义做了概述。
     在论文的第二章中,首先对Ⅱ-Ⅵ族荧光量子点的基本电子结构和光学优越性做了阐述。然后,从对金属纳米颗粒的光学性质,尤其是表面等离子体共振的近场增强特性的深刻分析出发,较全面地探讨了表面等离子体共振增强荧光的产生条件、影响因素、以及作用机理。
     在论文的第三章之后介绍了三个主要的工作:研究了生长条件对Ⅱ-Ⅵ族单一及核壳纳米颗粒的尺寸调控及光学性质的影响;研究了不同尺寸和形貌的Ag胶体纳米颗粒薄膜对表面等离子体共振荧光增强的影响;研究了纳米Au胶体颗粒以层状和分散方式和纳米CdSe荧光颗粒耦合导致的荧光增强和湮灭现象。这三个工作分别在第三、四、五章做介绍,其具体内容和创新性分别如下:
     1、通过反应时间(1s~300s)的调控实现了荧光量子点CdSe的尺寸和波长分别在1~5nm,500nm~620nm的精确调控。相应的,制备不同尺寸的CdSe,CdS,CdTe则可以实现整个可见光范围内的不同波长的按需要选择。研究还发现成核温度以及生长温度决定CdSe纳米颗粒的最大尺寸以及颗粒浓度,而表面活性剂的选择以及配比则影响了量子点生长势能,调控了颗粒的生长速度。此外,CdSe/CdS核壳纳米晶的制备及其光学性质研究也是本章中的一个重点。研究发现CdSe纳米核包裹不同壳层厚度(3.5(?)~21(?))的CdS壳层,可以实现CdSe量子效率的三倍的提高,以及发光峰的几十纳米的红移。同时,我们根据CdSe/CdS核壳纳米晶的拉曼散射随着壳层厚度的变化的研究,首次提出了采用拉曼散射无损测量CdSe/CdS核壳纳米颗粒的壳层厚度。
     2、通过Ag胶体颗粒自组装薄膜在不同的温度(200~350度)下退火30mins,实现了Ag胶体颗粒薄膜的形貌的一系列转变——从自组装而形成的无序、聚集以及形状不规整的状态,到蠕虫状的分散结构,再到有序的球形颗粒的均匀分布状态。对CdSe荧光量子点(分散在PMMA中,Ag/PMMA)在未退火以及退火得到的不同形貌的Ag纳米颗粒薄膜上的表面等离子共振荧光增强的研究是本章最重要的工作,也是本论文的创新工作。研究发现CdSe荧光量子点在未退火的Ag纳米颗粒薄膜上只能实现两倍的荧光增强,而在退火得到的蠕虫状纳米颗粒上则实现了高达15倍的增强。15倍的荧光增强是Ag胶体颗粒薄膜在荧光增强上的首次突破。研究还发现CdSe纳米颗粒和蠕虫状的Ag纳米颗粒薄膜耦合后,最大的激发峰位发生了从360nm移动到472nm,移动后的激发谱的形状和Ag纳米颗粒薄膜的吸收谱一致,这为表面等离子体共振荧光增强的机理提供了重要的实验依据。此外,本章还实现了不同形貌的Ag纳米颗粒薄膜的吸收峰在358nm~487nm范围内的调控,以及通过退火实现了Ag纳米颗粒薄膜的多个吸收峰的调制。
     3、研究并比较了Au纳米颗粒以层状方式(Au/PMMA,Au/SiO_2)以及分散方式(Au@SiO_2核壳纳米颗粒)和CdSe纳米晶复合后的荧光湮灭和增强现象。研究发现尺寸为27nm的Au胶体纳米颗粒薄膜以层状方式(Au/PMMA,Au/SiO_2)和CdSe荧光量子点复合后,荧光都被湮灭为原来的0.2~0.3倍。研究还发现发射波长为523nm,595nm的CdSe量子点和吸收波长为525nm的Au薄膜耦合后,都被湮灭了0.2倍,这说明了荧光共振能量转移只是荧光湮灭的因素之一。当Au纳米颗粒以Au@SiO_2核壳结构方式和CdSe纳米晶溶液混合后,荧光增强了1.7倍,并且荧光增强因子和混合比例有关。本章的研究为表面等离子体荧光增强在金属颗粒的尺寸以及耦合方式方面的最优化提供了实验依据。
The optical properties of noble metal nanoparticles(NPs) and their application in surface enhanced photoluminescence(PL) are hot in the study of nano science.The PL quenching has been often observed in the metal colloid films.To overcome this problem and have stable PL enhancement,the several factors on surface enhanced PL, including the shape and size of Au(Ag) nanoparticles(NPs),the coupling style between the metal NPs and fluorescent quantum dots(QDs) are studied in this thesis. Besides,the mechanism of the PL enhancement is also studied based on the enhanced electric magnetic local field,which is caused by surface plasmon resonance.
     In the introduction,the characterization,development and the application of the surface plsmon resonance(SPR) enhanced photoluminescence are demonstrated.
     In chapter 2,firstly,the electron structure and the superior optical properties ofⅡ-Ⅵsemiconductor nanocrystals are analyzed.Secondly,the optical properties of moble metal NPs,especially the properties of SPR,are studied deeply.Based on the above research,the condition,influences and mechanism of SPR enhanced PL are discussed thoroughly.
