用户名: 密码: 验证码:
烧结页岩空心砖自保温系统研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
墙体自保温技术是国内学者近年来提出的一个新技术方向,随着外墙保温系统应用中存在问题的暴露,特别防火问题的出现,逐渐得到关注。墙体自保温系统耐候性、耐久性好,与建筑物同寿命,防火、抗冲击性能佳,系统安全、可靠,施工便捷,综合经济性较好。在当前国家全面推进建筑节能的背景下,开展墙体自保温系统研究对支撑建筑节能工作开展具有重要的现实意义。
     目前热桥占墙体比例和墙体组成材料与墙体热工性能的关系缺乏基础性研究。本文分析了热桥比例对墙体平均传热系数的影响,热桥比大于0.172时,热桥必须进行保温处理后墙体平均传热系数才能≤1.5W/(m~2·K),而经调研分析重庆地区当前框架结构和框剪结构建筑热桥占墙体最小比例为0.257,所以墙体自保温系统应以砌体部分为研究对象。配砖和砌筑砂浆等墙体组成材料对砌体热工性能有显著影响。当空心砖当量导热系数为0.25W/(m·K)时,与实心配砖和普通砌筑砂浆组成砌体的传热系数K≤1.2W/(m~2·K),而与多孔配砖和保温砌筑砂浆组成的砌体传热系数K≤1.0W/(m~2·K)。因此,节能型烧结页岩空心砖的当量导热系数应低于0.25W/(m·K)。
     目前烧结空心砖的孔洞结构不合理,且烧结砖几乎没有应用气孔形成剂,其热工性能亟需进一步提高。本文采用数值模拟软件FLUENT计算不同孔洞结构时烧结页岩空心砖的当量导热系数,揭示孔型、矩形孔长宽比、孔排列数、孔洞率、孔排列方式等对烧结空心砖热工性能的影响。结果表明,长边垂直于热流方向的矩形孔有利于提高烧结空心砖的热工性能,其长宽比在3:1~6:1之间为宜;孔洞率相同时,空心砖孔排数增多,空心砖的当量导热系数减小,空气间层宽度减小到10mm左右时,间层内空气的热导率几乎与静止空气的热导率相同,因而烧结空心砖的孔宽宜在10mm左右;孔列数增加,孔肋变薄,每增加一列孔,空心砖的当量导热系数减小5%左右;空心砖的孔洞率与导热系数成反比,在满足烧结空心砖成型性能和强度时,应尽可能增大其孔洞率;交错排列可使孔肋延长线系数变大,有利于提高空心砖的热工性能。
     在分析锯末、造纸污泥和煤矸石的热解特性以及对混合料塑性指数影响基础上,研究了气孔形成剂掺量对烧结页岩砖性能的影响。结果表明,锯末、造纸污泥掺量增加,烧结页岩砖体积密度和抗压强度逐渐下降,孔隙率和吸水率逐渐增大,锯末和造纸污泥适宜掺量分别为6%和7%;煤矸石成孔能力较弱,可作为烧结页岩砖的内燃料,减少燃煤用量。相同密度等级的烧结页岩空心砖抗压强度高于微孔砖,但微孔砖显气孔率较高、导热系数较低。对于优化设计出的9排孔烧结空心砖,在设置阻断砌筑砂浆灰缝热桥凹槽的基础上,通过在原料中掺入气孔形成剂和优化生产工艺,可得到节能型烧结页岩空心砖,其当量导热系数小于0.25W/(m·K),满足墙体自保温体系的要求。
     在孔洞结构优化的基础上,采用泡沫混凝土填充烧结页岩空心砖制备复合型烧结页岩空心砖以进一步提高其热工性能。填充用泡沫混凝土干表观密度为224kg/m~3,导热系数为0.063W/(m·K),吸水率为11.02%。发明的灌注设备结构简单、耗能低、高效,从根本上解决了复合空心砖浆料灌注问题,并已申请国家发明专利。根据复合空心砖各组成材料的厚度及导热系数,确定了泡沫混凝土最佳灌注厚度及位置并对砖结构进行了优化,制备出了干表观密度867kg/m~3、当量导热系数0.24W/(m·K)、吸水率18%、抗压强度5.35MPa复合空心砖,并已获得国家实用新型专利。
     理论计算和实验测试了砌筑砂浆和配砖对烧结页岩空心砖自保温系统热工性能的影响,并在实际工程中利用热流计法实测了烧结页岩空心砖自保温墙体的传热系数和利用红外热像仪分析墙体内表面温度分布。保温砌筑砂浆砌体的传热系数比水泥砌筑砂浆砌体的传热系数降低13%;多孔配砖墙体内表面温度比实心配砖高0.5℃左右,保温砌筑砂浆砌筑的墙体的温度比普通水泥砂浆砌筑的墙体的温度高0.4℃左右。利用防护热箱法测试结果表明,玻化微珠砌筑砂浆砌筑的烧结页岩空心砖自保温墙体传热系数比水泥砌筑砂浆砌筑时降低了20%,选择12孔配砖的烧结页岩空心砖自保温墙体传热系数比实心配砖降低8%左右,因而烧结页岩空心砖自保温系统应选用砌筑型玻化微珠砂浆和多孔配砖。利用建筑节能分析软件分析了不同类型烧结空心砖砌体、不同类型砌筑砂浆、配砖对自保温墙体热工性能和建筑能耗的影响,结果表明保温砌筑砂浆和多孔配砖与节能型烧结页岩空心砖组成的自保温墙体的当量导热系数为0.32W/(m·K)、保温砌筑砂浆和多孔配砖与和复合烧结页岩空心砖组成的自保温墙体的当量导热系数为0.31W/(m·K),满足夏热冬冷地区建筑节能65%的设计标准要求。
Thermal-insulation exterior wall system contains exterior insulation wall system,interior insulation wall system, self-insulation wall system nowadays while exteriorinsulation wall is widely used at home and abroad, whereas it has some disadvantages,namely, complex and long construction process, shorter longevity compared with mainstructure, low engineering quality, high cost, easy peeling of decorative materials,content of combustible organic materials etc.. However, self-thermal insulation wallsystem has superior properties to a certain extent, it is apparent that the weatherabilityand durability are greater compared with other insulation wall systems, and its longevityis more or less the same with the building structure, moreover, it has some excellentproperties of fireproof performance, shock resistance, easy construction process and lowcost, thus the investigation of self-insulation wall system impede the development andapplication of building energy saving.
