用户名: 密码: 验证码:
红土镍矿氯化离析过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高品位硫化镍矿日益枯竭,低品位红土镍矿的利用随之受到越来越多的关注。本论文以国外某一地区的低铁高镁红土镍矿为原料,在本课题组所进行的工艺研究基础上,对红土镍矿氯化离析过程进行研究。
     通过热力学计算,绘制了气相组成热力学平衡图。应用FactS age软件以及其相图数据库,研究了M-C-O系相图、MO-SiO2系相图、Ni-Fe-O系相图、Ni-Fe合金磁性相图和混合氯化物相图,结果表明要得到好的离析效果必须要控制体系为弱还原性气氛和较高的温度,在850℃出料水淬,应控制镍铁合金中镍的质量分数≥5%。
     为了研究氯化氢的生成过程,研究了SiO2与CaCl2的反应过程:在200℃以下,二水氯化钙发生脱水反应;温度在200℃到750℃之间,体系无有效反应发生;温度在750℃到800℃之间,体系SiO2和CaCl2的摩尔比为2:1和1:1时,生成了Ca2SiO3Cl2,随温度升高Ca2SiO3Cl2与水反应放出氯化氢气体,摩尔比为1:2时,生成了Ca3SiO5·CaCl2,但是随着温度升高,其并不分解,过量的氯化钙会因蒸汽压降低而以气体的形式挥发。
     对金属氧化物的氯化过程进行研究,结果表明:在600℃左右,蛇纹石分解,脱羟基,增大了氯化过程的反应界面,而温度在700℃,热力学上需要更高的氯化氢气体分压,从而造成了镍的氯化率随着温度从600~1000℃升高,先降低然后升高。对氧化镍氯化过程动力学计算,反应符合气固反应的“收缩核模型”,属于内扩散控制,表观活化能为32.42 kJ-mol-1。
     对金属颗粒的生成及长大过程进行研究,结果表明:随着水蒸气分压的升高,精矿品位逐渐降低,镍的收率逐渐升高。镍铁合金颗粒可以在碳表面和粗糙的硅酸盐表面离析,在碳表面离析的合金颗粒容易长大,而在硅酸盐表面离析的颗粒难以长大。在1000℃~1100℃下,颗粒的长大机制是小的镍合金颗粒向更加有利位置即两颗粒的接触点迁移的过程;在1100~1350℃条件下,颗粒的长大机制是小的镍铁合金颗粒熔化蒸发吸附到大的镍铁合金颗粒表面的过程。
     对红土镍矿离析过程物相变化进行研究,结果表明:在400℃~600℃之间,随着温度的升高,碳酸镁分解;600℃~700℃之间,蛇纹石相分解消失,取而代之的是富铁和富钙的橄榄石相。降温过程中红土镍矿的矿相并没有发生明显改变,红土矿氯化离析的过程是不可逆的过程。
As the high grade nickel sulfide ores are depleted, more and more attention has been put on low grade nickel laterite. In this paper, based on the process study of our lab team, the process of chloride segregation of laterite with the low Fe and high Mg ore from an area of foreign as raw materials was studied.
     By thermodynamic calculation, the thermodynamic equilibrium diagram of vapor composition was drawn. Applying FactSage software and database, phase diagram of the M-C-O, MO-SiO2, Ni-Fe-O, Ni-Fe alloy, Ni-Fe alloy magnetic and mixed chloride have been studied. In order to achieve good segregation effect, the system must be weak reducing atmosphere and high temperature. The production, water quenching at 850℃, should control the nickel mass fraction of nickel-iron alloy≥5%.
     To study the generation of hydrogen chloride, the reaction process of SiO2 and CaCl2 was studied:below 200℃, CaCl2·2H2O was dehydration. Between 200℃to 750℃, there was not valid reaction. Between 750℃to 800℃, with the ratio of SiO2 and CaCl2 2:1 and 1:1, the Ca2Si03Cl2 was generated, as the temperature increases, Ca2Si03Cl2 decomposed with hydrogen chloride gas released; with the ratio 1:2, Ca3Si05-CaCl2 was generated, as the temperature increases, it did not break down, however, excessive calcium chloride volatilized due to vapor pressure decreased.
     The researches of chlorination process of metal oxide indicated that at about 600℃, serpentine decomposed, which increased the reaction interface of the chlorination process. After 700℃, a higher HCI partial pressure was needed. This Causes the rate of nickel chloride decreased first and then increased as the temperature increased from 600℃~1000℃. Based on kinetics calculations of chlorination of nickel oxide, the reaction accords with the "shrinking core model" of gas-solid reactions, which was controlled by the internal diffusion, the apparent activation energy value was 32.42kJ·mol-1.
