用户名: 密码: 验证码:
锆粉云瞬态火焰及连续喷射火焰特性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属锆粉因其燃烧速度大和燃烧热量高的优点,作为金属燃料被广泛应用于航天和军事领域,主要用在闪光灯粉末,焰火、炮弹、导火管、炸弹的定时信管和固体火箭推进剂的燃料中。为了满足航天和军工上的应用,锆粉颗粒上被包覆上FeOOH\Fe2O3\Fe3O4纳米颗粒形成核-壳结构的包覆锆粉,包覆后的锆粉在燃烧性能上也发生了改变。为了全面了解锆粉、FeOOH\Fe2O3\Fe3O4包覆锆粉在燃烧过程中的火焰特性,本文研制了粉尘云连续吹喷燃烧实验系统,并利用粉尘云瞬态火焰传播实验系统,全面分析了锆粉云、FeOOH\Fe2O3\Fe3O4包覆锆粉云的瞬态火焰特性和连续喷射火焰特性,并结合粉体形貌分析、物相分析和高温抗氧化性分析,探索以上几种锆粉云在空气中的燃烧机理,为锆粉云瞬态火焰传播和载粒流喷射燃烧的应用提供理论基础。
     本文首先利用粉尘云瞬态火焰实验系统,研究了不同浓度的锆粉云和FeOOH\Fe2O3\Fe3O4包覆锆粉云的火焰在管道中传播的特性。研究结果表明:(1)对于相同种类的粉尘云,当其浓度较低时,随粉尘云浓度的增大,燃烧强度增强发光强度增大,火焰传播速度加快,最高火焰温度也随之增加。当粉尘云浓度达到某一值时,此时火焰传播速度最快,火焰温度最高。而后随粉尘云浓度的增加火焰传播速度和火焰温度均缓慢下降;(2)对纯锆粉而言,火焰传播速度最快时对应的粉尘云浓度为0.625kg/m3。对于摩尔比为1:6(包覆物:纯锆粉)的Fe203包覆锆粉、FeOOH包覆锆粉和Fe304包覆锆粉,火焰传播速度最快时对应的粉尘云浓度分别为1.21kg/m3、1.15kg/m3和1.37kg/m3,当摩尔比为1:3时,对应的浓度分别为1.13kg/m3、0.96kg/m3和1.32kg/m3。对于摩尔比相同的FeOOH\Fe2O3\Fe3O4包覆锆粉,其最大火焰传播速度和最高火焰温度的排序都是:Fe203包覆锆粉>FeOOH包覆锆粉>Fe304包覆锆粉。
     其次,本文研究了纯锆粉云、FeOOH\Fe2O3\Fe3O4包覆锆粉云的连续喷射火焰特性,得到连续喷射火焰的火焰结构、火焰稳定性、火焰高度等特征以及粉尘云浓度对火焰发射率、最高火焰温度和辐射热通量的影响规律。研究结果表明:(1)锆粉云喷射火焰可近似认为是一个轴对称火焰体,喷射火焰可分为火焰连续区、间歇区及离散粒子区。风速和粉尘云浓度之间的配比决定了粉尘云喷射火焰能否稳定在燃烧器上燃烧。随粉尘云浓度的增大,喷射火焰的平均火焰高度、平均火焰面积和平均火焰宽度均增大,但增大的幅度不同;(2)喷射火焰的温度在轴向高度上的变化规律是:从火焰底部到火焰连续区顶端,温度随高度的增加先升高后降低,在间歇区时火焰温度又有所回升,粉尘云浓度较高时,最高火焰温度的波动幅度较小。随粉尘云浓度的增加,火焰温度整体升高;(3)喷射火焰下部的辐射热通量大于上部,距喷射火焰越近,火焰的热辐射作用越强,火焰上下的辐射热通量的差值越大。随粉尘云浓度的增加,火焰热辐射作用整体增强;(4)锆粉被包覆后,火焰温度下降,火焰热辐射作用减弱,火焰发射率增大,最高火焰温度与火焰发射率成负相关关系。浓度分别为0.328kg/m3、0410kg/m3、0.485kg/m3的锆粉云,其喷射火焰的发射率分别为0.2、0.19、0.18,最高火焰温度分别为2147.5℃、2248.1℃、2377.8℃,辐射热通量分别为350.31kW/m2、435.19kW/m2、559.88kW/m2。对于摩尔比为1:6的FeOOH包覆锆粉云,当浓度为0.485kg/m3时,其喷射火焰的发射率为0.44,最高火焰温度为1528.4℃。
     进而,本文建立了锆粉云瞬态火焰结构的物理模型,锆粉云火焰可划分为预热区、燃烧区和已燃区,在燃烧区内,又可进一步分为小粒子燃烧区、大小粒子混合燃烧区和大粒子燃烧区。同时还建立了锆粉云多管喷射火焰的物理模型,将粉尘云多管喷射火焰简化为多根单管喷射火焰相互作用形成的叠加火焰,单束火焰与单束火焰之间彼此相互作用,在距离喷管出口上方一定距离处的火焰温度达到最大。建立了喷射火焰中锆颗粒群燃烧运动的结构模型,将锆颗粒群向上燃烧运动过程分为点燃区、晶体转变区和燃尽区。