     The thermal bridge to exterior wall ratio and the relationship between wallmaterials and average heat-transfer coefficient of walls are lack of basic researches. Theeffect of thermal bridge to exterior wall ratio on average heat-transfer coefficient of wallwas analyzed in this investigation. The results demonstrate that the average heat-transfercoefficient of wall is less than1.5W/(m~2·K) with the insulation treatment of thermalbridge while thermal bridge to exterior wall ratio is equal to0.172. The survey showsthe minimum thermal bridge to exterior wall ratio of frame structure or frame-shear wallstructure is0.25in Chongqing, therefore, the masonry is mainly studied in the research.Through the test, it presents the effect of equipped of brick and masonry mortar onthermal performance is significant. The thermal conductivity of masonry composedwith hollow brick, solid equipped of brick and ordinary masonry mortar is less than orequal to1.2W/(m~2·K), whereas it is less than or equal to1.0W/(m~2·K) when themasonry is composed with hollow brick, multi-hole equipped of brick and masonrymortar, while the thermal conductivity of hollow brick is equal to0.25W/(m~2·K).Therefore, the reasonably thermal conductivity is less than0.25W/(m~2·K).
     The early research shows it is unreasonable for hole type of hollow brick of whichthe thermal performance is not suitable enough without using of pore-forming agent.The equivalent thermal conductivities of fired-shale hollow bricks with varied holetypes were tested by using of simulation software FLUENT in the investigation. It reveals the effects of hole type, length-width ratio, arrangement type and quantity ofholes, hole ratio on thermal performance of hollow brick. According to the result thethermal performance is improved when the longer edge of the rectangular holeperpendicular to the thermal flow direction with a suitable length-width ratio rangingfrom3/1to6/1. It is reasonable for a value of the hole width equal to10mm as theincreasing of quantity of lateral holes with the same hole ratio of brick, i. e. the thermalconductivity of hollow brick decreases considerably and the thermal conductivity of airin holes is more or less the same with that of stationary air while the width of hole isequal to10mm. Besides, the thermal conductivity of hollow brick with increasing ofquantity of longitudinal holes reduces5%compared with ordinary hollow brick.Moreover, stagger arrangement of varied types of holes is gainful for improving thethermal performance of brick.