     The results of the formation and growth process of metal particles showed that with the increase of steam pressure, the concentrate grade decreased and the yield of nickel increased gradually. Nickel-iron alloy particles can segregate on the carbon surface and rough surface of silicate. The growth of particles was easy on the carbon surface, but on the surface of silicate particles, it was very difficult. At low temperature, the particles growth mechanism is small nickel-iron alloy particles move to a more favorable position which is the contact point of two particles; At high temperature conditions, the particles growth mechanism is the small melting particles evaporated and adsorbed to the surface of large one.
     The studies to phase transformation of chloride segregation revealed that with the increase of temperature, between 400℃and 600℃, magnesium carbonate decomposed; Between 600℃and 700℃, the serpentine phase decomposes and disappeared, replaced by the Fe-rich and Ca-rich olivine phase. It was apparent that the phases formed were stable and the process was not reversible during reduction at elevated temperatures.
引文
[1]毛麟瑞.战略储备金属-镍.中国物资再生,1999,10:36-37
    [2]邱冠周,朱德庆,潘建等.低品位红土镍矿综合利用工艺,中国专利,CIN200710035281.4,2007-10-03
    [3]Charles G. Mineral Commodity Summaries. American Geological Surrey office, 2003:14
    [4]Dalvi D A, GBacon D, Osbome M R C, The Past and future of Nickel Laterites presented at PDAC2004 International Convention,2004
    [5]Witney J Y andYan D S. Reduction of magnesia in nickel concentrates by modification of the froth zone in column flotation, Minerals Engineering, 1997,10:139
    [6]Senior G D, Trahar W J, Guy P J. The selective flotation of pentlandite from anickel ore, International Journal of Mineral Processing,1995,43:209
    [7]Warner A E M, Diaz C M, Dalvi A D, Mackey P J, and Tarasov A V. JOM World Nonferrous Smelter Survey, Part3:Nickel:Iaterite, Jom,2006,58:11-20
    [8]Ribbe P H, Liebau F. Mineralogical Society of America.Orthosilicates,2nd ed. Washington, D.D.:Mineralogical Society OF America,1982
    [9]Callister W D. Materials Science and engineering:an introduction,6th ed. New YorK, Ny:John Wiley&Sons,2003
    [10]Tejada L G and Sjursen T. Falconbridge Dominnicana Reduction.International Laterite Symposium, New Orleans, Louisiana 1979
    [11]Valix M and Cheung W H. Study of phase transformation of laterite ores at high temperature. Minerals Engineering,2002,15:607-612
    [12]Brand N W, ButtC T M, Hellsten K J.Structrral and lithological controls in the formation of the Cawse nickel laterite deposits Western Australia:Implication for supergene ore formation and exploration in deeply weathered terrains. Australian institute of Mining and Metallurgy, Australia, Special Publication 1996:185-191
    [13]Brand N W, Butt C R M. Nickle laterites:Classifications and features. AGSO Journal ofAustralian Geology and geophysics,1998,17(4):81-88
    [14]Fouateu Y, Ghogomu R T, Penaye J. Nickel and cobalt distribution in the laterites of the Lomieregion, Southest Cameroon.Jouranl of African Efrican Earht Sciences,20006,45:33-47
    [15]Soler J M, Cama J, Gali S. Composition and dissolution kinetics of garnierite from the Loma de Hierro Ni-laterite deposit,Venezuela.Chemical Geology, 2008,249:191-202
    [16]Wells M A,Tamanaidou E R,Verrall M. Mineralogy and crystal chemistry of "garnierites"in the Goro lateritic nickel deposit, New Caledonia. European Journal of Mineralogy,2009,21:467-483