     The three major works are shown after chapter 3.The first work is the influences of the preparation on the size and optical properties of the bare QDs and core shell QDs.The second work is the influences of Ag colloid films with different shapes on SPR enhaced PL.Finally,the PL enhancement and quenching of nano Au/nano CdSe are studied,the NPs Au are coupling with the NCs CdSe by two modes(layer by layer and NPs dispersal).Factually,the mentioned three works are shown in chapters 3,4,5, respectively.The major works and the innovation in this thesis are shown following:
     1.The fluorescent QDs CdSe with the size 1~5nm and the emission 500nm~620nm are controlled accurately from the reaction time. Correspondingly,the QDs with emission at various obvious wavelengths can be obtained by preparing CdSe,CdS and CdTe with different sizes.And the research indicates that the final size and concentration of the QDs are decided by the nucleation and growth temperature.Besides,the choice and the ratio of the surfactant influence the potential energy of the growth,that is to say,the speed of the QDs growth can be tuned by the surfactant.The preparation and the optical properties of the core shell CdSe/CdS are major works in this chapter.The emission intensity of CdSe QDs is observed enhanced by 3 times,as the CdSe QDs are coated by CdS shell with different thickness.Meanwhile,the Raman spectroscopy is first proposed to determine the shell thickness according to the research of the change of raman scattering of CdSe/CdS with the shell thickness.
     2.The morphology of silver colloids evolves from a complex mixture of nanoparticles and nanowires to worm-like nanostructure,and finally to quasi-nanospheres by the annealing of Ag colloid films at different temperatures (200~350℃).The PL enhancements of CdSe QDs dispersed in PMMA on the Ag colloid film with different morphologies,including the as-grown and the annealed Ag colloid films,are the most important research in this chapter,which is also the creative work in this thesis.The PL enhancement factors of CdSe QDs on the as-grown and worm-like Ag colloids film are 2 and 15,respectively.The enhancement factor 15 is first obtained on the metal colloid film,as far as we known.After the CdSe QDs couples with the Ag colloids film,the maximum excitation of CdSe emission shifts from 360nm(on bare glass) to 472 nm(on silver colloids) agreed with the longitudinal dipole mode of silver colloids.This provides a good support to the mechanism of the SPR coupling.Besides,the absorption of silver colloid film is controlled in 358nm~487nm by annealing, meanwhile,the silver colloid films is shown several absorption peaks by tuning the morphologies.
     3.The nano Au are coupling with nano CdSe in two methods,including layers and dispersal.The PL enhancement and quenching are observed in the two coupling methods.The results indicate that the PL intensity of CdSe QDs is quenched about 02~0.3 times when deposited on the layer of Au/PMMA or Au/SiO_2 compound film with 27nm in Au diameter.What's more,the PL intensity of CdSe QDs with emission wavelengths at 523nm and 595nm are both quenched at about 0.2 times when deposited on the Au film with absorbance peak on 525nm.This proves that is not the the PL quenching is not only induced by fluorescence resonance energy transfer(FRET).As the Au NPs dispersed in the CdSe QDs solutions with Au@ SiO_ 2 structures,however,the PL intensity of the CdSe QDs is enhanced 1.7.The result also shows that the enhancement factor is related to the combination ratio.The research in this chapter is benefit for the optimization of the size and coupling of the metal NPs in SPR enhanced PL.
引文
[1]Zayats,A.V.;Smolyaninov,I.I.Journal of Optics a-Pure and Applied Optics 2003,5,S16.
    [2]Lakowicz,J.R.Plasmonics 2006,1,5.
    [3]Ozbay,E.Science 2006,311,189.
    [4]Zhang,J.T.;Li,X.L.;Sun,X.M.;Li,Y.D.Journal of Physical Chemistry B 2005,109,12544.
    [5]Aslan,K.;Leonenko,Z.;Lakowiez,J.R.;Geddes,C.D.Journal of Fluorescence 2005,15,643.
    [6]Pons,T.;Medintz,I.L.;Sapsford,K.E.;Higashiya,S.;Grimes,A.F.;English,D.S.;Mattoussi,H.Nano Letters 2007,7,3157.
    [7]Okamoto,K.;Niki,I.;Scherer,A.;Narukawa,Y.;Mukai,T.;Kawakami,Y.Applied Physics Letters 2005,87.
    [8]Lepage,D.;Dubowski,J.J.Applied Physics Letters 2007,91.
    [9]Yeh,D.M.;Huang,C.F.;Chen,C.Y.;Lu,Y.C.;Yanga,C.C.Applied Physics Letters 2007,91.
    [10]Fort,E.;Gresillon,S.Journal of Physics D-Applied Physics 2008,41.
    [11]Pompa,P.P.;Martiradonna,L.;Della Torre,A.;Della Sala,F.;Manna,L.;De Vittorio,M.;Calabi,F.;Cingolani,R.;Rinaldi,R.Nature Nanotechnology 2006,1,126.
    [12]Song,J.H.;Atay,T.;Shi,S.F.;Urabe,H.;Nurmikko,A.V.Nano Letters 2005,5,1557.