     最后,本文分析了锆粉颗粒、FeOOH\Fe2O3\Fe3O4包覆锆粉颗粒在空气中燃烧的化学反应机理。研究结果表明:(1)锆粉、FeOOH\Fe2O3\Fe3O4包覆锆粉在空气中的燃烧都是增重的放热反应过程,锆粉比包覆锆粉的反应开始温度低,单位质量放热量大;包覆物越多(包覆层越厚),其反应开始温度越高,单位质量放热量越少;(2)根据固体化学中的金属晶体结构分析,锆粉颗粒在空气中燃烧时可能的化学反应机理是:二氧化锆与锆中含有的某些微量元素的氧化物形成了二氧化锆固溶体,固溶体中含有大量的氧离子空位,外界氧离子通过氧离子空位扩散到锆金属表面,与锆继续发生化学反应;(3) FeOOH\Fe2O3\Fe3O4包覆锆粉颗粒在空气中燃烧的化学反应机理是:包覆层与内核锆层发生了置换反应,内核锆与氧气发生了氧化还原反应,生成的铁单质在高温下被氧化,Fe203在800℃左右发生热分解,另外FeOOH包覆锆颗粒多了一个脱羟基过程。
With advantages of high combustion speed and high combustion heat, zirconium metal powder, as a kind of metal fuel, is widely used in aerospace and military fields, such as flash powder, fireworks, artillery shells, fuzes, timing bomb fuses and solid propellant rocket fuel. In order to meet some special application in aerospace industry and military industry, zirconium dust particles are coated with FeOOH\Fe2O3\Fe3O4nanoparticles to form a core-shell structure, after which the combustion performance of coated zirconium dusts has been changed. In order to fully understand the flame characteristics of zirconium dusts and FeOOH\Fe2O3\Fe3O4coated zirconium dusts during their combustion process, an experimental system of dust cloud continuous blowing spray combustion was developed in this work and combined a experimental system of dust cloud transient flame propagation, both the transient flame characteristics and continuous jet flame characteristics of zirconium dust cloud, FeOOH\Fe2O3\Fe3O4coated zirconium dust cloud were comprehensively analyzed. In addition, by combining with powder morphology analysis, phase analysis and high temperature oxidation resistance analysis, the combustion mechanisms of zirconium dust cloud and coated zirconium dust cloud in the air were explored, which provided the basic theories to the transient flame propagation and the spray combustion of carrier particles stream.
