用户名: 密码: 验证码:
川西亚高山红桦—岷江冷杉天然次生林的空间格局分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林群落的空间格局是种群自身特性、种间关系及环境条件综合作用的结果。研究森林群落的种群空间格局可以预测森林群落演替变化趋势,为退化生态系统恢复和森林生态系统的可持续经营提供理论指导。川西亚高山地区的暗针叶林具有重要的生态、社会和经济价值,然而过度的森林采伐和不合理的土地利用导致了原始森林大面积减少,形成广泛分布、处于不同恢复阶段的天然次生林。由原始林破坏后发展起来的天然次生林已成为川西地区的主要森林景观。以往我们主要关注川西亚高山的原始林,而对这些人为干扰后的退化森林植被了解甚少。本研究在川西米亚罗地区海拔3300 m的阴坡,选择4 ha红桦-岷江冷杉天然次生林样地(N31°42′18.4″,E102°44′03.7″),进行了群落学调查和优势树种个体空间定位调查,主要采用了点格局分析法(包括Ripley’s L-函数和O-ring统计的O-函数),研究了:(1)群落结构和物种组成特征;(2)岷江冷杉种群的空间分布格局和种内关联;(3)岷江冷杉天然更新的影响因子;(4)优势树种的种间竞争;(5)采伐后的保留木效应。本研究的目的是探讨天然次生林自然恢复的驱动力机制,为川西亚高山暗针叶林的保育和恢复提供科学依据。主要研究结果如下:
     (1)红桦和岷江冷杉为红桦-岷江冷杉天然次生林群落的优势种,红桦的胸高断面积占49.0%,岷江冷杉占28.9%。红桦种群径级分布呈现单峰型,为演替的衰退种群。岷江冷杉种群径级分布呈倒“J”型,为演替的进展种群。点分布图表明优势种不同径级其空间分布也不同,但都表现出一定的聚集性和空间异质性。
     (2)岷江冷杉种群呈聚集分布,其各径级大多呈聚集分布。随着尺度增大聚集强度先增大后减小,趋于随机分布,存在过渡到随机分布的特定尺度:小树:63 m,中树在87 m。各径级间在小尺度范围内正关联较强,随尺度增大,空间关联趋于零,在所有尺度上都未出现负关联,说明岷江冷杉种内关系协调。各径级发生最大聚集强度的尺度依次为:幼苗:28 m;幼树:29 m;小树:15 m;中树:34 m;大树:49 m。大树与中树在所有尺度上均是显著的正关联;幼苗仅在7 m的尺度内和幼树显著的正关联。在所有尺度上幼苗和大树、中树和小树都显著的不关联。
     (3)红桦-岷江冷杉天然次生林中岷江冷杉幼苗和幼树数量丰富、年龄呈连续分布,说明岷江冷杉更新良好。样地内未发现树高2 m以下的红桦个体,说明红桦更新不良。对于岷江冷杉幼苗,1年生幼苗占幼苗总数的62.45%,2年以上生幼苗占幼苗和幼树总数的2.30%。分别有86.70%的1年生幼苗和81.08%的2年以上生幼苗生长在苔藓上。我们着重关注了小尺度范围内的空间关联特性,优势种不同径级树木与岷江冷杉幼苗、幼树空间关联性表现各异。岷江冷杉幼苗与小树、中树、大树分别在0~7 m、0~8 m和0~8 m尺度上表现为显著负关联。岷江冷杉幼树与小树、中树、大树间,分别在0~11 m、0~13 m、0~11 m尺度上为表现为显著正关联。在所有尺度内,岷江冷杉幼苗、幼树与红桦小树均趋于无关联。岷江冷杉幼苗、幼树与红桦中树分别在0~8 m、0~34 m尺度为表现为显著负关联。岷江冷杉幼苗、幼树与红桦大树在所有尺度上均表现为显著负关联。影响岷江冷杉天然更新的关键因子为苔藓层盖度、倒木蓄积量、母树(DBH≥16.5)密度、箭竹盖度和乔木郁闭度。苔藓层盖度、倒木蓄积量和母树密度对岷江冷杉天然更新起着促进作用,而箭竹盖度和乔木郁闭度对岷江冷杉天然更新起着阻碍作用。
     (4)空间格局分析结果揭示了红桦和岷江冷杉间的激烈竞争。原始林中优势种群之间在所有尺度上为表现为无关联,而天然次生林内红桦和岷江冷杉在所有尺度上表现为显著负关联。岷江冷杉与红桦大树在所有尺度上均为随机分布,其余径级在小尺度上为聚集分布,随尺度增大趋于随机分布和均匀分布,最大聚集强度随径级增大而减弱。岷江冷杉种内关联以小尺度正关联为主,红桦种内关联以小尺度负关联为主。对于两个种群的相同径级,小径级、中径级和大径级间,分别以空间无关联、负关联和无关联为主。两个种群间不同径级间以负关联为主,径级相差越大,其负关联越强。
     (5)大径级保留木对其他径级树木的空间分布具有显著的影响。红桦大径级保留木与其小树和中树分别在0~8 m和0~9 m尺度上表现为显著负关联。岷江冷杉大径级保留木与其幼苗在0~8 m尺度上为负关联。岷江冷杉大径级保留木与其幼树和小树分别在0~11 m和1~9 m尺度上为正关联。岷江冷杉大径级保留木与其中树在0~14 m尺度上则没有显著的空间关联关系。红桦大径级保留木与岷江冷杉幼苗、幼树、小树和中树在所有尺度上均为空间负关联。岷江冷杉大径级保留木与红桦小树在0~4 m尺度上为负关联。大径级保留木在促进演替后期优势树种岷江冷杉的更新和生长的同时,制约了先锋树种红桦的更新和生长。
Spatial pattern is the results of integrated processs of population property, spatial association and environmental conditions. The study of spatial pattern of forest can infer the trend of forest community succession and provide theoretic support for the restoration of degraded ecosystems and sustainable management of forest ecosystem. The dark coniferous forest at sub-alpine area of western Sichuan, has important ecological, economic and social values. Due to extensive deforestation and long-term intensive agricultural land use, the area of primary forests has been reduced dramatically, and resulted in a wide distribution of natural secondary forests of different restoration stages. Therefore, the secondary forests that originated from those disturbed forests have become the main forest landscape in this region. However, the past ecological studies were mainly conducted in primary or old-growth forests, and we still know little about those degraded vegetation after anthropogenic disturbance. In this study, field investigations including individual spatial position of dominant tree species were conducted in a four ha sample plot in a natural secondary Betula-Abies forest. The plot locates in the north aspect at the altitude of 3300 m in Miyaluo, western Sichuan, China (N31°42′18.4″, E102°44′03.7″). Spatial point pattern analysis including Ripley’s L-function and O-ring statistic’s O-function were mainly adopted, we analyzed: (1) community structure and species composition; (2) spatial distribution pattern and intra-specific association of A. faxoniana population; (3) influencing factors on natural regeneration of A. faxoniana; (4) inter-specific competition of dominant tree species; (5) effects of remnant trees. Driving factors of natural restoration in natural secondary forest were discussed to provide the scientific basis for conservation and restoration of dark coniferous forest at sub-alpine area of western Sichuan. The main results are as follows:
     (1)B. albo-sinensis and A. faxoniana are the two dominant tree species in the natural secondary Betula-Abies forest. B. albo-sinensis took up 49.0% of total basal area and A. faxoniana took up 28.9%, respectively. DBH frequency distribution of B. albo-sinensis had a unimodal distribution, indicating a declining population with succession. In contrast, A. faxoniana had a reverse J-shaped pattern, showed an increasing population with succession. Point distribution map indicated that spatial distributions varied with size class, but all showed an aggregate and heterogeneous pattern.