    [13]Soganci,I.M.;Nizamoglu,S.;Mutlugun,E.;Akin,O.;Demir,H.V.Optics Express 2007,15,14289.
    [14]Kulakovieh,O.;Strekal,N.;Yaroshevieh,A.;Maskevich,S.;Gaponenko,S.;Nabiev,I.;Woggon,U.;Artemyev,M.Nano Letters 2002,2,1449.
    [15]Komarala,V.K.;Rakovieh,Y.P.;Bradley,A.L.;Byrne,S.J.;Gun'ko,Y.K.;Gaponik,N.;Eychmuller,A.Applied Physics Letters 2006,89.253118.
    [16]Biteen,J.S.;Pacifici,D.;Lewis,N.S.;Atwater,H.A.Nano Letters 2005,5,2116.
    [17]Chen,Y.;Munechika,K.;Plante,I.J.L.;Munro,A.M.;Skrabalak,S.E.;Xia,Y.;Ginger,D.S.Applied Physics Letters 2008,93.053106.
    [18]Matsumoto,Y.;Kanemoto,R.;Itoh,T.;Nakanishi,S.;Ishikawa,M.;Biju,V.Journal of Physical Chemistry C 2008,112,1345.
    [19]Ito,Y.;Matsuda,K.;Kanemitsu,Y.Physical Review B 2007,75.033309
    [20]Lakowicz J R.Anal.Biochem.2001,298,1.
    [21]Lakowicz J R,Shen Y B,D'Auria S,et al.Anal.Biochem.2002,301,261.
    [22]Lakowicz J R.Anal.Biochem.2004,324,153.
    [23]Gryczynski I,Malicka J,Gryczynski Z,et al.Anal.Biochem.2004,324,170.
    [24]Lakowicz J R.Anal.Biochem.2005,337,171.
    [25]Vigny P,Favre A.Photochem.Photobiol.1974,20,345.
    [26]Vigny P,Favre A.Photochem.Photobiol.1975,22,288.
    [27]Lakowicz J R,Shen B,Gryczysnki Z,et al.Biochem.Biophys.Res.Commun.2001,286,875.
    [28]Asian K,Huang J,Wilson G M,et al.J.Am.Chem.Soc.2006,128,4206.
    [29]Zhang J,Lakowicz J R.J.Phys.Chem.B 2006,110,2387.
    [30]Malicka J,Gryczynski I,Lakowicz J R.Biochem.Biophys.Res.Commun.2003,306,213.
    [31]Geddes C D,Parfenov A,Gryczynski I,Lakowicz J R.J.Phys.Chem.B 2003,107,9989.
    [32]Lakowicz J R.Principles of Fluorescence Spectroscopy,2nd ed.New York:Kluwer Academic 1999,368.
    [33]Kawski A.Photochem.Photobiol.1983,38,487.
    [34]Malicka J,Gryczynski I,Lakowicz J R.Anal.Chem.2003,75,4408.
    [35]Lakowicz J R,Malicka J,D'Auria S,et al.Anal.Biochem.2003,320,13.
    [36]Lakowicz J R,Malicka J,Gryczynski I,et al.Biopolymers 2004,74,467
    [37]Malicka J,Gryczynski I,Geddes C D,et al.J.Biomed.Opt.2003,8,472.
    [38]Selvin P R,Rana TM,Hearst J E.J.Am.Chem.Soc.1994,116,6029.
    [39]Mathis G.Clin.Chem.1993,39,1953.
    [40]Gryczynski I,Malicka J,Gryczynski Z,et al.J.Fluoresc.2002,12,131.
    [41]Gersten J,Nitzan A.Chem.Phys.Lett.1984,104,31.
    [42]Malicka J,Gryczynski I,Kusba I,et al.Biopolymers 2003,70,595.
    [43]Malicka J,Gryczynski I,Fang J Y,et al.Anal.Biochem.2003,315,160.
    [44]Aslan K,Lakowicz J R,Szmacinski H,et al.J.Fluoresc.2005,15,37.
    [45]Soper S A,Nutter H L,Keller R A,et al.Photochem.Photobiol.1993,57,972.
    [46]Zhang J,Gryczynski Z,Lakowicz J R.Chem.Phys.Lett.2004,393,483.
    [47]Kim,B.H.;Cho,C.H.;Mun,J.S.;Kwon,M.K.;Park,T.Y.;Kim,J.S.;Byeon,C.C.;Lee,J.;Park,S.J.Advanced Materials 2008,20,3100.
    [48]Schaadt,D.M.;Feng,B.;Yu,E.T.Applied Physics Letters 2005,86.063106.
    [1]Artemyev,M.V.W.;U.;W annemacher,R.;Ja schinski,H.;L angbein,W.,Nano.Lett.2001,1,309
    [2]Bruchez,M.M.,M.;Gin,P.;Weiss,S.;Alivisatos,A.P.,Science 1998,281,2013.
    [3]Chan,W C.W N.;S.M.,Science 1998,281,2016.
    [4]Colvin,V.L.S.;Alivisatos,A.P.,Nature 1994,370,354.