     Firstly, the experimental system of dust cloud transient flame propagation was used to study the flame propagation characteristics of zirconium dust cloud in the pipeline at different dust cloud concentration. The flame propagation behaviors of FeOOH\Fe2O3\Fe3O4coated zirconium dust cloud was also investigated, basing on the same experimental methods. The results show that:(1) for the same kind of dust cloud, when the dust cloud concentration is low, the increase of dust cloud concentration will enhance combustion intensity, increase luminous intensity, flame propagation acceleration and maximum flame temperature. When the dust cloud concentration reaches a certain value, the flame will achieve the highest propagation speed.and the flame temperature will reach the maximum value. Then, with the continuous increase of dust cloud concentration, both the flame propagation speed and flame temperature will decrease slowly.(2) for pure zirconium dust cloud, there is the highest flame propagation speed at dust cloud concentration of0.625kg/m3. For FeOOH\Fe2O3\ Fe3O4coated zirconium dust cloud with molar ratio of1:6(coating material:pure zirconium), there are the highest flame propagation speed at dust cloud concentration of1.21kg/m3,1.15kg/m3and1.37kg/m3, respectively. The molar ratio changes to1:3, there are the highest flame propagation speed at dust cloud concentration of1.13kg/m3,0.96kg/m3and1.32kg/m3, respectively. For FeOOH\Fe2O3\Fe3O4coated zirconium dust cloud with the same molar ratio, the sequence of both the maximum flame propagation speed and the maximum flame temperature is:Fe2O3coated zirconium dust cloud> FeOOH coated zirconium dust cloud> Fe3O4coated zirconium dust cloud.
     Secondly, the continuous jet flame characteristics of zirconium dust cloud and FeOOH\Fe2O3\Fe3O4coated zirconium dust cloud were studied. The features of flame structure, flame stability and flame height of jet flame and the influence s of dust cloud concentration on the flame emissivity, the maximum flame temperature and the radiation heat flux were obtained. The results show that:(1) the jet flame of zirconium dust cloud is considered as an axisymmetric flame, and the structure of the jet flame is divided into continuous flame zone, intermittent flame zone and discrete particles zone. Whether a jet flame of dust can burn steadily on the burner or not, which depends on the ratio of the gas flow velocity and the dust cloud concentration. With increase of dust cloud concentration, all of the average flame height, the average flame area and the average flame width increase, but their increasing rates are different.(2) the variation law of the temperature along the axis of jet flame is analyzed. From the bottom of flame to the top of continuous flame zone, as the height increases, the flame temperature first increases and then decreases, finally increases again in intermittent zone. The higher dust cloud concentration, the smaller the maximum flame temperature fluctuations, and as the dust cloud concentration increases, the overall flame temperature grows.(3) the radiation heat flux of the upper position of jet flame is larger than the lower, and the nearer to the jet flame, the radiation increases, the difference of radiation heat flux between the upper and the lower position of jet flame becomes larger. With increas e of dust cloud concentration, the whole flame radiation heat flux heightens.(4) compared with the pure zirconium dust cloud combustion, the flame temperature of coated zirconium dust cloud decreases, the flame radiation heat flux weakens, and the flame emissivity increases. The maximum flame temperature has a negative correlation to the flame emissivity. When the zirconium dust cloud concentration are0.328kg/m3,0.410kg/m3and 0.485kg/m3, the jet flame emissivity are0.2,0.19and0.18, respectively, the maximum flame temperature are2147.5℃,2248.1℃and2377.8℃, respectively, and the radiation heat flux are350.31kW/m2,435.19kW/m2and559.88kW/m2, respectively. For FeOOH coated zirconium dust cloud with molar ratio of1:6, there is the highest flame propagation speed at dust cloud concentration of0.485kg/m3, the jet flame emissivity is0.44, and the maximum flame temperature is1528.4℃.
     Thirdly, a physical model of the instantaneous flame structure of zirconium dust cloud is established. The flame structure of zirconium dust cloud is divided into three zones:preheating zone, combustion zone and burned zone; and the combustion zone is further divided into three zones, small particles combustion zone, mixture combustion zone with small particles and larger particles, and larger particles combustion zone. Also, a physical model of multi-tube jet combustion of dust cloud is established. In this model, a jet flame is formed with single tube superposition flame, there is an interaction between single flame and other single flame, the flame temperature reached the maximum at a certain distance above the nozzle exit. A structure model of particles group combustion and movement in the jet flame is also established, the process of particles group combustion and movement is divided into three zones:ignition zone, crystal transition zone and burned zone.