     (2)A. faxoniana distributed as a clumped population, all size-classes exhibited clumped distributions at most spatial scales. Intensity of the assemblage increased firstly, and then decreased with increasing scale and then turned to random distribution. There existed a critical scale in which distribution pattern transfered from clumped to random, for example, small trees: 63 m and medium trees 87 m. All size-classes showed a positive association at small scales. Spatial association turned from strongly positive association to zero with the increasing of scale. However, there were no negative spatial associations in size-classes at all scales. It indicated that the population had a harmonious relationship internally. We found that different size class exhibited maximal intensity of assemblage at a critical scale: seedlings (28 m), saplings (29 m), small trees (15 m), medium trees (34 m), big trees (49 m). Big trees and medium trees had significantly positive association at all scales. Seedlings had significantly positive association with saplings only within the scale of 7 m, but they had no significant spatial associations with big, medium and small trees.
     (3)The seedlings and saplings of A. faxoniana were very abundant with continuous age distribution in Betula-Abies forest, suggesting its successful regeneration. We did not found alive B. albo-sinensis individuals lower than two m in the plot, suggesting its poor regeneration. As to A. faxoniana, one-year old seedlings accounted for 62.45% of total number of seedlings and saplings, and seedlings more than two-years old accounted for 2.30%. 86.70% of one-year old seedlings and 81.08% of seedlings more than two-years old habitated on moss. Particularly, we focused on spatial association at small scale. Spatial association of different size class of dominant tree species varied with seedlings and saplings. Spatial association of A. faxoniana’s seedlings along with its small trees, medium trees and large trees showed significantly negative at the scales of 0~7 m, 0~8 m and 0~8 m, respectively. Spatial association of A. faxoniana’s saplings with its small trees, medium trees and large trees showed significantly negative at the scales of 0~11 m, 0~13 m and 0~11 m, respectively. No significant spatial association was detected between A. faxoniana’s seedlings and B. albo-sinensis’s small trees and between A. faxoniana’s saplings and B. albo-sinensis’s small trees at all scales. There were significantly negative spatial associations between A. faxoniana’s seedlings and B. albo-sinensis’s medium trees and between A. faxoniana’s saplings and B. albo-sinensis’s medium trees at the scales of 0~18 m, 0~34 m, respectively. There were significantly negative spatial associations between A. faxoniana’s seedlings and B. albo-sinensis’s big trees and between A. faxoniana’s saplings and B. albo-sinensis’s big trees at all scales. Coverage of moss, stock of logs, density of mother trees of A. faxoniana, coverage of bamboo and coverage of trees were the key factors influencing natural regeneration of A. faxoniana. Coverage of moss, stock of logs and density of mother tree (DBH≥16.5) were favorable to natural regeneration of A. faxoniana, while coverage of bamboo and coverage of trees were obstructive to the natural regeneration of A. faxoniana.
     (4)The results of spatial pattern analysis revealed severe competition between B. albo-sinensis and A. faxoniana. No association was detected among dominant tree species of the primary forest, while the spatial association between B. albo-sinensis and A. faxoniana exhibited significantly negative at all scales. All big trees of B. albo-sinensis and A. faxoniana were spatially clumped at all scales that were examined. Other size-classes were spatially clumped at small scales, while they tended to be randomly or regularly spatially distributed with increasing spatial scale. Their maximum aggregation degree decreased with increasing size class. Intra- and interspecies spatial associations occurred generally at small scales. A. faxoniana generally showed a positive inner-specific association, while B. albo-sinensis generally showed a negative inner-specific association. For the same size-classes of the two populations, no significant spatial association were found for big trees and small trees, but the negative spatial associations were for medium trees. The negative spatial associations of the two populations at the different size-classes were commonly found, the larger difference size-classes, the stronger negative spatial associations.