    [5]Han,M.Y.G,X.H.;Su,J.Z.;N ie,S.M.,N at.Biotechnol.2001,19,631.
    [6]Klimov,V.1.M.,A.A.;X u,S.;M alko,A.;H ollingsworth,J.A.;L eatherdale,C.A.;E isler,H.JBawendi,M.G.,Science 2000,290,314.
    [7]Tessler,N.M V;Kazes,M.;K an,S.H.;B anin,U.,Science 2002,295,1506.
    [8]Lakowicz,J.R.;Shen,Y.B.;D'Auria,S.;Malicka,J.;Fang,J.Y.;Gryczynski,Z.;Gryczynski,I.Anal.Biochem.2002,301,261.
    [9]Brolo,A.G.;Kwok,S.C.;Cooper,M.D.;Moffitt,M.G.;Wang,C.W.;Gordon,R.;Riordon,J.;Kavanagh,K.L.J Phys.Chem.B 2006,110,8307.
    [10]Matsumoto,Y.;Kanemoto,R.;Itoh,T.;Nakanishi,S.;Ishikawa,M.;Biju,V.J.Phys.Chem.C 2008,112,1345.
    [11]Corrigan,T.D.;Guo,S.H.;Szmacinski,H.;Phaneuf,R.J.Appl.Phys.Lett.2006,88.101112.
    [12]Kulakovich,O.;Strekal,N.;Yaroshevich,A.;Maskevich,S.;Gaponenko,S.;Nabiev,I.;Woggon,U.;Artemyev,M.Nano Lett.2002,2,1449.
    [13]Komarala,V.K.;Rakovich,Y.P.;Bradley,A.L.;Byrne,S.J.;Gun'ko,Y.K.;Gaponik,N.;Eychmuller,A.Appl.Phys.Lett.2006,89.253118.
    [14]Tovmachenko,O.G.;Graf,C.;van den Heuvel,D.J.;van Blaaderen,A.;Gerritsen,H.C.Adv.Mater,2006,18,91.
    [15]Ito,Y.;Matsuda,K.;Kanemitsu,Y.Phys.Rev.B 2007,75.033309.
    [16]Chen,Y.;Munechika,K.;Plante,I.J.L.;Munro,A.M.;Skrabalak,S.E.;Xia,Y.;Ginger,D.S.Appl.Phys.Lett.2008,93.053106.
    [17]Selvin P R,Rana TM,Hearst J E.J.Am.Chem.Soc.1994,116,6029.
    [18]Soper S A,Nutter H L,Keller R A,et al.Photochem.Photobiol.1993,57,972.
    [19]Malicka J,Gryczynski I,Fang J Y,et al.Anal.Biochem.2003,315,160.
    [20]Rossetti,R.,J chem.Phys.1983,79,1086.
    [21]Kawabata,R.K.,Annu.Rev.Mater.Sci.1984,14,49.
    [22]Halperin,W.P.,Rev,Modern Phys.1986,58,532.
    [23]Ball,P.;Garwin,L.,Nature 1992,355,761.
    [24]Gritsenko,V.A.;P.A.,Sov.Phys.Sol.Stat.1983,25,901.
    [25]Bollman,W.,PhiIos,Mag.1988,A57,637.
    [26]张立德,科学 1993,45,13.
    [27]张立德,眸季美,物理,1992,21,167.
    [28]张立德,眸季美,纳米材料和纳米结构,2000,P51-67
    [29]Tinkham,A.E.Phys.Rev.B 1991,44,5919
    [30]Black,C.T.;M.T.T.;Tinkham.M.,Phys.Rev.B 1994,50,7888.
    [31]L i,J.B.X.,J.B.,Phys.Rev.B 2000,61,15880.
    [32]K limov,V I.,J.Phvs.Chem.2000,104,6112.
    [33]Ekimov,A.L.E,A.L.,J.Opt.Soc.Am.B.1993,10,100.
    [34]Xia,J.B.,Phys.Rev.B.1989,40,8500.
    [35]Yu,W.W.;Qu,L.H.;Guo,W.Z.;Peng,X.G.Chem.Mater 2003,15,2854.
    [36]Nirmal,M.N.,D.J.;Kuno,M.;Bawendi,M.G,Phys.Rev.Left.1995,13,3728.
    [37]A V Baranov,Y P Rakovich,J F Donegan,T S Perova,R A Moore,D V Talapin,A L Rogach,Y Masumoto and I Nabiev.Phys Rev B,2003,68,165306.
    [38]A Singha,B Satpati,P V Statyam and A Roy.JPhys:Condens Matter,2005,17,5697.
    [39]V M Dzhagan,M Y Valakh,A E Raevskaya,A L Stroyuk,S Y Kuchmiy and D R T Zahn.Nanotechnology,2007,18,285701.
    [40]R.W.Meulenberg,T.Jennings and G.F.Strouse.Phys.Rev.B 2004,70,235311.
    [41]I.H.Campbell and P.M.Fauchet,Solid State Commun.1986,58,739:P.M.Fauchet and I.H.Campbell Crit.Rev.Solid.State.Mater.Sci.1988,14,S79.
    [42]P Verma,L Gupta,S C Abbi and KP Jain.J Appl Phys,2000,88,4109.
