用户名: 密码: 验证码:
环境雌激素与抗雌激素对斑马鱼胚胎的复合效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前有关环境内分泌干扰物(endocrine disrupting chemicals, EDCs)的复合效应研究主要集中于同类EDCs的联合效应,不同种类EDCs复合效应研究亟需加强。将经典模式生物斑马鱼胚胎暴露于雌激素17β-雌二醇(E2)、o,p'-DDT,抗雌激素它莫昔芬(TAM)、氟维司群及其二元混合物中。观察胚胎孵化率、孵化时间和总畸形率,并用荧光实时定量PCR检测VTG1、VTG2、ERα等雌激素效应相关基因mRNA转录水平。对四种EDCs间复合效应进行分析、评价,以期为全面了解雌激素类与抗雌激素类的复合效应提供一定科学依据。主要研究结果如下:
     (1)单一EDCs作用对斑马鱼胚胎发育形态学有不同程度的影响;VTG基因被雌激素诱导表达量增加,ERα基因表达被抗雌激素氟维司群所抑制。单独存在的TAM表现出弱雌激素效应。
     (2)传统观点认为,环境雌激素效应可能会被抗雌激素等物质所平衡,但在胚胎发育形态学水平上,雌激素与抗雌激素混合物并没出现因为雌激素与抗雌激素相互作用而使繁殖毒性减轻的情况。另外,和胚胎孵化时间相比,胚胎孵化率、总畸形率更好地体现出联合毒性效应。
     (3)在基因转录水平上,雌激素与抗雌激素二元混合物中总体上二者表现出了相互拮抗的效应,即抗雌激素的存在减轻了雌激素效应。不过o,p'-DDT与TAM共暴露组中,高浓度的TAM显示了弱雌激素的作用。
     上述结论表明抗雌激素并非简单地抑制环境雌激素的生态毒性效应,在进行生态风险评价时需全面评估雌激素与抗雌激素的复合效应。
At present the most study of research in endocrine disrupting chemicals (EDCs) are study of compound effect of the same kind of EDCs. Study of different kinds need to be strengthen. In this study, after exposure to the typical estrogen 17β-estradiol(E2), o,p'-DDT and antiestrogen tamoxifen(TAM), fulvestrant, morphology levels of toxicological endpoints of zebrafish (Danio rerio) embryos such as hatching rate, hatching time and gross abnormalities rate were observed. Then real-time quantitative PCR was used to investigate the changes in transcription of mRNA of estrogen-responsive gene such as VTG1, VTG2 and ERα. The combined effects between the four EDCs were analyzed and evaluated to provide a scientific basis for comprehensive understanding the combination effects between estrogen and antiestrogen. The major findings are as follows:
     (1) Single EDCs impacted morphology of zebrafish embryos. Expression of VTG gene was increased because of estrogen inducing. Expression of ERαgene was inhibited by fulvestrant. TAM showed a weak estrogenic effect.
     (2) At morphological level in embryonic development, reproductive toxicity in mixtures did not decrease because of interactions between antiestrogen and estrogen,which was different from the traditional view. In addition, compared to the gross abnormalities rate and the hatching rate, the hatching time of embryos did not reflect well the compound effect.
     (3) At the level of gene transcription, estrogen and antiestrogen in the binary mixtures generally showed a antagonistic effect, which meant the antiestrogen reduced the effects of estrogen. But in the binary mixtures of o,p'-DDT and TAM, high concentrations of TAM showed a weak estrogen effects and did not showed obvious antagonistic effect to o,p'-DDT.
     It could be indicated from the findings that antiestrogen did not simply inhibit the ecotoxicological effects of estrogen. So we should evaluate the combination effects of estrogens and antiestrogens comprehensively when conduct ecological risk assessment.