     (5)Large size class of remnant trees had strong inpacts on other size class trees. There were significantly negative spatial associations between B. albo-sinensis’s large size class of remnant trees and its small and medium trees at the scale of 0~8 m, 0~9 m, respectively. There were significantly negative spatial associations between A. faxoniana’s large size class of remnant trees and its seedlings at the scale of 0~8 m. There were significantly positive spatial associations between A. faxoniana’s large size class of remnant trees and its saplings and small trees at the scale of 0~11 m, 0~9 m. No association was detected between A. faxoniana’s large size class of remnant trees and its medium trees at 0~14 m scales. Spatial association of B. albo-sinensis’s large size class of remnant trees with A. faxoniana’s seedlings, saplings, small trees and medium trees showed significantly negative at all scale. There were significantly negative spatial associations between A. faxoniana’s large size class of remnant trees and B. albo-sinensis’s small trees at the scale of 0~4 m. Large size class of remnant trees facilitated the regeneration and growth of A. faxoniana as late successional and dominant tree species, while impeding the regeneration and growth of B. albo-sinensis as a pioneer tree species.
引文
Acker, S A,Zenner, E K,Emmingham, W H. Structure and Yield of Two-Aged Stands on the Willamette National Forest, Oregon: Implications for Green Tree Retention. Canadian Journal of Forest Research,1998,28:749-758
    Bailey, T C,Gatrell, A C. Interactive Spatial Data Analysis,Longman Scientific & Technical,1995
    Barot, S,Gignoux, J,Menaut, J C. Demography of a Savanna Palm Tree: Predictions from Comprehensive Spatial Pattern Analyses. Ecology,1999,80(6):1987-2005
    Berger, U,Piou, C,Schiffers, K et al.. Competition among Plants: Concepts, Individual-Based Modelling Approaches, and a Proposal for a Future Research Strategy. Perspectives in Plant Ecology, Evolution and Systematics,2008,9(3-4):121-135
    Bliss, C I. Statistical Problems in Estimating Populations of Japanese Beetle Larvae. Journal of Economic Entomology,1941,34:221-232
    Callaway, R M,Brooker, R W,Choler, P et al.. Positive Interactions among Alpine Plants Increase with Stress. Nature,2002,417(6891):844-848
    Carrière, S M,André, M,Letourmy, P et al.. Seed Rain under Isolated Trees in a Slash and Burn Agricultural System in Southern Cameroon. Journal of Tropical Ecology,2002a,18:353-374
    Carrière, S M,Letourmy, P,McKey, D B. Effects of Remnant Trees in Fallows on Diversity and Structure of Forest Regrowth in a Slash-and-Burn Agricultural System in Southern Cameroon. Journal of Tropical Ecology,2002b,18:375-396
    Chapin, F S,McGraw, J B,Shaver, G R. Competition Causes Regular Spacing of Alder in Alaskan Shrub Tundra. Oecologia,1989,79(3):412-416
    Chazdon, R L. Tropical Forest Recovery: Legacies of Human Impact and Natural Disturbances. Perspectives in Plant Ecology, Evolution and Systematics,2003,6:51-71
    Chen, J,Bradshaw, G A. Forest Structure in Space: A Case Study of an Old Growth Spruce-Fir Forest in Changbaishan Natural Reserve, Pr China. Forest Ecology and Management,1999,120(1-3):219-233
    Condit, R. Research in Large, Long-Term Tropical Forest Plots. Trends in Ecology & Evolution,1995,10(1):18-22
    Condit, R,Ashton, P S,Baker, P et al.. Spatial Patterns in the Distribution of Tropical Tree Species. Science,2000,288(5470):1414-1418
    Connell, J H, 1971. On the Role of Natural Enemies in Preventing Competitive Exclusion in Some Marine Animals and in Rain Forest Trees. In: den Boer PJ, Gradwell GR (Eds.), Dynamics of Populations. Pudoc, Wageningen, pp. 298-312
    Dale, M R T. Spatial Pattern Analysis in Plant Ecology,London:Cambridge university press,1999 Dale, M R T,Dixon, P,Fortin, M-j et al.. Conceptual and Mathematical Relationships among Methods for Spatial Analysis. Ecography,2002,25:558-577
    Diggle, P J. Statistical Analysis of Spatial Point Patterns,New York:Academic Press,1983
    Diggle, P J. Statistical Analysis of Spatial Point Patterns,London:Arnold,2003