    [43]Lee,K.H.;Chen,I.G.J.Elect.Soc.2009,156,K59.
    [44]Margueron,S.H.;Bourson,P.;Gautier,S.;Soltani,A.;Troadec,D.;De Jaeger,J.C.;Sirenko,A.A.;Ougazzaden,A.J.Cryst.Grow.2008,310,5321.
    [45]Tsuru,T.;Sakai,K.;Ma,M.Y.;Ogawa,T.J.J..Appl.Phys.Part 2000,39,5977.
    [46]Barnes,W.L.;Dereux,A.;Ebbesen,T.W.Nature 2003,424,824.
    [47]Zayats,A.V.;Smolyaninov,I.I,Journal of Optics a-Pure and Applied Optics 2003,5,S16.
    [48]Hutter,E.;Fendler,J.H.Adv.Mater.2004,16,1685.
    [49]Mie G.,Ann.Phys.1908,25,377
    [50]Link S.,El-Sayed M.A.,J.Phys.Chem.B 1999,103,8410
    [51]Kelly,K.L.;Coronado,E.;Zhao,L.L.;Schatz,G.C.J.Phys.Chem.B 2003,107,668.
    [52]Noguez,C.J.Phys.Chem.C 2007,111,3806.
    [53]Schwartzberg,A.M.;Zhang,J.Z.J.Phys.Chem.C 2008,112,10323.
    [54]Li,X.Y.,Journal of zhangzhou normal university 2007,56,62.;Deng,Y.Thesis on'Local field enhanced third-order nonlinear optical properties and all-optical modulation of metal composite nanostructures'
    [55]Atay,T.;Song,J.H.;Nurmikko,A.V.Nano Letters 2004,4,1627.
    [56]Yang,Y.;Nogami,M.;Shi,J.L.;Chen,H.R.;Ma,G.H.;Tang,S.H.Appl,Phys.Lett.2006,88.
    [57]Yang,Y.;Matsubara,S.;Nogami,M.;Shi,J.L.;Huang,W.M.Nanotechnology 2006,17,2821.
    [58]Twersky V.,Proc.Symp.Appl.Math 1964,16,84
    [59]Ishimaru A.,Wave Propagation and Scattering in Random Media.New York:Academic,1978
    [60]Shalaev V M.,Nonlinear Optics of Random Media.Berlin:Springer,2000
    [61]Chen,H.J.;Kou,X.S.;Yang,Z.;Ni,W.H.;Wang,J.F.Langmuir 2008,24,5233.
    [62]Ports,T.;Medintz,I.L.;Sapsford,K.E.;Higashiya,S.;Grimes,A.F.;English,D.S.;Mattoussi,H.Nano Letters 2007,7,3157.
    [63]Asian,K.;Leonenko,Z.;Lakowicz,J.R.;Geddes,C.D.Journal of Fluorescence 2005,15,643.
    [64]Pompa,P.P.;Martiradonna,L.;Della Torre,A.;Della Sala,F.;Manna,L.;De Vittorio,M.;Calabi,F.;Cingolani,R.;Rinaldi,R.Nat.Nanotechnology 2006,1,126.
    [65]Shimizu,K.T.;Woo,W.K.;Fisher,B.R.;Eisler,H.J.;Bawendi,M.G.Phys.Rev.Lett.2002,89.117401
    [66]Lin,H.Y.;Chert,Y.F.;Wu,J.G.;Wang,D.I.;Chen,C.C.Appl.Phys.Lett.2006,88.161911.
    [67]Hsieh,Y.P.;Liang,C.T.;Chen,Y.F.;Lai,C.W.;Chou,P.T.Nanotechnology 2007,18.415707.
    [68]Kamat,P.V.;Shanghavi,B.J.Phys.Chem.B 1997,101,7675.
    [69]Ma,G.H.;He,J.;Rajiv,K.;Tang,S.H.;Yang,Y.;Nogami,M.Appl.Phys.Lett.2004,84,4684.
    [1]X Y Wang,L H Qu,J Y Zhang,X G Peng and M Xiao.Nano Lett,2003,3,1103.
    [2]J S Steckel,J P Zimmer,S C Sullivan,N E Stott,V Bulovic and M G Bawendi.Angew Chem Int Ed,2004,43,2154.
    [3]J J Li,Y A Wang,W Z Guo,J C Keay,T D Mishima,M B Johnson and X G Peng.J Am Chem Soc,2003,125,12567.
    [4]B O Dabbousi,J R Viejo,F V Mikulec,J R Heine,H Mattoussi,R Ober,K F Jensen and M G Bawendi.J Phys Chem B,1997,101,9463.
    [5]I Mekis,D V Talapin,A Komowski,M Haase and H Weller.J Phys Chem B,2003,102,7454.
    [6]Yu M Azhniuk,A G Milekhin,A V Gomormai,V V Lopushansky,V O Yukhymchuk,S schulze,E I Zenkevich and D R T Zahn.JPhys:Condens Matter,2004,16,9069.
    [7]G Scamarcio,M Lugara and D Manno.Phys Rev B,1992,45,13792.
    [8]G Gouadec and P Colomban.Progress in Crystal Growth and Characterization of Materials,2007,53,1.