引文
[1] Colborn T, vom Saal F S, Soto A M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans, Environmental health perspectives, 1993, 101(5), 378-384
    [2] Rice C, Birnbaum L S, Cogliano J, et al. Exposure assessment for endocrine disruptors: Some considerations in the design of studies, Environmental health perspectives, 2003, 111(13), 1683-1690
    [3] Singleton D W, Khan S A. Xenoestrogen exposure and mechanisms of endocrine disruption, Front Biosci, 2003, 8(1), s110-118
    [4] Dodds E, Lawson W. Synthetic estrogenic agents without the phenanthrene nucleus, Nature, 1936, 137(996)
    [5] Cook J W, Dodds E C, Hewett C. A synthetic oestrus-exciting compound, Nature, 1933, 131(3298), 56-57
    [6]王簃兰.环境内分泌干扰物对健康影响的研究进展,中国医师杂志, 2003, 5(1), 1-2
    [7] Hotchkiss A K, Rider C V, Blystone C R, et al. Fifteen years after“Wingspread”—environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go, Toxicological Sciences, 2008, 105(2), 235-259
    [8] Sharpe R M, Skakkebaek N E. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract?, Lancet, 1993, 341(8857), 1392-1395
    [9] Colborn T, Dumanoski D, Myers J P, et al. Our stolen future: are we threatening our fertility, intelligence, and survival?: a scientific detective story, New York, Dutton, 1996,
    [10] Kavlock R. Overview of endocrine disruptor research activity in the United States, Chemosphere, 1999, 39(8), 1227-1236
    [11] Kelce W R, Stone C R, Laws S C, et al. Persistent DDT metabolite p, p'-DDE is a potent androgen receptor antagonist, Nature, 1995, 375(6532), 581-585
    [12] Stone R. Environmental estrogens stir debate, Science (New York, NY), 1994, 265(5170), 308-310
    [13] Arnold S F, Klotz D M, Collins B M, et al. Synergistic activation of estrogen receptor with combinations of environmental chemicals, Science, 1996, 272(5267), 1489-1492
    [14] Hutchinson T H, Brown R, Brugger K E, et al. Ecological risk assessment of endocrine disruptors, Environmental health perspectives, 2000, 108(11), 1007-1014
    [15] Cheek A O, Vonier P M, Oberd?rster E, et al. Environmental signaling: a biological context for endocrine disruption, Environmental health perspectives, 1998, 106(Suppl 1), 5-10
    [16] Routledge E, Sheahan D, Desbrow C, et al. Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach, Environmental science & technology, 1998, 32(11), 1559-1565
    [17] Patlak M. A testing deadline for endocrine disrupters, Environ Sci Technol, 1996, 30(12), 540A-544A
    [18]吴峰,邓南圣.环境中内分泌干扰物质的研究概述,环境污染与防治, 2002, 24(3), 176-179
    [19] Rudel R. Predicting health effects of exposures to compounds with estrogenic activity: methodological issues, Environ Health Perspect, 1997, 105(Suppl 3), 655-663
    [20] Li Cavoli G, Mule G, Rotolo U. Renal involvement in psychological eating disorders, Nephron Clin Pract, 2011, 119(4), c338-341
    [21] Baker V A. Endocrine disrupters - testing strategies to assess human hazard, Toxicology in Vitro, 2001, 15(4-5), 413-419
    [22]宋福永,李杰.应用卵黄蛋白原检测内分泌干扰物质的研究进展,环境与健康杂志, 2004, 21(4), 264-266
    [23]王涛,高志贤.环境内分泌干扰物质的检测,中国卫生检验杂志, 2004, 14(004), 390-392
    [24]金春峰,蔡玉文.环境内分泌干扰物对人类生殖健康的影响,辽宁中医药大学学报, 2007, 9(006), 45-47
    [25]范琰妍,张炜.环境内分泌干扰物对机体的影响,江苏医药, 2007, 33(5), 508-510
    [26] Song T T, Hendrich S, Murphy P A. Estrogenic activity of glycitein, a soy isoflavone, J Agric Food Chem, 1999, 47(4), 1607-1610
    [27] Olea N, Pazos P, Exposito J. Inadvertent exposure to xenoestrogens, Eur J Cancer Prev, 1998, 7 Suppl 1(S17-23
    [28]梁超,邓慧萍.水中内分泌干扰物质的研究现状及趋势,城市公用事业, 2005, 19(003), 17-20
    [29] Magliulo L, Schreibman M P, Cepriano J, et al. Endocrine disruption caused by two common pollutants at, Neurotoxicology and teratology, 2002, 24(1), 71-79
    [30] Witorsch R J. Endocrine disruptors: can biological effects and environmental risks be predicted?, Regulatory Toxicology and Pharmacology, 2002, 36(1), 118-130
    [31] Fawell J, YoungW F. European workship on water quality and drinking water, Report of Proceedings, Baveno, Lago Maggiore, 1997, 11-14
    [32] Kavlock R J. What's happening to our frogs?, Environmental health perspectives, 1998, 106(12), 773-774
    [33] Hayes T B, Collins A, Lee M, et al. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses, Proceedings of the National Academy of Sciences, 2002, 99(8), 5476-5480
    [34] Heinz G H, Percival H F, Jennings M L. Contaminants in American alligator eggs from Lake Apopka, Lake Griffin, and Lake Okeechobee, Florida, Environmental Monitoring and Assessment, 1991, 16(3), 277-285
    [35] Payne J F, Fancey L L, Rahimtula A D, et al. Review and perspective on the use of mixed-function oxygenase enzymes in biological monitoring, Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1987, 86(2), 233-245