    Dole?al, J,?rutek, M,Hara, T et al.. Neighborhood Interactions Influencing Tree Population Dynamics in Nonpyrogenous Boreal Forest in Northern Finland. Plant Ecology,2006,185(1):135-150
    Druckenbrod, D L,Shugart, H H,Davies, I. Spatial Pattern and Process in Forest Stands within the Virginia Piedmont. Journal of Vegetation Science,2005,16(1):37-48
    Elmqvist, T,Wall, M,Berggren, A-L et al.. Tropical Forest Reorganization after Cyclone and Fire Disturbance in Samoa: Remnant Trees as Biological Legacies. Conservation Ecology,2002,5(2):10
    Fajardo, A,Goodburn, J M,Graham, J. Spatial Patterns of Regeneration in Managed Uneven-Aged Ponderosa Pine/Douglas-Fir Forests of Western Montana, USA. Forest Ecology and Management,2006,223(1-3):255-266
    Ferguson, B G,Vandermeer, J,Morales, H et al.. Post-Agricultural Succession in El Petén, Guatemala. Conservation Biology,2003,17(3):818-828
    Finegan, B. Pattern and Process in Neotropical Secondary Rain Forests: The First 100 Years of Succession. Trends in Ecology & Evolution,1996,11(3):119-124
    Fortin, M J,Dale, M R T. Spatial Analysis: A Guide for Ecologists,London:Cambridge University Press,2005
    Franklin, J F,Lindenmayer, D,MacMahon, J A et al.. Threads of Continuity: Ecosystem Disturbance, Recovery and the Theory of Biological Legacies. Conservation in Practice,2000,1(1):8-17
    Franklin, J F,Spies, T A,Pelt, R V et al.. Disturbances and Structural Development of Natural Forest Ecosystems with Silvicultural Implications, Using Douglas-Fir Forests as an Example. Forest Ecology and Management,2002,155(1-3):399-423
    Frost, I,Rydin, H. Spatial Pattern and Size Distribution of the Animal-Dispersed Tree Quercus Robur in Two Spruce-Dominated Forests. Ecoscience,2000,7(1):38-44
    Getis, A. Spatial Interaction and Spatial Autocorrelation: A Cross Product Approach. Environment and Planning A,1991,23(9):1269-1277
    Getzin, S,Dean, C,He, F et al.. Spatial Patterns and Competition of Tree Species in a Douglas-Fir Chronosequence on Vancouver Island. Ecography,2006,29(5):671-682
    Greig-Smith, P. Pattern in Vegetation. Journal of Ecology,1979,67(3):755–779
    Greig-Smith, P. Quantitative Plant Ecology.,Oxford:Blackwell,1983,54-104
    Grimm, V,Frank, K,Jeltsch, F et al.. Pattern-Oriented Modelling in Population Ecology. Science of the Total Environment,1996,183(1-2):151-166
    Guariguata, M R,Ostertag, R. Neotropical Secondary Forest Succession: Changes in Structural and Functional Characteristics. Forest Ecology and Management,2001,148:185-206
    Guevara, S,Purata, S E,Maarel, E. The Role of Remnant Forest Trees in Tropical Secondary Succession. Plant Ecology,1986,66(2):77-84
    Gustafson, E J. Minireview: Quantifying Landscape Spatial Pattern: What Is the State of the Art? Ecosystems,1998,1(2):143-156
    Haase, p. Can Isotropy Vs. Anisotropy in the Spatial Association of Plant Species Reveal Physical Vs. Biotic Facilitation? Journal of Vegetation Science,2001,12:127-136
    Hao, Z,Zhang, J,Song, B et al.. Vertical Structure and Spatial Associations of Dominant Tree Species in an Old-Growth Temperate Forest. Forest Ecology and Management,2007,252(1-3):1-11
    Hara, T. Dynamics of Size Structure in Plant Populations. Trends in Ecology & Evolution,1988,3(6):129-132
    Harper, J L. Population Biology of Plants,London:Academic press,1977
    Harper, K A,Bergeron, Y,Drapeau, P et al.. Changes in Spatial Pattern of Trees and Snags During Structural Development in Picea Mariana Boreal Forests. Journal of Vegetation Science,2006,17:625-636
    Harvey, C A. Colonization of Agricultural Windbreaks by Forest Trees: Effects of Connectivity and Remnant Trees. Ecological Applications,2000,10(6):1762-1773
    He, F L,Duncan, R P. Density-Dependent Effects on Tree Survival in an Old-Growth Douglas Fir Forest. Journal of Ecology,2000,88(4):676-688
    Holl, K D. Factors Limiting Tropical Rain Forest Regeneration in Abandoned Pasture: Seed Rain, Seed Germination, Microclimate, and Soil. Biotropica,1999,31:229-242.