     The influence of sawdust, paper sludge, coal gangue on plasticity index of mixtureand the influence of dosage of pore-forming agent on property of hollow brick werediscussed in the research. It presents the volume densities and the compressive strengthsof bricks lose with the increasing dosages of sawdust, paper sludge, coal gangue,whereas the porosities and water absorption rates improve gradually while the dosagesof sawdust and paper sludge are6%and7%respectively. The suitable value ofequivalent thermal conductivity should be less than0.25W/(m~2·K) to satisfy the needsof building energy saving according to optimizing the hole type of hollow brick with9holes.
     Furthermore, the thermal performance of hollow brick filled with foam concrete asthe insulation material is improved of which the dry apparent density is224kg/m~3,thermal conductivity is0.063W/(m~2·K) and the water absorption ratio is equal to11.02%. Moreover, the compound hollow brick is prepared according to optimizing thehole type, of which the dry apparent density is867kg/m~3, thermal conductivity is0.21W/(m~2·K), the water absorption ratio is equal to18%and the compressive strength is5.35MPa.
     The effects of masonry and equipped of brick on thermal performance ofself-thermal insulation hollow brick were tested in order to obtain the heat-transfercoefficient of hollow brick and the surface temperature of interior wall. It presents theheat-transfer coefficient of insulation masonry decreases13%compared with which ofordinary masonry whereas the heat-transfer coefficient of fired-shale hollow brickreduces12%in comparison with that of compound hollow brick, and the surface temperature of interior wall of multi-hole equipped of brick is about0.5℃highercompared with that of solid brick whereas the temperature of insulation masonry mortaris about0.4℃higher compared with that of cement mortar. According to the result, thethermal conductivity of hollow brick wall built with glazed hollow bead mortar loses20%compared with which built with cement mortar, meanwhile, it reduces8%whenequipped of brick of12holes is used instead of solid brick. The thermal performanceand building energy consumption of varied types of hollow brick masonry, masonrymortar and multi-hole brick were tested in the investigation. It demonstrates theequivalent thermal conductivities of hollow brick wall and compound hollow brick wallare0.32W/(m~2·K) and0.31W/(m~2·K) respectively, and it suits the65%of energysaving design.
引文
[1]刘利军.建筑节能关键—墙体保温[J].建筑科学,2007.4.
    [2]韦延年,于忠,余恒鹏.应以系统概念研发和应用自保温墙体材料[J].墙材革新与建筑节能,2008.03.
    [3]田学春,董孟能,陈乔.加气混凝土在外墙自保温体系中的应用分析[J].新型建筑材料,2009(2).
    [4]张元春,赵书杰.自保温体系性能优化的技术措施[J].墙材革新与建筑节能,2011.02.
    [5]谢厚礼等.墙体自保温体系技术要点分析.建设科技,2011(23).
    [6] Guoqiang Li, Nji Jones. Development of rubberized syntactic foam. Composites Part A:Applied Science and Manufacturing, Volume38, Issue6, June2007, Pages1483-1492.
    [7] Youngmin Kim, Shinill Kang. Development of experimental method to characterizepressure-dependent yield criteria for polymeric foams. Polymer Testing, Volume22, Issue2,April2003, Pages197-202.
    [8] Ammar Bouchair. Steady state theoretical model of fired clay hollow bricks for enhancedexternal wall thermal insulation. Building and Environment.2008(43):1603–1618.
    [9] Emil D. Manev, Anh V. Nguyen. Effects of surfactant adsorption and surface forces on thinningand rupture of foam liquid films. International Journal of Mineral Processing, Volume77, Issue1, September2005, Pages1-45.
    [10] John P Baltrus, Robert B LaCount. Measurement of adsorption of air-entraining admixture onfly ash in concrete and cement. Cement and Concrete Research, Volume31, Issue5, May2001, Pages819-824.
    [11]白宪臣.粉煤灰空心砌块的孔型构造与节能降噪[J].新型建筑材料,1998.03.
    [12]雷勇敏.烧结空心砖孔型及排布方式对热工性能的影响[J].砖瓦,1999.3.
    [13]秦钢,张剑民.墙体自保温烧结制品技术研究与应用[J].四川建材,2010.02.