    [9]A V Baranov,Y P Rakovich,J F Donegan,T S Perova,R A Moore,D V Talapin,A L Rogach,Y Masumoto and I Nabiev.Phys Rev B,2003,68,165306.
    [10]A Singha,B Satpati,P V Statyam and A Roy.J Phys:Condens Matter,2005,17,5697.
    [11]V M Dzhagan,M Y Valakh,A E Raevskaya,A L Stroyuk,S Y Kuchmiy and D R T Zahn.Nanotechnology,2007,18,285701.
    [12]A.Aharoni,T.Mokari,I.Popov and U.Banin.J.Am,Chem.Soc.2006,128,257.
    [13]B O Dabbousi,J R Viejo,F V Mikulec,J R Heine,H Mattoussi,R Ober,K F Jensen and M G Bawendi.J Phys Chem B,1997,101,9463..
    [14]L.Hyeokjin,P.H.Holloway,H.Wang.J.Chem.Phys 2006,125,164711
    [15]B.Schreder,T.Schmidt,V.Ptatschek,L.Spanhel,A.Materny,W.Kiefer.J.Crystal.Growth 2000,214,782.
    [16]A Ingale and K C Rustagi.Phys Rev B,1998,58,7197.
    [17]R.W.Meulenberg,T.Jennings and G.F.Strouse.Phys.Rev.B 2004,70,235311.
    [18]I.H.Campbell and P.M.Fauchet,Solid State Commun 1986,58,739;P.M.Fauchet and I.H.Campbell Crit.Rev.Solid.State.Mater.Sci.1988,14,S79.
    [19]P Verma,L Gupta,S C Abbi and KP Jain.J Appl Phys,2000,88,4109.
    [20]T Bischof,M Ivanda,G Lermann,A Materny and W Kiefer.J.Raman Spectroscopy,1996,27,297.
    [21]A Roy and A K Sood.Phys Rev B,1996,53,12127.
    [22]J Leng,Y Qian,P Chen and A Madhukar.Solid State Commun,1989,69,311.
    [23]O Brafman and R Manor.Phys Rev B,1995,51,6940.
    [24]D J Olego,P M Raeeah and J P Faurie.Phys Rev B,1986,33,3819.
    [25]A V Gomonnai,Y M Azhniuk,VO Yukhymchuk,M Kranjcec and V V Lopushansky.Phys Status Solidi B-Basic Research,2003,239,490.
    [26]C Trallero-Giner,A Debernardi,M Cardona,E Menendez-Proupin and A I Ekimov.Phys Rev B,1998,5,4664.
    [27]M I Vasilevskiy,A G Rolo,and M J M Gomes.Solid State Commun,1997,104,381.
    [28]F Comas,C Trallero-Giner,N Studart and G E Marques.Phys Rev B,2002,65,073303-.
    [29]F Comas and C Trallero-Giner.Phys Rev B,2003,67,115301.
    [30]M C Klein,F Hache,D Ricard and C Flytzanis.Phys Rev B,1990,42,11123.
    [1]Liu,Y.S.;Sun,Y.H.;Vernier,P.T.;Liang,C.H.;Chong,S.Y.C.;Gundersen,M.A.J.Phys.Chem.C 2007,111,2872.
    [2]Willard,D.M.;Van Orden,A.Nat.Mater.2003,2,575.
    [3]Biju,V.;Itoh,T.;Anas,A.;Sujith,A.;Ishikawa,M.Anal Bioanal.Chem.2008,391,2469.
    [4]Bruchez,M.;Moronne,M.;Gin,P.;Weiss,S.;Alivisatos,A.P.Science 1998,281,2013.
    (5) Klein,D.L.;Roth,R.;Lim,A.K.L.;Alivisatos,A.P.;McEuen,P.L.Nature 1997,389,699.
    [6]Choudhury,K.R.;Sahoo,Y.;Ohulchanskyy,T.Y.;Prasad,P.N.Appl.Phys.Lett.2005,87,073110.
    [7]Lakowicz,J.R.;Shen,Y.B.;D'Auria,S.;Malieka,J.;Fang,J.Y.;Gryczynski,Z.;Gryczynski,I.Anal Biochem.2002,301,261.
    [8]Brolo,A.G.;Kwok,S.C.;Cooper,M.D.;Moffitt,M.G.;Wang,C.W.;Gordon,R.;Riordon,J.;Kavanagh,K.L.J.Phys.Chem.B 2006,110,8307.
    [9]Matsumoto,Y.;Kanemoto,R.;Itoh,T.;Nakanishi,S.;Ishikawa,M.;Biju,V.J.Phys.Chem.C 2008,112,1345.
    [10]Ozbay,E.Science 2006,331,189.
    [11]Maier,S.A.;Kik,P.G.;Atwater,H.A.;Meltzer,S.;Harel,E.;Koel,B.E.;Requicha,A.A.G.Nat.Mat.2003,2,229.
    [12]Maier,S.A.;Atwater,H.A.J.Appl.Phys.2005,98,011101.
    [13]Zhang,J.T.;Li,X.L.;Sun,X.M.;Li,Y.D.J.Phys.Chem.B 2005,109,12544.