     Finally, the particles chemical reaction mechanisms of zirconium dust cloud combustion and FeOOH\Fe2O3\Fe3O4coated zirconium dust cloud combustion in air were analyzed. The results show that:(1) both the combustion process of zirconium dusts and coated zirconium dusts in air are characterized by the weight increase and heat release. The initial reaction temperature of zirconium dusts is lower than the coated zirconium dusts, and the heat emission of a unit mass of zirconium dusts is more than the coated zirconium dusts. Moreover, the more coating material mass (the thicker of coating layer), the higher initial reaction temperature and the less heat emission of a unit mass of dusts.(2) according to the metal crystal structure analysis of solid chemistry, the possible chemical reaction mechanism of the zirconium particles combustion in air is that the zirconium dioxide is capable of combining with the some trace elements oxide to form the solid solution of zirconium dioxide, a lot of oxygen vacancies exist in the solid solution, so a large number of oxygen ions spread to the surface of zirconium metal by oxygen vacancies diffusion, which makes the chemical reaction of zirconium particles combustion continue.(3) the chemical reaction mechanisms of FeOOH\Fe2O3\Fe3O4coated zirconium particles combustion in air are that coating layer makes a replacement reaction with the inner core zirconium, the inner core zirconium makes a oxidation-reduction reaction with oxygen, and pure Fe is oxidized at high temperatures, Fe2O3begins thermal decomposition aroud800℃, and FeOOH coated zirconium particles has a hydroxyl releasing process.
引文
[1]司林华.纳米金属燃料[J].化学教育,2007,(1):11-12.
    [2]庞维强,樊学忠.金属燃料在固体推进剂中的应用进展[J].化学推进剂与高分子材料,2009,7(2):1-5.
    [3]王克秀,李葆萱.固体火箭推进剂及燃烧[M].北京:国防工业出版社,1983.
    [4]R. W. Armstrong, B. Baschung, D. W. Booth, et al. Enhanced propellant combustion with nanoparticles[J]. Nano Letters,2003,3(2):253-255.
    [5]徐志有.包覆式Zr粉/聚合物复合粒子的制备与表征[D].南京理工大学,2009.
    [6]K.K.郭,M.萨默菲尔德.固体推进剂燃烧基础(下册)[M].北京:宇航出版社,1994.
    [7]M. Hertzberg, I. A. Zlochower, K. L. Cashdollar. Metal dust combustion, explosion limits, pressures and temperatures[C].24th Symposium (Int) on Combustion, Pittsburgh,1992: 1827-1835.
    [8]K. Seshadri, A. L. Berlad, V. Tangirala. The structure of premixed particle-cloud flames[J]. Combustion and Flame,1992(89):333-342.
    [9]A. E. Dahoe, K. Hanjalic, B. Scarlett. Determination of the laminar burning velocity and the Markstein length of powder-air flames[J]. Powder Technology,2002,122(2):222-238.
    [10]W. J. Ju, R. Dobashi, T. Hirano. Dependence of flammability limits of a combustible particle cloud on particle diameter distribution[J]. Journal of Loss Prevention in the Process Industries,1998,11(3):177-185.
    [11]W. J. Ju, R. Dobashi, T. Hirano. Reaction zone structures and propagation mechanisms of flames in stearic acid particle clouds[J]. Journal of Loss Prevention in the Process Industries, 1998,11:423-430.
    [12]Ou-Sup Han, Masaaki Yashimaa, Toei Matsuda, et al. A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles behavior[J]. Journal of Loss Prevention in the process Industries,2001,14(3):153-160.
    [13]C. Proust. Flame propagation and combustion in some dust-air mixtures [J]. Journal of Loss Prevention in the Process Industries,2006,19:89-100.
    [14]孙金华PMMA微粒子云中传播火焰的基本结构[J].热科学与技术,2004,3(1):76-80.
    [15]孙金华,卢平,刘义.空气中悬浮金属微粒子的燃烧特性[J].南京理工大学学报,2005,29(5):582-585.
    [16]J. H. Sun, R. Dobashi, T. Hirano. Concentration profile of particles across a flame propagating through an iron particle cloud[J]. Combustion and Flame,2003,134:381-387.