    [14]孟繁华,王殿军等.提高空心砖和多孔砖热工性能的措施[J].砖瓦,2002.02.
    [15]韦延年,孙氰萍.四川自保温砌块的生产和应用[J].建筑砌块与砌块建筑,2009.04.
    [16] J.J. del Coz Díaz. Sound transmission loss analysis through a multilayer lightweight concretehollow brick wall by FEM and experimental validation. Building and Environment,2010(45):2373–2386.
    [17]李建成.混凝土空心砌块的孔型对其隔热性能的影响[J].混凝土与水泥制品,1995.05.
    [18]李临平,吴志根,李增耀,何雅玲,陶文铨.粘土空心砖结构优化的数值模拟[J].工程热物理学报,2008.5.
    [19]马保国.基于ANSYS的烧结多孔砖热模拟研究[J].砖瓦,2009.12.
    [20]彭翰翔.节能混凝土多孔砖墙体温度场数值模拟研究[J].山西建筑,2008.6.
    [21]陈丽萍,魏玲,程建杰.应用二维热阻图研究空心节能墙体砌块传热特性[J].南京工业大学学报(自然科学版),2004.6.
    [22] A.M. Papadopoulos, E. Giama. Environmental performance evaluation of thermal insulationmaterials and its impact on the building. Building and Environment,2007(42):2178–2187.
    [23]张源何,嘉鹏.节能空心砌块选型的正交综合分析[J].建筑技术,2009.4.
    [24]张锋.兼顾热工性能的混凝土自保温空心砌块力学性能优化分析研究[J].新型建筑材料,2010.3.
    [25]李桂青,严定法.空心砖产品的优化设计[J].武汉工业大学学报,1991.1.
    [26]陈江,黄立维,顾巧浓.造纸污泥热解特性及动力学研究[J].环境科学与技术,2006,29(1):87-88.
    [27] E.Kosseeka, J.kosny. Equivalent Effect of2D modeling of thermal bridges on the energyPerformance of buildings Numerieal application on the Matisse apartment. Energy andBuildings,1997(20):35-41.
    [28] Yang Dingyi et al.. Research on improving the heat insulation and preservation properties ofsmall-size concrete hollow blocks. Cement and Concrete Research,2003(33):1357–1361.
    [29] M. Zukowski et al.. Experimental and numerical investigation of a hollow brick filled withperlite insulation. Energy and Buildings,2010(42):1402–1408.
    [30] Sohrab Veiseh, Ali A. Yousefi. The Use of Polystyrene in Lightweight Brick Production[J].Iranian Polymer Journal,2003,12(4).
    [31] Ismail Demir, M.Serhat Baspnar, Mehmet Orhan. Utilization of kraft pulp productionresidues in clay brick production[J]. Building andEnvironment,2005,40.
    [32] Bettzieche,H. Pore-forming in brickmaking clay by means of expanded glass granules[J].Ziegelindustrie International,2000.5.
    [33] B. O. BITLISLI, E. KARACAKI. TILIZATION OF LEATHER INDUSTRY SOLIDWASTES IN THE PRODUCTION OF POROUS CLAY BRICK [J]. Journal of the Society ofLeather Technologists and Chemists,2006,19(1).
    [34] Burak Islkdag. Manufacture of high heat conductivity resistant clay bricks containing perlite[J]. Building and Environment,2007,42.
    [35]王世芳,张宝生,葛勇.微孔多孔砖的研究[J].中国建材,1993.7.
    [36]董晓峰,沈光银,池跃章,蔡小兵,林平.利用造纸污泥生产建筑轻质节能砖[J].浙江建筑,2008.2.
    [37]赵亚丁,郑秀华,高东旭.烧结微孔坯体的组成、结构与性能的研究[J].砖瓦,1998.3.
    [38]马保国.锯末燃烧特性对烧结多孔材料工艺性能的影响[J].武汉理工大学学报,2009.2.
    [39]田红龙,丛树民,戴睿.珍珠岩尾矿烧结砖的实验研究[J].房材与应用,1999.6.
    [40]邓家平,唐晓宇.建筑用泡沫玻璃保温砖的生产及应用[J].新型建筑材料,1995.4.