    [14]Itoh,T.;Kikkawa,Y.;Biju,V.;Ishikawa,M.;Ikehata,A.;Ozaki,Y.J.Phys.Chem.B 2006,110,21536.
    [15]Au,L.;Lu,X.M.;Xia,Y.N.Adv.Mater.2008,20,2517.
    [16]Sun,Y.G.;Xia,Y.N.Science 2002,298,2176.
    [17]Jana,N.R.;Gearheart,L.;Murphy,C.J.Chem.Comm.2001,617.
    [18]Chang,G.;Zhang,J.D.;Oyama,M.;Hirao,K.J.Phys.Chem.B 2005,109,1204.
    [19]Ni,C.Y.;Hassan,P.A.;Kaler,E.W.Langmuir 2005,21,3334.
    [20]Sun,Y.G.;Yin,Y.D.;Mayers,B.T.;Herricks,T.;Xia,Y.N.Chem.Mat.2002,14,4736.
    [21]Choi,J.;Sauer,G.;Nielsch,K.;Wehrspohn,R.B.;Gosele,U.Chem.Mat.2003,15,776.
    [22]Sauer,G.;Brehm,G.;Schneider,S.;Nielsch,K.;Wehrspohn,R.B.;Choi,J.;Hofmeister,H.;Gosele,U.J.Appl.Phys.2002,91,3243.
    [23]Malinsky,M.D.;Kelly,K.L.;Schatz,G.C.;Van Duyne,R.P.J.Phys.Chem.B 2001,105,2343.
    [24]Xue,C.;Metraux,G.S.;Millstone,J.E.;Mirkin,C.A.J.Am.Chem.Soc.2008,130,8337.
    [25]Sun,Y.G.;Mayers,B.;Xia,Y.N.Nano Lett.2003,3,675.
    [26]Mock,J.J.;Barbic,M.;Smith,D.R.;Schultz,D.A.;Schultz,S.J.Chem.Phys.2002,116,6755.
    [27]Moon,K.S.;Dong,H.;Maric,R.;Pothukuchi,S.;Hunt,A.;Li,Y.;Wong,C.P.J.Electron.Mater 2005,34,168.
    [28]Zhao,Y.L.;Fan,G.;Wang,Z.B.;Ming,H.;Xu,X.L.Acta Phys.Sin.2007,56,3564.
    [29]Kaempfe,M.;Hofmeister,H.;Hopfe,S.;Seifert,G.;Graener,H.J.Phys.Chem.B 2000,104,11847.
    [30]Simakin,A.V.;Voronov,V.V.;Shafeev,G.A.;Brayner,R.;Bozon-Verduraz,F.Chem.Phys.Lett.2001,348,182.
    [31]Bi,H.J.;Cai,W.P.;Zhang,L.D.;Martin,D.;Trager,F.Appl.Phys.Lett.2002,81,5222.
    [32]De,G.;Gusso,M.;Tapfer,L.;Catalano,M.;Gonella,F.;Mattei,G.;Mazzoldi,P.;Battaglin,G.J.Appl.Phys.1996,80,6734.
    [33]Li,W.Y.;Seal,S.;Megan,E.;Ramsdell,J.;Scammon,K.;Lelong,G.;Lachal,L.;Richardson,K.A.J.Appl.Phys.2003,93,9553.
    [34]Roiz,J.;Oliver,A.;Munoz,E.;Rodriguez-Fernandez,L.;Hernandez,J.M.;Cheang-Wong,J.C.J.Appl.Phys.2004,95,1783.
    [35]Castro,T.;Reifenberger,R.;Choi,E.;Andres,R.P.Phys.Rev.B 1990,42,8548.
    [36]Phillpot,S.R.;Lutsko,J.F.;Wolf,D.;Yip,S.Phys.Rev.B 1989,40,2831.
    [37]Zhang,Z.Y.;Zhao,Y.P.J.Appl.Phys.2007,102.5222.
    [38]Kelly,K.L.;Coronado,E.;Zhao,L.L.;Schatz,G.C.J.Phys.Chem.B 2003,107,668.
    [39]Schwartzberg,A.M.;Zhang,J.Z.J..Phys.Chem.C 2008,112,10323.
    [40]Corrigan,T.D.;Guo,S.H.;Szmacinski,H.;Phaneuf,R.J.Appl.Phys.Lett.2006,88.101112.
    [41]Kulakovich,O.;Strekal,N.;Yaroshevich,A.;Maskevich,S.;Gaponenko,S.;Nabiev,I.;Woggon,U.;Artemyev,M.Nano Lett.2002,2,1449.
    [42]Komarala,V.K.;Rakovich,Y.P.;Bradley,A.L.;Byrne,S.J.;Gun'ko,Y.K.;Gaponik,N.;Eychmuller,A.Appl.Phys.Lett.2006,89.253118.
    [43]Tovmachenko,O.G.;Graf,C.;van den Heuvel,D.J.;van Blaaderen,A.;Gerritsen,H.C.Adv.Mater.2006,18,91.
    [44]Pons,T.;Medintz,I.L.;Sapsford,K.E.;Higashiya,S.;Grimes,A.F.;English,D.S.;Mattoussi,H.Nano Lett.2007,7,3157.