    [17]J. H. Sun, R. Dobashi, T. Hirano. Velocity and number density profiles of particles across upward and downward flame propagating through iron particle clouds [J]. Journal of Loss Prevention in the Process Industries,2006,19:135-141.
    [18]M. Bidabadi, A. Haghiri, A. Rahbari. Mathematical modeling of velocity and number density profiles of particles across the flame propagation through a micro-iron dust cloud[J]. Journal of Hazardous Materials,2010,176:146-153.
    [19]J. H. Sun, R. Dobashi, T. Hirano. Structure of flames propagating through aluminum particles cloud and combustion process of particles[J]. Journal of Loss Prevention in the Process Industries,2006,19:769-773.
    [20]Y. B. Ding, J. H. Sun, X.. C. He, et al. Flame propagation characteristics and flame structures of zirconium particle cloud in a small-scale chamber[J]. Chinese Science Bulletin,2010, 55(34):3954-3959.
    [21]Y. Yin, J. H. Sun, Y. B. Ding, et al. Experimental study on flames propagating through zirconium particle clouds[J]. Journal of Hazardous Materials,2009,170:340-344.
    [22]陈东梁,孙金华,刘义等.甲烷、煤尘复合体系燃烧特性及火焰结构的实验研究[J].自然科学通报,2007,17(4):494-498.
    [23]陈东梁,孙金华,刘义等.甲烷/煤尘复合体系燃烧反应特性[J].工程热物理学报,2008,29(7):1243-1247.
    [24]J. L. Chen, R. Dobashi, T. Hirano. Mechanisms of flame propagation through combustible particle clouds[J]. Journal of Loss Prevention in the Process Industries,1996,9(3):225-229.
    [25]E. L. Dreizin, V. K. Hoffman. Constant pressure combustion of aerosol of coarse magnesium particles in microgravity[J]. Combustion and Flame,1999,118:262-280.
    [26]P. Bucher, R. A. Yeter, F. L. Dryer. Structure measurement of single, isolated aluminum particles burning in air[C]. Twenty-Sixth Symposium (Int) on Combustion/The Combustion Institute,1996:1899-1908.
    [27]E. Shafirovich, S. K. Teoh, A. Varma. Combustion of levitated titanium particles in air[J]. Combustion and Flame,2008,152:262-271.
    [28]Y. Shoshin, E. Dreizin. Production of well-controlled laminar aerosol jets and their application for studying aerosol combustion processes[J]. Aerosol Science and Technology, 2002,36:953-962.
    [29]Y. Shoshin, E. Dreizin. Particle combustion rates in premixed flames of polydisperse metal-air aerosols[J]. Combustion and Flame,2003,133:275-287.
    [30]S. Goroshin, M. Bidabadi, J. H. S. Lee. Quenching distance of laminar flame in aluminum dust clouds [J]. Combustion and Flame,1996,105:147-160.
    [31]S. Goroshin, Y. Shoshin, et al. Regimes of Particle Combustion and Flame Speed in Gas Suspensions[J]. Doklady Akademii Nauk Sssr,1991,321(3):548-551.
    [32]G. A. Risha, Y. Huang, R. A. Yetter, et al. Experimental investigation of aluminum particle dust cloud combustion[C].43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,2005,10-13.
    [33]Y. Huang, G. A. Risha, V. Yang, et al. Flame propagation in bimodal nano/micro-sisd aluminum particles/air mixtures[C].44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,2006,9-12.
    [34]Y. Huang, G. A. Risha, V. Yang, et al. Combustion of bimodal nano/micron-sized aluminum particle dust in air[J]. Proceedings of the Combustion Institute,2007,31:2001-2009.
    [35]徐锐.铜-银、镍-银核-壳型双金属粉及锆酸钙包覆镍粉的研制[D].中南大学,2009.
    [36]王春生,严学华,程晓农等.无机粉体表面包覆金属改性研究现状[J].无机盐工业,2007,39(1):4-7.
    [1]J. H. Sun, R. Dobashi, T. Hirano. Structure of flames propagating through aluminum particles cloud and combustion process of particles[J]. Journal of Loss Prevention in the Process Industries,2006,19:769-773.