    [41]湛轩业等.国内开发烧结保温隔热砌块的新视角(二)——西欧烧结砌块的发展和填充砌块目前发展形势的综述.砖瓦,2011(11).
    [42] L.P. Li, Z.G. Wu, Z.Y. Li, Y.L. He, W.Q. Tao. Numerical thermal optimization of theconfiguration of multi-holed clay bricks used for constructing building walls by the finitevolume method. International Journal of Heat and Mass Transfer,2008(51):3669–3682.
    [43] Wiebke Drenckhan, Dominique Langevin. Monodisperse foams in one to three dimensions.Current Opinion in Colloid& Interface Science, Volume15, Issue5, October2010,Pages341-358.
    [44] I˙lker Bekir Topc-u et al.. Manufacture of high heat conductivity resistant clay brickscontaining perlite. Building and Environment,2007(42):3540–3546.
    [45]于景杰,马翠芬,邢国起,吴俊喜,王亦德.自保温混凝土多孔砖建筑体系节能设计[J].建筑技术,2010.05.
    [46]张双喜,张剑平,余才锐,王平粉煤灰挤塑泡沫复合砌块保温性能的优化研究[J].建筑节能,2007.03.
    [47]马翠芬,赵雷.自保温节能承重多孔砖的研究与应用[J].山东建筑大学学报,2009.1.
    [48]王亦德,刘京元.一种夹芯复合自保温混凝土多孔砖[J].建筑砌块与砌块建筑,2010.5.
    [49]孙氰萍.泡沫混凝土与混凝土复合保温空心砌块的研制[J].建筑砌块与砌块建筑,2008.6.
    [50]孙路,武洪强.用保温材料填孔混凝土砌块的热工性能分析[J].建筑砌块与砌块建筑,2011.4.
    [51] Gerson Henrique dos Santos et al.. Heat air and moisture transfer through hollow porousblocks. International Journal of Heat and Mass Transfer,2009(52):2390–2398.
    [52] L.P. Li, Z.G. Wu, Z.Y. Li, Y.L. He, W.Q. Tao. Numerical thermal optimization of theconfiguration of multi-holed clay bricks used for constructing building walls by the finitevolume method. International Journal of Heat and Mass Transfer,2008(51):3669–3682.
    [53] Yelong Zhao, Junwei Ye, Xiaobin Lu, Mangang Liu, Yuan Lin, Weitao Gong, Guiling Ning.Preparation of sintered foam materials by alkali-activated coal fly ash. Journal of HazardousMaterials, Volume174, Issues1–3,15February2010, Pages108-112.
    [54] Goangseup Zi, Byeong Min Kim, Yoon Koog Hwang, Young Ho Lee. The static behavior of amodular foam-filled GFRP bridge deck with a strong web-flange joint, Composite Structures.Volume85, Issue2, September2008, Pages155-163.
    [55] Joseph Henon, Arnaud Alzina, Joseph Absi, David Stanley Smith, Sylvie Rossignol. Porositycontrol of cold consolidated geomaterial foam: Temperature effect. Ceramics International,Volume38, Issue1, January2012, Pages77-84.
    [56]张菁燕,蒋青青,钱中秋. JNK轻质砂浆对自保温墙体节能效果影响的研究[J].墙材革新与建筑节能,2010.11.
    [57]杨玮.砂浆对石渣粉混凝土空心砌块墙体热工性能的影响[J].福建建筑,2009.3.
    [58]高连玉.专用砂浆是推广新型墙体材料确保工程质量的关键[J].砖瓦,2011.9.
    [59]中华人民共和国建设部GB50176-93.民用热工设计规范[S].北京,中国计划出版社,1993:25-63.
    [60]王晓璐,黄大宇.节能多孔砖墙体热工性能的数值计算与应用分析[J].四川建筑科学研究,2010,36(8):275-280.
    [61] Labia. Statistical modeling of heat transfer for thermal bridges of building[J]. Energy andBuildings,2005,37(9):945-951.
    [62] Réglementation Thermique2000[S]. Centre Scientifiqueet Technique du Batiment (France),2000.
    [63] Blomberg T.Heat3-A PC Program for Heat Transfer in Three Dimensions (Manual withBriefTheory and Examples)[M]. Lund University,2000:20~30.
    [64]南艳丽,冯雅,谷晋川等.建筑热桥的数值模拟与试验研究[J].低温建筑技术,2007(3):110-111.