    [45]Nikoobakht,B.;Burda,C.;Braun,M.;Hun,M.;E1-Sayed,M.A.Photochem.Photobiol.2002,75,591.
    [46]Ito,Y.;Matsuda,K.;Kanemitsu,Y.Phys.Rev.B 2007,75.033309.
    [47]Chen,Y.;Munechika,K.;Plante,I.J.L.;Munro,A.M.;Skrabalak,S.E.;Xia,Y.;Ginger,D.S.Appl.Phys.Lett.2008,93.053106.
    [48]Lu,K.;Jin,Z.H.Current Opinion in Solid State & Materials Scie.2001,5,39.
    [49]Nanda,K.K.;Sahu,S.N.;Behera,S.N.Phys.Rev.A 2002,66.013208
    [50]Lai,S.L.;Guo,J.Y.;Petrova,V.;Ramanath,G.;Allen,L.H.Phys.Rev.Lett.1996,77,99.
    [51]Yang,Y.;Matsubara,S.;Nogami,M.;Shi,J.L.;Huang,W.M.Nanotechnology 2006,17,2821.
    [52]Maillard,M.;Huang,P.R.;Brus,L.Nano Lett.2003,3,1611.
    [53]Shimizu,K.T.;Woo,W.K.;Fisher,B.R.;Eisler,H.J.;Bawendi,M.G.Phys.Rev.Lett.2002,89.117401.
    [54]Gonzalez,A.L.;Reyes-Esqueda,J.A.;Noguez,C.J.Phys.Chem.C 2008,112,7356.
    [55]P.P.Pompa,L.Martiradonna,D.A.Torre,D.F.Sala,L.Manna and M.De Vittorio;Calabi,F.;Cingolani,R.;Rinaldi,R.Nat.Nanotech.2006,1,126.
    [56]Yang,Y.;Nogami,M.;Shi,J.L.;Chen,H.R.;Ma,G.H.;Tang,S.H.Appl.Phys.Lett.2006,88,081110.
    [1]Anon,Chem.& Engi.News 2000,78,34.
    [2]Corti,C.W.;Holliday,R.J.Gold Bulletin 2004,37,20.
    [3]Sun,Y.G.;Khang,D.Y.;Hua,F.;Hurley,K.;Nuzzo,R.G.;Rogers,J.A.Adv.Func.Mater.2005,15,30.
    [4]Hsieh,Y.P.;Liang,C.T.;Chen,Y.F.;Lai,C.W.;Chou,P.T.Nanotechnology 2007,18.
    [5]Kulakovich,O.;Strekal,N.;Yaroshevich,A.;Maskevich,S.;Gaponenko,S.;Nabiev,I.;Woggon,U.;Artemyev,M.Nano Lett.2002,2,1449.
    [6]Komarala,V.K.;Rakovich,Y.P.;Bradley,A.L.;Byrne,S.J.;Gun'ko,Y.K.;Gaponik,N.;Eychmuller,A.Appl.Phys.Lett.2006,89.
    [7]Ito,Y.;Matsuda,K.;Kanemitsu,Y.Phys.Rev.B 2007,75.033309.
    [8]Chen,Y.;Munechika,K.;Plante,I.J.L.;Munro,A.M.;Skrabalak,S.E.;Xia,Y.;Ginger,D.S.Appl.Phys.Lett.2008,93.053106.
    [9]Matsumoto,Y.;Kanemoto,R.;Itoh,T.;Nakanishi,S.;Ishikawa,M.;Biju,V.J.Phys.Chem.C 2008,112,1345.
    [10]Kelly,K.L.;Coronado,E.;Zhao,L.L.;Schatz,G.C.J.Phys.Chem.B 2003,107,668.
    [11]Fan,H.Y.;Wright,A.;Gabaldon,J.;Rodriguez,A.;Brinker,C.J.;Jiang,Y.B.Adv.Fun.Mater.2006,16,891.
    [12]Maye,M.M.;Zheng,W.X.;Leibowitz,F.L.;Ly,N.K.;Zhong,C.J.Langmuir 2000,16,490.
    [13]Qi,Y.;Chen,M.;Liang,S.;Yang,W.;Zhao,J.Appl.Surf.Sci.2008,254,1684.
    [14]Jana,N.R.;Gearheart,L.;Murphy,C.J.J.Phys.Chem.B 2001,105,4065.
    [15]Nikhil R.Jana,Latha Gearheart,Catherine J.Murphy;Langmuir 2001,17,6782.
    [16]Marc R.Knecht,David W.Wright;Chem.Mater.2004,16,4890.
    [17]Simon R.Hall,Sean A.Davis,Stephen Mann;Langmuir 2000,16,1454.
    [18]Nanguo Liu,Bradley S.Prall,Victor l.Klimov;J.Am.Chem.Soc.2006,128,15362.
    [19]St(o|¨)ber W,Fink A.J.Colloid Interface Sci.,1968,26:62
    [20]Yu Lu,Yadong Yin,Zhiyuan Li,Younan Xia,Nano Lett.2002,2,785.
    [21]LizMarzan,L.M.;Giersig,M.;Mulvaney,P.Langmuir 1996,12,4329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700