    Homma, K,Takahashi, K,Hara, T et al.. Regeneration Processes of a Boreal Forest in Kamchatka with Special Reference to the Contribution of Sprouting to Population Maintenance. Plant Ecology,2003,166:25-35
    Hou, J H,Mi, X C,Liu, C R et al.. Spatial Patterns and Associations in a Quercus-Betula Forest in Northern China. Journal of Vegetation Science,2004,15(3):407-414
    Huffman, R D,Fajvan, M A,Wood, P B. Effects of Residual Overstory on Aspen Development in Minnesota. Canadian Journal of Forest Research,1999,29:284-289
    Hunziker, U,Brang, P. Microsite Patterns of Conifer Seedling Establishment and Growth in a Mixed Stand in the Southern Alps. Forest Ecology and Management,2005,210(1-3):67-79
    Janzen, D H. Herbivores and the Number of Tree Species in Tropical Forests. The American Naturalist,1970,104:501-528
    Keeton, W S,Franklin, J F. Do Remnant Old-Growth Trees Accelerate Rates of Succession in Mature Douglas-Fir Forests? Ecological Monographs,2005,75(1):103-118
    Kenkel, N C. Pattern of Self-Thinning in Jack Pine: Testing the Random Mortality Hypothesis. Ecology,1988,69(4):1017-1024
    Kershaw, K A,Looney, J H H. Quantitative and Dynamic Plant Ecology,London:Edward Arnold,1985
    Kikvidze, Z,Pugnaire, F I,Brooker, R W et al.. Linking Patterns and Processes in Alpine Plant Communities: A Global Study. Ecology,2005,86(6):1395-1400
    Kubota, Y,Kubo, H,Shimatani, K. Spatial Pattern Dynamics over 10 years in a Conifer/Broadleaved Forest, Northern Japan. Plant Ecology,2007,190(1):143-157
    Legendre, P,Fortin, M J. Spatial Pattern and Ecological Analysis. Plant Ecology,1989,80(2):107-138 Levin, S A. The Problem of Pattern and Scale in Ecology. Ecology,1992,73(6):1943-1967
    Li, L,Wei, S-G,Huang, Z-L et al.. Spatial Patterns and Interspecific Associations of Three Canopy Species at Different Life Stages in a Subtropical Forest, China. Journal of Integrative Plant Biology,2008,50(9):1140-1150
    Liebhold, A M,Rossi, R E,Kemp, W P. Geostatistics and Geographic Information Systems in Applied Insect Ecology. Annual Reviews in Entomology,1993,38(1):303-327
    Liebhold, A M,Gurevitch, J. Integrating the Statistical Analysis of Spatial Data in Ecology. Ecography,2002,25(5):553-557
    Liu, S R,Wang, J X,Hen, L W. Ecology and Restoration of Sub-Alpine Ecosystem in Western Sichuan, China. Informatore Botanico Italiano,2003,35(supplemento 1):29-34
    Loreau, M,Naeem, S,Inchausti, P et al.. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science,2001,294(5543):804-808
    M?ller, J,Waagepetersen, R. An Introduction to Simulation-Based Inference for Spatial Point Processes,Spatial Statistics and Computational Methods Berlin:Springer-Verlag,2003,143-198
    Méndez, M,García, D,Maestre, F T et al.. More Ecology Is Needed to Restore Mediterranean Ecosystems: A Reply to Valladares and Gianoli. Restoration Ecology,2008,16(2):210-216
    Manly, B F J. Randomization, Bootstrap and Monte Carlo Methods in Biology,London:Chapman and Hall,1997
    Manning, A D,Fischer, J,Lindenmayer, D B. Scattered Trees Are Keystone Structures - Implications for Conservation. Biological Conservation,2006,132(3):311-321
    Matern, B. Spatial Variation, Number 36 in Lectures Notes in Statistics,Springer,1986
    Mori, A,Takeda, H. Effects of Undisturbed Canopy Structure on Population Structure and Species Coexistence in an Old-Growth Subalpine Forest in Central Japan. Forest Ecology and Management,2004,200(1-3):89-100
    Nakagawa, M,Kurahashi, A,Hogetsu, T. The Regeneration Characteristics of Picea Jezoensis and Abies Sachalinensis on Cut Stumps in the Sub-Boreal Forests of Hokkaido Tokyo University Forest. Forest Ecology and Management,2003,180(1-3):353-359
    Narukawa, Y,Iida, S,Tanouchi, H et al.. State of Fallen Logs and the Occurrence of Conifer Seedlings and Saplings in Boreal and Subalpine Old-Growth Forests in Japan. Ecological Research,2003,18(3):267-277
    Narukawa, Y,Yamamoto, S. Development of Conifer Seedlings Roots on Soil and Fallen Logs in Boreal and Subalpine Coniferous Forests of Japan. Forest Ecology and Management,2003,175(1-3):131-139