    [2]王玉芬,刘城.石英玻璃[M].北京:化学工业出版社,2007.
    [3]A. Denkevits, S. Dorofeev. Explosibility of fine graphite and tungsten dusts and their mixtures[J]. Journal of Loss Prevention in the Process Industries,2006,19:174-180.
    [4]陈东梁,孙金华,刘义等.甲烷、煤尘复合体系燃烧特性及火焰结构的实验研究[J].自然科学进展,2007,17(4):494-499.
    [5]廖光煊,王喜世,秦俊.热灾害实验诊断方法[M].合肥:中国科学技术大学出版社,2003.
    [6]A. Ballantyne, J. B. Moss. Fine wire thermocouple measurement of fluctuating temperature[J]. Combustion Science and Flame Technology,1977,17:63-72.
    [7]J. H. Sun, R. Dobashi, T. Hirano. Temperature profile across the combustion zone propagating through an iron particle cloud[J]. Journal of Loss Prevention in the Process Industries,2001,14(6):463-467.
    [8]陆厚根.粉体技术导论[M].同济大学出版社,1998.
    [9]徐向乾,巩志强,路春美等.生物质/煤粉微量给料的实现与优化[J].热能动力工程,2008,23(3):321-323.
    [10]机械设计手册联合编写组.机械设计手册(第二分册)[M].北京:化学工业出版社,1992.
    [11]付国民,王佐民,刘伟军.微量给粉装置的设计与实验[J].哈尔滨工业大学学报,2004,9(3):8-10.
    [12]R.H金斯敦.光学和红外辐射探测[M].北京:科学出版社,1984.
    [13]张维力,宋广礼.热成像[M].北京:新时代出版社,1988.
    [14]李晓刚,付冬梅.红外热像检测与诊断技术[M].北京:中国电力出版社,2006.
    [15]廖晓思.火焰光谱分析系统[D].西安电子科技大学,2009.
    [16]杭庆彪,陈乐,刘瑞祥.红外辐射相对温度测量法的新研究[J].红外技术,2009,31(6):315-318.
    [17]杨立.红外热像仪测温计算与误差分析[J].红外技术,1998,21(4):20-24.
    [18]韩才元.燃烧测量技术[M].华中理工大学出版社,1990.
    [1][EB/OL]. http://baike.baidu.com/view/38860.htm.
    [2]薛饶伯,俊友译.锆[M].中国工业出版社,1965.
    [3]《稀有金属知识》编写组.锆与铪[M].冶金工业出版社,1976.
    [4]熊炳昆,温旺光,杨新民.锆铪冶金[M].北京:冶金工业出版社,2002.
    [5]祁景玉.现代分析测试技术[M].上海:同济大学出版社,2006.
    [6]魏福祥.现代仪器分析技术及应用[M].北京:中国石化出版社,2011.
    [7]盖胜国.超微粉体技术[M].化学工业出版社,2004.
    [8]徐国财,张立德.纳米复合材料[M].化学工业出版社,2002.
    [9]曹茂盛,曹传宝,徐甲强.纳米材料学[M1.哈尔滨工程大学出版社,2002.
    [10]李新光,董洪光,S. Radandt哈特曼装置上粉尘浓度的测量[.J].东北大学学报,2007,28(4):493-495.
    [11]F.A.威廉斯.燃烧理论[M].科学出版社,1985.
    [12]傅维镳,张永廉,王清安.燃烧学[M].高等教育出版社,1989.
    [13]O. S. Han, M. Yashimaa, T. Matsuda, et al. A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles behavior[J]. Journal of Loss Prevention in the process Industries,2001,14(3):153-160.
    [14]J. H. Sun, R. Dobashi, T. Hirano. Concentration profile of particles across a flame propagating through an iron particle cloud[J]. Combustion and Flame,2003,134:381-387.
    [15]J. H. Sun, R. Dobashi, T. Hirano. Structure of flames propagating through aluminum particles cloud and combustion process of particles[J]. Journal of Loss Prevention in the Process Industries,2006,19:769-773.