    [17]Freyssinet P, Butt C R M, Morris R C. Ore-forming processes related to laterite weathering [J].Economic Geology,2005,100th Aniversary Volume:681-722
    [18]Gleeson S A, Butt C R M, Elias M. Nickel laterites:a review.News Letter of the Society of Economic Geologists,2003,4:12-18
    [19]Elias M. Nickel Laterite Deposits-geological Overview, Resources and Exploitation. Centre for Ore Deposit Research, University of Tasmania, Hobart of Australia Special Publication,2002,4:205-220
    [20]兰兴华.世界镍市场的现状和展望.世界有色金属,2003,(6):42-47
    [21]Canterford J H. The extractive metallurgy of nickel. Reviews of Pure and Applied Chemistry,1972,22(8):13-46
    [22]Girgis B S, Mourad W E. Textural variations of acid-treated serpentine. Journal of Applied Chemistry and Biotechnology,1976, (26): 9-14
    [23]Neudorf D. Atmospheric Leaching Forum, ALTA 2007 Nickel/Cobalt 12. ALTA Metallurgical Services, Melbourne,2007,5:54
    [24]罗仙平,龚恩民.酸浸法从含镍蛇纹石中提取镍的研究.有色金属(冶炼部分),2006,(4):28-30
    [25]罗永吉,张宗华,陈晓鸣.云南某含镍蛇纹石矿硫酸搅拌浸出的研究.矿业快报,2008,(1):24-26
    [26]周晓文,张建春,罗仙平.从红土镍矿中提取镍的技术研究现状及展望.四川有色金属,2008,(1):38-41
    [27]Chander S, Sharma V N. Reduction roasting/ammonia leaching of nickeliferous laterites. Hydrometallurgy,1981,7(4):315-327
    [28]Duyvesteyn W P C, Lastra M, Liu H. Method for recovering nickel from high magnesium-containing Ni-Fe-Mg lateritic ore. U.S.Patent, Ed.USA:BHP Minerals international inc.,1996,5:571,308,
    [29]Griffin A, Nofal P, Johnson G, Evans H. Laterites—squeeze or ease ALTA 2002 Nickel/Cobalt 8. ALTA Metallurgical Services, Melbourne.2002,18: 123-127
    [30]Weston D. Hydrometallurgical treatment of nickel, cobalt and copper containing materials. US Patent 3,793,430
    [31]Kumar R, Ray R K, Biswas A K. Physico-chemical nature and leaching behaviour of goethites containing Ni, Co and Cu in the sorption and coprecipitation mode.Hydrometallurgy,1990,25(5):61-83
    [32]Cornell R M, Posner A M, Quirk J P. Kinetics and mechanisms of the acid dissolution of goethite (a-FeOOH)[J]. Journal of Inorganic and Nuclear Chemistry,1976,38(4):563-567
    [33]Zhang Q, Sugiyama K, Saito F. Enhancement of acid extraction of magnesium and silicon from serpentine by mechan-ochemical treatment. Hydrometallurgy, 1997,45(4):323-331
    [34]Kawahara M, Mitsuo T, Shirane Y, MitsuneY. Dilute sulphuric-acid leaching of garnierite ore after magnetic-roasting the ore mixed with iron powder. International Journal of Mineral Processing,1987, (19):285-296
    [35]赵昌明,翟玉春.从红土镍矿中回收镍的工艺研究进展.材料导报,2009,23(6):73-76
    [36]王成彦,江培海.云南中低品位氧化锌矿及元江镍矿的合理开发利用.中国工程科学(增刊),2005:7
    [37]张友平,周渝生,李肇毅等.红土矿资源特点和火法冶金工艺分析.铁合金,2007,(6):18
    [38郭学益,吴展,李栋.镍红土矿处理工艺的现状和展望.金属材料与冶金工程,2009,37(2):3-9
    [39]任鸿九,王立川.有色金属提取手册(铜镍卷).北京:冶金工业出版社,2000:512-514
    [40]黄其兴,王立川,朱鼎之,等.镍冶金学.北京:科学技术出版社.1990:224-225
    [41]朱景和.世界镍红土矿开发与利用的技术分析。中国金属通报,2007,35:22-25
    [42]章宇.以红土镍矿为原料用竖炉直接还原镍铁的方法.CN200910072487.3.2009
    [43]曹志成,孙体昌,杨慧,王静静,仵晓丹.红土镍矿直接还原焙烧磁选回收铁镍.北京科技大学学报,2010,32(6):708-712
    [44]王成彦.元江贫氧化镍矿的氯化离析.矿冶,1997,6(3):55-59,65
    [45]陈晓鸣,张宗华.元江硅酸镍矿开发新技术半工业试验研究.有色金属 (选矿部分),2007,(3):25-28
    [46]Canterford J H.The treatment of nickeliferous laterites.Minerals Sci.Engng, 1975,7:3-17
    [47]Takahashi Y. Kojima K.and Nagano K.Extraction of nickel from garnierite by segregation process.J.min.metall.Inst.1968,84:31-36
    [48]Wan rong LIU, Xinhai LI, Qi yang HU, Zhi xing WANG, Ke zhuan GU, Jinhui LI, Lian xin ZHANG. Pretreatment study on chloridizing segregation and magnetic separation of low-grade nickel laterites. Transactions of Nonferrous Metals Society of China,2010,20:82-86.