    Pacala, S W,Silander Jr, J A. Field Tests of Neighborhood Population Dynamic Models of Two Annual Weed Species. Ecological Monographs,1990,60(1):113-134
    Packer, A,Clay, K. Soil Pathogens and Spatial Patterns of Seedling Mortality in a Temperate Tree. Nature,2000,404(6775):278-281
    Palik, B,Mitchell, R J,Pecot, S et al.. Spatial Distribution of Overstory Retention Influences Resources and Growth of Longleaf Pine Seedlings. Ecological Applications,2003,13(3):674-686
    Peck, J E,McCune, B. Remnant Trees and Canopy Lichen Communities in Western Oregon: A Retrospective Approach. Ecological Applications,1997,7(4):1181-1187
    Perry, G L W,Miller, B P,Enright, N J. A Comparison of Methods for the Statistical Analysis of Spatial Point Patterns in Plant Ecology. Plant Ecology,2006,187(1):59-82
    Perry, J N,Liebhold, A M,Rosenberg, M S et al.. Illustrations and Guidelines for Selecting Statistical Methods for Quantifying Spatial Pattern in Ecological Data. Ecography,2002,25(5):578-600
    Peterson, C J,Squiers, E R. Competition and Succession in an Aspen-White-Pine Forest. Journal of Ecology,1995,83(3):449-457
    Rebertus, A J,Williamson, G B,Moser, E B. Fire-Induced Changes in Quercus Laevis Spatial Pattern in Florida Sandhills. Journal of Ecology,1989,77(3):638-650
    Rejmanek, M,Leps, J. Negative Associations Can Reveal Interspecific Competition and Reversal of Competitive Hierarchies During Succession. Oikos,1996,76(1):161
    Rhoades, C C,Eckert, G E,Coleman, D C. Effect of Pasture Trees on Soil Nitrogen and Organic Matter: Implications for Tropical Montane Forest Restoration. Restoration Ecology,1998,6(3):262-270
    Ripley, B D. Spatial Statistics,New York:Wiley,1981
    Robinson, G R,Handel, S N. Forest Restoration on a Closed Landfill: Rapid Addition of New Species by Bird Dispersal. Conservation Biology,1993,7(2):271-278
    Rossi, R E,Mulla, D J,Journel, A G et al.. Geostatistical Tools for Modeling and Interpreting Ecological Spatial Dependence. Ecological Monographs,1992,62(2):277-314
    Rousset, O,Lepart, J. Positive and Negative Interactions at Different Life Stages of a Colonizing Species (Quercus Humilis). Journal of Ecology,2000,88(3):401-412
    Sanchez Meador, A J,Moore, M M,Bakker, J D et al.. 108 Years of Change in Spatial Pattern Following Selective Harvest of a Pinus Ponderosa Stand in Northern Arizona, USA. Journal of Vegetation Science,2009,20:1-12
    Sedia, E G,Ehrenfeld, J G. Lichens and Mosses Promote Alternate Stable Plant Communities in the New Jersey Pinelands. Oikos,2003,100(3):447-458
    Skellam, J G. Studies in Statistical Ecology: I. Spatial Pattern. Biometrika,1952,39:346-362
    Sterner, R W,Ribic, C A,Schatz, G E. Testing for Life Historical Changes in Spatial Patterns of Four Tropical Tree Species. Journal of Ecology,1986,74(3):621-633
    Stewart, G H. Population Dynamics of a Montane Conifer Forest, Western Cascade Range, Oregon, USA. Ecology,1986,67(2):534-544
    Stoll, P,Bergius, E. Pattern and Process: Competition Causes Regular Spacing of Individuals within Plant Populations. Journal of Ecology,2005,93(2):395-403
    Stoyan, D,Stoyan, H. Fractals, Random Shapes, and Point Fields. Methods of Geometrical Statistics, John Wiley & Sons,1994
    Stoyan, D,Penttinen, A. Recent Applications of Point Process Methods in Forestry Statistics. Statistical Science,2000,15(1):61-78
    Sugita, H,Nagaike, T. Microsites for Seedling Establishment of Subalpine Conifers in a Forest with Moss-Type Undergrowth on Mt. Fuji, Central Honshu, Japan. Ecological Research,2005,20(6):678-685
    Takahashi, K,Homma, K,Vetrova, V P et al.. Stand Structure and Regeneration in a Kamchatka Mixed Boreal Forest. Journal of Vegetation Science,2001,12:627-634
    Taylor, A H,Zisheng, O. Tree Replacement Patterns in Subalpine Abies-Betula Forests, Wolong Natural Reserve, China. Plant Ecology,1988a,78(3):141-149
    Taylor, A H,Zi S Q. Regeneration Patterns in Old-Growth Abies-Betula Forests in the Wolong Natural Reserve, Sichuan, China. Journal of Ecology,1988b,76(4):1204-1218