    [16]陈东梁.甲烷/煤尘复合火焰传播特性及机理的研究[D].中国科学技术大学,2007.
    [17]R. K. Eckhoff. Current status and expected future trends in dust explosion research[J]. Journal of Loss Prevention in the Process Industries,2005,18:225-237.
    [18]T. Abbasi, S.A. Abbasi. Dust explosions-cases, causes, consequences, and control[J]. Journal of Hazardous Materials,2007,140:7-44.
    [19]W. J. Ju, R. Dobashi, et al. Reaction zone structures and propagation mechanisms of flames in stearic acid particle clouds[J]. Journal of Loss Prevention in the Process Industries, 1998(6):423-430.
    [20]J. L. Chen, R. Dobashi, T. Hirano. Mechanisms of flame propagation through combustible particle clouds[J]. Journal of Loss Prevention in the Process Industries,1996,9(3):225-229.
    [21]孙金华,王青松,纪杰.火焰精细结构及其传播动力学[M].科学出版社,2011.
    [22]Y. Huang, G. A. Risha, V. Yang, et al. Combustion of bimodal nano/micron-sized aluminum particle dust in air[J]. Proceedings of the Combustion Institute,2007,31:2001-2009.
    [1]陈璞.火旋风的火焰与燃烧特性实验研究[D].中国科学技术大学,2009.
    [2]孙金华PMMA微粒子云中传播火焰的基本结构[J].热科学与技术,2004,3(1):76-80.
    [3]丁毓峰MATLAB从入门到精通[M].北京:化学工业出版社,2011.
    [4]朱虹.数字图像处理基础[M].北京:科学出版社,2005.
    [5]段悦,袁昌明.火灾探测中动态火焰的数字图像处理[J].中国计量学院学报,2009,20(1):55-58.
    [6]周鹏,朱虹,季瑞瑞.炉膛火焰图像预处理的MATLAB实现[J].微计算机信息,2007,23(63):306-307.
    [7]孙志友.航空煤油池火燃烧特性研究[D].中国科学技术大学,2008.
    [8]范维澄,王清安,姜冯军等.火灾学简明教程[M].中国科学技术大学出版社,1995.
    [9](美)G.詹姆士.火灾学基础[M].北京:化学工业出版社,2010.
    [10](罗)斯坦标林努.工业火焰的燃烧过程[M].机械工业出版社,1983.
    [11]傅维镳,张永廉,王清安.燃烧学[M].高等教育出版社,1989.
    [12](英)A. G. Gaydon, H. G. Wolfhard火焰学[M].中国科学技术出版社,1994.
    [13]陈维汉,钱壬章.炉膛煤粉空气射流的火焰稳定性分析[J].华中理工大学学报,1991,19(4):77-84.
    [14]曹红加.预混火焰燃烧不稳定性及其主动控制[D].中国科学院研究生院,2004.
    [15]陈志斌,胡隆华,霍然等.基于图像相关性提取的火焰振荡频率[J].燃烧科学与技术,2008,14(4):367-371.
    [16]蒋伯诚,周振中,常谦顺等.计算物理中的谱方法-FFT及其应用[M].长沙:湖南技术出版社,1989.
    [17]J. H. Sun, R. Dobashi, T. Hirano. Temperature profile across the combustion zone propagating through an iron particle cloud[J]. Journal of Loss Prevention in the Process Industries,2001,14(6):463-467.
    [18]张颉,孙锐,吴少华等.200MW旋流燃烧方式煤粉炉炉内燃烧试验和数值研究[J].中国电机工程学报,2003,23(8):215-220.
    [19]潘功配,杨硕.烟火学[M.北京理工大学出版社,1997.
    [20]焦清介,霸书红.烟火辐射学[M].国防工业出版社,2009.
    [21]李响.利用非接触红外测温技术测量火焰温度[D].天津理工大学,2010.
    [22](苏)A.E.卡迪舍维奇.火焰温度测量物理基础和方法[M].上海科学技术出版社,1965.
    [23]G. H. Markstein. Radiative energy transfer from turbulent diffusion flames [J]. Combustion and Flame,1976,27:51-63.