    [49]Jin hui Li, Xin hai Li, Qi yang Hu. Effect of pre-roasting on leaching of laterite. Hydrometallurgy,2009,99(1-2):84-88
    [50]张军,张宗华.铁镁质硅酸镍矿的离析选别试验研究,矿业工程,2007,5(6):36-38
    [51]肖军辉.某硅酸镍矿离析工艺试验研究.昆明理工大学,2007:103-105
    [52]刘婉蓉.低品位红土镍矿氯化离析-磁选工艺研究.中南大学,2010:62-62
    [53]IWASAKI I. Thermodynamic interpretation of the segregation process for copper and nickel ore s. Minerals Science and Engineering,1972,4(2):14-23
    [54]YAZAWA A. Thermodynamic evaluation of extractive metallurgical processes. Metallurgical Transactions B,1979,10B(3):307-321
    [55]WRIGHT J K. Segregation process. Minerals Science and Engineering,1973, 5(2):119-134
    [56]Mehrotra S P and Udayakumar K R. Thermodynamic analysis of segregation roasting process for oxidized copper and nickel ores.Trans. Indian Inst.Met. 1994,47(2):111-120
    [57]Hudyma I. Growth of metallic nickel grains in the segregation process: 1-growth and aggregation of metallic nickel grains on coal particles. Trans.Instn Min.Metall.(sect.C:mineral process.extr.metall.)1981,90: C147-151
    [58]Hudyma I. Growth of metallic nickel grains in the segregation process: 2-growth and aggregation of metallic nickel grains on silica particles. Trans.Instn Min.Metall.(sect.C:mineral process.extr.metall.1984,93:C86-90
    [59]VALIX M, CHEUNG W H. Study of phase transformation of laterites ores at high temperature. Minerals Engineering,2002,15(8):607-612
    [60]CHANDAR S, SHARMA V N. Reduction roasting/ammonia leaching of nickeliferous laterites. Hydrometallurgy,19817(4):315-327
    [61]Yong feng CHANG, Xiu jing ZHAI, Yan FU, Lin zhi MA, Bin chuan LI, Ting an ZHANG. Phase transformation in reductive roasting of laterite ore with microwave heating. Transaction of Nonferrous Metals Society of China,2008, 18(4):969-973
    [62]PICALES C A. Microwave heating behaviour of nickeliferous limonitic laterite ores, Minerals Engineering,2004,17(6):775-784
    [63]Crawford G A. Segregation of Nickel in Laterites-The Falconbridge Experience. Segregation symposium.1960:219-240
    [64]Valix M, Cheung W H. Study of phase transformation of laterite ores at high temperatiue.Minerals Engineering 2002,15:607-612
    [65]Kawahara M, Toguri J M, Bergman T A. Reducibility of Laterite Ores. Metallurgical Transactions B-Process Metallurgy,1988,19:181-186
    [66]Crama W J, Baas A H. Process for the preparation of a ferronickel concentrate. Vol.490174, U.S.P.Office, Ed.United States,1984
    [67]J.C.G.K.V.D.Colf.Upgrading of nickel laterite ores.vol.754715, A.P.Office, Ed.Australia:Billiton S.A.Limited,1999
    [68]Bell M C E, Sridhar T. Process for treatment of lateritic ores.vol.4049444, U.S.P.Office, Ed.United Stated:The Intermational Nickel Compnay,Inc.,1977
    [69]赵昌明,翟玉春,刘岩,段华美.红土镍矿在NaOH亚熔盐体系中的预脱硅.中国有色金属学报.2009,19(3):950-955
    [70]牟文宁,翟玉春,刘岩.采用熔融碱法从红土镍矿中提取硅.中国有色金属学报.2009,19(5):570-575
    [71]中国国家标准化管理委员会.镍矿石化学分析方法.火焰原子吸收分光光度法测定镍量,北京,中国标准出版社,1996
    [72]中国国家标准化管理委员会.钴矿石化学分析方法.火焰原子吸收分光光度法测定钴,北京,中国标准出版社,1996
    [73]北京冶矿研究总院测试研究所编.有色冶金分析手册.北京:冶金工业出版社,2004
    [74]岩石矿物分析编写组编写.岩石矿物分析.北京地质出版社,1991:103-106
    [75]北京冶矿研究总院测试研究所.有色冶金分析手册.北京,冶金工业出版社,2004:169-177
    [76]中南矿冶学院冶金研究室遍.氯化冶金.北京,冶金工业出版社,1978:208-212
    [77]Chander S, Sharma V N. Reduction roasting/ammonia leaching of nickeliferous laterites. Hydrometallurgy,1981,7(4):315-327
    [78]Mene'ndez C J, Barone V L, Botto I L, et al. Physicochemical characterization of the chlorination of natural wolframites with chlorine and sulphur dioxide. Minerals Engineering,2007,20(6):1278-1284
    [79]林传仙.矿物及有关化合物热力学数据手册.北京:科技出版社,1985
    [80]周文戈,谢鸿森,赵志丹,周辉,郭捷.α-β石英相变的应变参数计算及其地质意义.高压物理学报,2002,16(4):241-248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700