    [65]李魁山,张旭.建筑热桥三维非稳态传热数值模拟分析[J].建筑科学,2007,23(12):35-38.
    [66]王海燕.复合墙体热工特性与能耗分析[D].哈尔滨:哈尔滨工业大学,2007.
    [67] A. BenLarbi. Statistieal modeling of heat transfer for thermal bridges of buildings. Energyand Buildings,2005(37):945-951.
    [68]张喜明,旷玉辉,于立强.瑞典及我国建筑节能现状与发展[J].建筑热能通风空调,2001(2):65-69.
    [69]砌体结构设计规范[S]. GB50003—2011.
    [70]何水清.废渣烧制砖瓦技术[M].北京:中国建筑工业出版社,2008:195-208.
    [71]郭恩震.砌块传热分析与合理应用[J].工业建筑,2002,32(11):42-46.
    [72] Ph. Viot, K. Shankar, D. Bernard. Effect of strain rate and density on dynamic behaviour ofsyntactic foam. Composite Structures, Volume86, Issue4, December2008, Pages314-327.
    [73]陈永辉,蔡海燕.纤维素和木质素含量对稻草、锯末热解及燃烧特性的影响[J].能源工程,2009(1):38-42.
    [74]毛玉如,苏亚欣.造纸污泥燃烧、热解与孔结构特性实验研究[J].再生资源与循环利用,2008,1(9):34-37.
    [75] ones Nji, Guoqiang Li. A CaO enhanced rubberized syntactic foam, Composites Part A:Applied Science and Manufacturing. Volume39, Issue9, September2008, Pages1404-1411.
    [76] MENDEZ A, FIDALGO J M et al.. Characterization and pyrolysis behaviour of differentpaper mill waste materials [J]. Journal of Analytical and Applied Pyrolysis,2009,86(1):66–73.
    [77]魏松年.烧结有孔砖产品设计建议[J].砖瓦,1995,(5):24-26.
    [78]中华人民共和国行业标准.烧结多孔砖和多孔砌块[J].砖瓦,2010,(3):40-44.
    [79]潘志华,程麟,李东旭等.新型高性能泡沫混凝土制备技术研究[J].新型建筑材料,2002(5):1-5.
    [80]王翠花.泡沫混凝土制备相关技术研究[D].南京工业大学,2006.
    [81]蔡娜.超轻泡沫混凝土保温材料的试验研究[D].重庆大学,2009.
    [82]蒋晓曙,李莽.泡沫混凝土的制备工艺及研究进展[J].混凝土,2012(1):142-144.
    [83]徐文,钱冠龙,化子龙等.用化学方法制备泡沫混凝土的试验研究[J].混凝土与水泥制品,2011(12):1-4.
    [84]王武祥.泡沫混凝土在自保温砌块中的应用研究[J].建筑砌块与砌块建筑,2009(5):2-3,8.
    [85]张磊,杨鼎宜.轻质泡沫混凝土的研究及应用现状[J].混凝土,2005(8):44-48.
    [86]乔欢欢.利用普通水泥制备免蒸养泡沫混凝土的研究[D].西南科技大学,2008.
    [87]杨久俊,张海涛,张磊等.粉煤灰高强微珠泡沫混凝土的制备研究[J].粉煤灰综合利用,2005(1):50-51.
    [88]石行波,霍冀川,李娴等.动物蛋白发泡剂制备泡沫混凝土的研究[J].硅酸盐通报,2009,28(3):609-612,623.
    [89]尹冰,刘才林,霍冀川等.动物蛋白类混凝士发泡剂的制备与发泡性能测试[J].新型建筑材料,2007,34(7):8-11.
    [90]李文博.泡沫混凝土发泡剂性能及其泡沫稳定改性研究[D].大连理工大学,2009.
    [91]周顺鄂.高性能泡沫混凝土的研究[D].西南科技大学,2009.
    [92]张磊蕾,王武祥.水料比对泡沫混凝土孔结构和性能的影响研究[J].建材技术与应用,2011(5):1-3.
    [93] Gabriele Tagliavia, Maurizio Porfiri, Nikhil Gupta. Influence of moisture absorption onflexural properties of syntactic foams. Composites Part B: Engineering, Volume43, Issue2,March2012, Pages115-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700