    Taylor, A H,Jin Y H,Shi Q Z. Canopy Tree Development and Undergrowth Bamboo Dynamics inOld-Growth Abies-Betula Forests in Southwestern China: A 12-Year Study. Forest Ecology and Management,2004,200(1-3):347-360
    Taylor, A H,Shi W J,Lian J Z et al.. Regeneration Patterns and Tree Species Coexistence in Old-Growth Abies-Picea Forests in Southwestern China. Forest Ecology and Management,2006,223(1-3):303-317
    Thioulouse, J, Chessel, D., Dolédec, S., Olivier, J M. Ade-4: A Multivariate Analysis and Graphical Display Software. Statistics and Computing,1997,7:75-83
    Toh, I,Gillespie, M,Lamb, D. The Role of Isolated Trees in Facilitating Tree Seedling Recruitment at a Degraded Sub-Tropical Rainforest Site. Restoration Ecology,1999,7(3):288-297
    Turnbull, L A,Coomes, D A,Purves, D W et al.. How Spatial Structure Alters Population and Community Dynamics in a Natural Plant Community. Journal of Ecology,2007,95(1):79-89
    Turner, M G. Landscape Ecology: The Effect of Pattern on Process. Annual Reviews in Ecology and Systematics,1989,20(1):171-197
    Turner, M G,Barker, W L,Peterson, C J et al.. Factors Influencing Succession: Lessons from Large, Infrequent Natural Disturbances. Ecosystems,1998,1:511-523
    Upton, G J,Fingleton, B. Spatial Data Analysis by Example, Categorical and Directional Data,John Wiley & Sons,1996
    Vieira, D L M,Scariot, A. Principles of Natural Regeneration of Tropical Dry Forests for Restoration. Restoration Ecology,2006,14(1):11-20
    Wang, Z F,Peng, S L,Liu, S Z. Spatial Pattern of Cryptocarya Chinensis Life Stages in Lower Subtropical Forest, China. Botanical Bulletin of Academia Sinica,2003,44:159-166
    Watt, A S. Pattern and Process in the Plant Community. Journal of Ecology,1947,35:1-22
    Wiegand, T,Moloney, K A. Rings, Circles, and Null-Models for Point Pattern Analysis in Ecology. Oikos,2004,104(2):209-229
    Wiegand, T,Kissling, W D,Cipriotti, P A et al.. Extending Point Pattern Analysis for Objects of Finite Size and Irregular Shape. Journal of Ecology,2006,94(4):825-837
    Wolf, A. Fifty Year Record of Change in Tree Spatial Patterns within a Mixed Deciduous Forest. Forest Ecology and Management,2005,215(1-3):212-223
    Wunderle, J M. The Role of Animal Seed Dispersal in Accelerating Native Forest Regeneration on Degraded Tropical Lands. Forest Ecology and Management,1997,99(1-2):223-235
    Young, T P. Restoration Ecology and Conservation Biology. Biological Conservation,2000,92:73-83
    Young, T P,Petersen, D A,Clary, J J. The Ecology of Restoration: Historical Links, Emerging Issues and Unexplored Realms. Ecology Letters,2005,8(6):662-673
    Zahawi, R A,Augspurger, C K. Early Plant Succession in Abandoned Pastures in Ecuador. Biotropica,1999,31:540-552
    Zahawi, R A,Augspurger, C K. Tropical Forest Restoration: Tree Islands as Recruitment Foci in Degraded Lands of Honduras. Ecological Applications,2006a,16:464-478
    Zahawi, R A,Augspurger, C K. Tropical Forest Restoration: Tree Islands as Recruitment Foci in Degraded Lands of Honduras. Ecological Applications,2006b,16(2):464-478
    Zenner, E K,Acker, S A,Emmingham, W H. Growth Reduction in Harvest-Age, Coniferous Forests with Residual Trees in the Western Central Cascade Range of Oregon. Forest Ecology and Management,1998,102(1):75-88
    Zenner, E K. Do Residual Trees Increase Structural Complexity in Pacific Northwest Coniferous Forests? Ecological Applications,2000,10(3):800-810
    包维楷,庞学勇.四川汶川大地震重灾区灾后生态退化及其基本特点.应用与环境生物学报,2008,14(4):441-444
    邓坤枚.横断山区云冷杉采伐迹地生态环境及其对森林更新影响的研究.自然资源,1992,3:60-66
    董希斌,王立海.采伐强度对林分蓄积生长量与更新影响的研究.林业科学,2003,39(6):122-125
    董希斌.采伐强度对林分蓄积生长量的影响.东北林业大学学报,2001a,29(2):35-37
    董希斌.采伐强度对落叶松林生长量的影响.东北林业大学学报,2001b,29(001):44-47
    董希斌.森林择伐对林分的影响.东北林业大学学报,2002,30(5):15-18
    杜峰,梁宗锁,胡莉娟.植物竞争研究综述.生态学杂志,2004,23(4):157-163
    管中天.森林生态研究与应用,成都:四川出版集团.四川科学技术出版社,2005,296
    管中天.四川松杉植物地理,成都:四川人民出版社,1982
    郭忠玲,马元丹,郑金萍等.长白山落叶阔叶混交林的物种多样性、种群空间分布格局及种间关联性研究.应用生态学报,2004,15(11):2013-2018
    韩景军,肖文发,罗菊春.不同采伐方式对云冷杉林更新与生境的影响.林业科学,2000,36(1):90-96
    韩有志,王政权.天然次生林中水曲柳种子库的空间格局与过程.植物生态学报,2002a,26(2):170-176
    韩有志,王政权.森林更新与空间异质性.应用生态学报,2002b,13(5):615-619
    郝占庆,李步杭,张健等.长白山阔叶红松林样地(CBS):群落组成与结构.植物生态学报,2008,32(2):238-250