    [24]傅德彬,姜毅,袁增凤.燃气射流气固两相流场研究[J].北京理工大学学报,2004,24(5):387-391.
    [25]郑楚光,晏蓉,周英彪.煤燃烧过程中悬浮粒子的辐射特性[J].工程热物理学报,1993,14(3):317-321.
    [26]Dinenno. SFPE handbook of fire protection engineer ing[R]. National Fire Protection Association,1995.
    [27]C. L. Tien, K. Y. Lee, A. J. Stretton. SFPE handbook of fire protection engineering[R]. National Fire Protection Association,1988.
    [28]J. P. Holman. Heat Transfer[M]. McGraw-Hill, Scarborough, CA, USA,1976.
    [29]薛饶伯,俊友译.锆[M].中国工业出版社,1965.
    [30]林振汉.氧化锆材料的特性及在结构陶瓷中的应用和发展[J].稀有金属快报,2004,23(6):6-10.
    [31]曹泰岳,张为华.轻金属颗粒燃烧理论研究进展[J].推进技术,1996,17(2):82-87.
    [32]C. Badiola, R. J. Gill, E. L. Dreizin. Combustion characteristics of micron-sized aluminum particles in oxygenated environments [J]. Combustion and Flame,2011,158:2064-2070.
    [33]P. Puri, V. Yang. Thermo-mechanical behavior of nano aluminum particles with oxide layers during melting[J]. Journal of Nanoparticle Research,2010,12:2989-3002.
    [34]S. Mohan, L. Furet, E. L. Dreizin. Aluminum particle ignition in different oxidizing environments [J]. Combustion and Flame,2010,157:1356-1363.
    [35]P. Lynch, G. Fiore, H. Krier, et al. Gas-phase reaction in nanoaluminum combustion [J]. Combustion Science and Technology,2010,182(7):842-857.
    [36]H. M. Cassel, I. Liebman. Combustion of magnesiumparticles [J]. Combustion and Flame,, 1962,6:153-156.
    [37]E. Y. Shafirovich, U. I. Goldshleger. The superheat phenomenon in the combustion of magnesium particles[J]. Combustion and Flame,1992,88:425-432.
    [38]E. L. Dreizin. V. K. Hoffmann. Constant pressure combustion of aerosol of coarse magnesium particles in microgravity[J]. Combustion and Flame,1999,118:262-280.
    [39]蒲永平.功能材料的缺陷化学[M].化学工业出版社,2007.
    [40][日]工藤徹一,笛木和雄.固体离子学[M].北京工业大学出版社,1992.
    [41]I. E. Molodetsky, E. P. Vicenzi, E. L. Dreizin, et al. Phases of titanium combustion in Air[J]. Combustion and Flame,1998,112:522-532.
    [42]H. Ewald, U. A.Tamburini, ZA. Munir. Combustion of zirconium powders in oxygen[J], Materials Science and Engineering,2000,291(1-2):118-130.
    [1]T. Fujimoto. The development and spread of nanotechnology and related measurement standards[M]. AIST Today,2005.
    [2]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [3]丁秉钧.纳米材料[M].北京:机械工业出版社,2004.
    [4]F. Caruso. Nanoengineering of Particle Surfaces[J]. Advance Materials,2001,13:11-22.
    [5]X. Wang, J. Zhuang, Q. Peng, et al. A general strategy for nanocrystal synthesis[J]. Nature, 2005(7055):121-124.
    [6]A. H. Lu, E. L. Salabas, F. Schuth. Magnetic nanoparticles:synthesis, protection, functionalization, and application[J]. Angewandte Chemie International Edition,2007(8): 1222-1244.
    [7]B. M. Berkovsky, V. F. Medvedev, M. S. Krokov. Magnetic fluids:engineering applications [M]. Oxford University Press,1993.
    [8]王志飞.磁性纳米复合颗粒的合成及其应用研究[D].东南大学,2005.
    [9]钭启升,张辉,邬剑波.氧化铁和羟基氧化铁纳米结构的水热法制备及其表征[J].无机材料学报,2007,22(2):213-218.
    [10]楚士晋.炸药热分析[M].科学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700