    郝占庆,于德永,杨晓明.长白山北坡植物群落α多样性及其随海拔梯度的变化.应用生态学报,2002,13(7):785-789
    惠刚盈,李丽,赵中华等.林木空间分布格局分析方法.生态学报,2007,27(11):4717-4728
    江洪,张艳丽.干扰与生态系统演替的空间分析.生态学报,2003,23(9):1861-1876
    蒋有绪.川西米亚罗马尔康高山林区生境类型的初步研究.林业科学,1963a,8(4):321-335
    蒋有绪.川西米亚罗高山暗针叶林的群落特点及其分类原则.植物生态学与地植物学丛刊,1963b,1(1):40-50
    李博,陈家宽,沃金森, A R.植物竞争研究进展.植物学通报,1998,15(4):18-29
    李博.生态学,北京:高等教育出版社,2000,88
    李承彪.四川森林生态研究,成都:四川科学技术出版社,1990
    李崇巍,刘丽娟,孙鹏森等.岷江上游植被格局与环境关系的研究.北京师范大学学报:自然科学版,2005,41(4):404-409
    李海涛.植物种群分布格局研究概况.植物学通报,1995,12(2):19-26
    李媛,陶建平,王永健等.亚高山暗针叶林林缘华西箭竹对岷江冷杉幼苗更新的影响.植物生态学报,2007,31(2):283-290
    李宗峰,陶建平,王微等.岷江上游退化植被不同恢复阶段群落小气候特征研究.生态学杂志,2005,24(4):364-367
    蔺菲,郝占庆,叶吉等.苔藓植物对植物天然更新的影响.生态学杂志,2006,25(4):456-460
    刘庆,何海.中国西南亚高山针叶林的生态学问题.世界科技研究与发展,2001,23(2):63-69
    刘庆.青藏高原东部(川西)生态脆弱带恢复与重建研究进展.资源科学,1999,21(5):81-86
    刘世荣,史作民,马姜明等.长江上游退化天然林恢复重建的生态对策.林业科学,2009,45(2):120-124
    刘世荣,王金锡.长江上游森林植被水文功能研究.自然资源学报,2001,16(5):451-456
    刘醒华.川西高山林区采伐迹地的土壤条件及其与森林更新的关系,森林与土壤-第二次全国森林土壤学术讨论会论文选集北京:科学出版社,1981,107-118
    刘振国,李镇清.植物群落中物种小尺度空间结构研究.植物生态学报,2005,29(6):1020-1028
    罗菊春,王庆锁.干扰对天然红松林植物多样性的影响.林业科学,1997,33(6):498-503
    骆土寿.海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量.林业科学研究,2000,13(2)
    马姜明,刘世荣,史作民等.川西亚高山暗针叶林恢复过程中群落物种组成和多样性的变化.林业科学,2007,43(5):17-23
    马克平,黄建辉.北京东灵山地区植物群落多样性研究--丰富度、均匀度和物种多样性指数.生态学报,1995,15(3):268-277
    马雪华.川西高山暗针叶林区的采伐与水土保持.林业科学,1963,8(2):149-158
    马雪华.森林水文学,北京:中国林业出版社,1993,93
    缪宁,史作民,冯秋红等.川西亚高山岷江冷杉种群的空间格局分析.林业科学,2008,44(12):1-6
    彭少麟,陆宏芳.恢复生态学焦点问题.生态学报,2003,23(7):1249-1257
    彭少麟.恢复生态学,北京:气象出版社,2007
    彭少麟.南亚热带森林群落动态学,北京:科学出版社,1996
    邱仁辉,陈涵.择伐作业对常绿阔叶林乔木层树种结构及物种多样性的影响.中国生态农业学报,2005,13(3):158-161
    邱仁辉,周新年.不同强度的择伐作业对保留木与幼树幼苗的影响.森林工程,1997,13(3):5-7
    邱仁辉,周新年.择伐对林土地壤物理性质影响及作业技术.福建林学院学报,2001,21(4):301-303
    曲仲湘,吴玉树,王焕校.植物生态学,北京:高等教育出版社,1983
    任海,彭少麟,陆宏芳.退化生态系统恢复与恢复生态学.生态学报,2004,24(8):1760-1768
    史立新,王金锡,宿以民.川西米亚罗地区暗针叶林采伐迹地早期植被演替过程的研究.植物生态学与地植物学报,1988,12(4):306-313
    四川森林编辑委员会.四川森林,北京:中国林业出版社,1992a,1992b(p160-161)
    四川植被协作组.四川植被,成都:四川人民出版社,1980
    宋永昌.植被生态学,上海:华东师范大学出版社,2001a(p598),2001b(p599),2001c(p62),2001d(p19)
    宿以明,王金锡,史立新等.川西采伐迹地早期植被生物量与生产力动态初步研究.四川林业科技,1999,20(4):14-21
    王金锡,许金铎,侯广维等.长江上游高山高原林区迹地生态与营林更新技术,北京:中国林业出版社,1995
    王金锡,许金铎.川西高山林区森林更新技术研究.林业科学,1989,25(6):570-574
    王开运.川西亚高山森林群落生态系统过程,成都:四川科学技术出版社,2004,
    王微,陶建平,胡凯等.华西箭竹对岷江冷杉林主要乔木树种幼苗结构及分布格局的影响.林业科学,2007,43(1):1-7
    王永健,陶建平,李媛等.华西箭竹对卧龙亚高山森林不同演替阶段物种多样性与乔木更新的影响.林业科学,2007,43(2):1-7
    鲜骏仁,胡庭兴,张远彬等.林窗对川西亚高山岷江冷杉幼苗生物量及其分配格局的影响.应用生态学报,2007,18(4):721-727
    杨洪晓,张金屯,吴波.毛乌素沙地油蒿种群点格局分析.植物生态学报,2006,30(4):563-570
    杨丽韫,代力民,张扬建.长白山北坡暗针叶林倒木贮量和分解的研究.应用生态学报,2002,13(9):1069-1071
    杨玉坡,叶兆庆.西南高山地区冷杉、云杉林冠下天然更新的初步观察.林业科学,1956,2(4):337-354
    杨玉坡,周德彰,邱进贤.高山营林手册,成都:四川科学技术出版社,1985,159
    尹华军,赖挺,程新颖等.增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响.植物生态学报,2008,32(5):1072-1083
    余作岳,彭少麟.热带亚热带退化生态系统植被恢复生态学研究,广州:广东科技出版社,1997,
    喻泓,杨晓晖,慈龙骏.内蒙古呼伦贝尔沙地不同樟子松林竞争强度的比较.应用生态学报,2009,20(2):250-255
    云南大学生物系.植物生态学,北京:人民教育出版社,1980,227
    张健,郝占庆,宋波等.长白山阔叶红松林中红松与紫椴的空间分布格局及其关联性.应用生态学报,2007,18(8):1681-1687
    张金屯.数量生态学,北京:科学出版社,2004a(p2),2004b,2004c(p243),2004d,(p98)
    张金屯.植物种群空间分布的点格局分析.植物生态学报,1998,22(4):344-349
    张远彬,王开运,鲜骏仁.岷江冷杉林林窗小气候及其对不同龄级岷江冷杉幼苗生长的影响.植物生态学报,2006,30(6):941-946
    张远东,刘世荣,赵常明.川西亚高山森林恢复的空间格局分析.应用生态学报,2005a,16(9):1706-1710
    张远东,赵常明,刘世荣.川西米亚罗林区森林恢复的影响因子分析.林业科学,2005b,41(4):189-193
    张远东,赵常明,刘世荣.川西亚高山人工云杉林和自然恢复演替系列的林地水文效应.自然资源学报,2004,19(6):713-719
    张远东.博士后出站报告:川西亚高山森林的恢复格局、林地水文效应及经营规划,北京:中国林业科学研究院,2004,4-5
    张跃西,钟章成.木本植物邻体干扰研究进展.生态学杂志,1999,18(2):55-59
    张跃西,钟章成.亚热带次生常绿阔叶林优势种间的竞争效应与竞争反应.应用与环境生物学报,2003,9(4):333-335
    张赟,张春雨,赵秀海等.长白山次生林乔木树种空间分布格局.生态学杂志,2008,27(10):1639-1646
    赵常明,陈庆恒,乔永康.青藏高原东缘岷江冷杉天然群落的种群结构和空间分布格局.植物生态学报,2004,28(3):341-350
    中国科学院西部地区南水北调综合考察队.甘孜阿坝及小凉山地区林业考察报告,北京:科学出版社,1965,37-38
    朱教君,康宏樟,胡理乐.应用全天空照片估计林分透光孔隙度(郁闭度).生态学杂志,2005,24(10):1234-1240
    朱教君,刘世荣.森林干扰生态学研究,北京:中国林业出版色,2007a,2
    朱教君,刘世荣.次生林概念与生态干扰度.生态学杂志,2007b,26(7):1085-1093
    朱鹏飞,李德融.四川森林土壤,成都:四川科学技术出版社,1999
    祝燕,赵谷风,张俪文等.古田山中亚热带常绿阔叶林动态监测样地—群落组成与结构.植物生态学报,2008,32(2):262-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700