    [36] Galgani F, Bocquene G, Truquet P, et al. Monitoring of pollutant biochemical effects on marine organisms of the French coasts, Oceanologica acta, 1992, 15(4), 355-364
    [37] Purdom C, Hardiman P, Bye V, et al. Estrogenic effects of effluents from sewage treatment works, Chemistry and Ecology, 1994, 8(4), 275-285
    [38] Andersen H R, Andersson A M, Arnold S F, et al. Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals, Environ Health Perspect, 1999, 107(Suppl 1), 89-108
    [39] Olsson P E, Westerlund L, Teh S J, et al. Effects of maternal exposure to estrogen and PCB on different life stages of zebrafish (Danio rerio), Ambio, 1999, 28(1), 100-106
    [40] Larsson D, Adolfsson-Erici M, Parkkonen J, et al. Ethinyloestradiol—an undesired fish contraceptive?, Aquatic Toxicology, 1999, 45(2), 91-97
    [41] SoléM, Raldúa D, Piferrer F, et al. Feminization of wild carp, Cyprinus carpio, in a polluted environment: plasma steroid hormones, gonadal morphology and xenobiotic metabolizing system, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2003, 136(2), 145-156
    [42]邓南圣,吴峰.环境中的内分泌干扰物,北京,化学工业出版社, 2004, 6-8
    [43] Jenster G, van der Korput H A G M, van Vroonhoven C, et al. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization, Molecular Endocrinology, 1991, 5(10), 1396-1404
    [44]戴璇颖,徐世清,陈息林,等.环境激素对生物的影响及其预防措施,四川环境, 2003, 22(006), 13-16
    [45]孔昌俊.环境激素对人类健康的影响,辽宁城乡环境科技, 2000, 20(6), 1-4
    [46]李京东,肖素荣.环境激素-危险的环境污染物,生物学通报, 2001, 36(9), 17-18
    [47]张虹.终极杀手—环境激素,大自然探索, 2000, 001), 41-43
    [48]刘苹.环境激素与人类健康,环境科学导刊, 2001, 20(1), 42-45
    [49]李晓梅,李军.环境激素及其对人类健康的影响,中华预防医学杂志, 2003, 37(3), 209-211
    [50] Kavlock R J, Daston G P, DeRosa C, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the US EPA-sponsored workshop, Environmental health perspectives, 1996, 104(Suppl 4), 715
    [51] Harrison P, Holmes P, Humfrey C. Reproductive health in humans and wildlife: are adverse trends associated with environmental chemical exposure?, Science of the total environment, 1997, 205(2-3), 97-106
    [52] Sharpe R M, Irvine D S. How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health?, Bmj, 2004, 328(7437), 447-451
    [53]伍吉云,万祎,胡建英.环境中内分泌干扰物的作用机制,环境与健康杂志, 2005, 22(6), 494-496
    [54] Zala S M, Penn D J. Abnormal behaviours induced by chemical pollution: a review of the evidence and new challenges, Animal Behaviour, 2004, 68(4), 649-664
    [55] Kelce W R, Stone C R, Laws S C, et al. Persistent DDT metabolite p, p'DDE is a potent androgen receptor antagonist, Nature, 1995, 375(6532), 581-585
    [56] Cheek A O, Kow K, Chen J, et al. Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin, Environmental health perspectives, 1999, 107(4), 273-278
    [57] Klinge C M, Bowers J L, Kulakosky P C, et al. The aryl hydrocarbon receptor (AHR)/AHR nuclear translocator (ARNT) heterodimer interacts with naturally occurring estrogen response elements, Molecular and cellular endocrinology, 1999, 157(1-2), 105-119
    [58] Fisher J S. Are all EDC effects mediated via steroid hormone receptors?, Toxicology, 2004, 205(1-2), 33-41
    [59] Gillesby B E, Zacharewski T R. Exoestrogens: mechanisms of action and strategies for identification and assessment, Environmental Toxicology and Chemistry, 1998, 17(1), 3-14
    [60] Silva E, Rajapakse N, Kortenkamp A. Something from“nothing”-eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects, Environmental science & technology, 2002, 36(8), 1751-1756
    [61] Kortenkamp A. Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals, Environmental health perspectives, 2007, 115(S-1), 98-105
    [62] Kortenkamp A, Faust M, Scholze M, et al. Low-level exposure to multiple chemicals: reason for human health concerns?, Environmental health perspectives, 2007, 115(S-1), 106-114
    [63] Kortenkamp A. Low dose mixture effects of endocrine disrupters: implications for risk assessment and epidemiology, International journal of andrology, 2008, 31(2), 233-240
    [64] Tinwell H, Ashby J. Sensitivity of the immature rat uterotrophic assay to mixtures of estrogens, Environmental health perspectives, 2004, 112(5), 575-582
    [65] Brian J V, Harris C A, Scholze M, et al. Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals, Environmental health perspectives, 2005, 113(6), 721-728
    [66] Hass U, Scholze M, Christiansen S, et al. Combined exposure to anti-androgens exacerbates disruption of sexual differentiation in the rat, Environmental health perspectives, 2007, 115(S-1), 122-128
    [67] Crofton K M, Craft E S, Hedge J M, et al. Thyroid-hormone–disrupting chemicals: evidence for dose-dependent additivity or synergism, Environmental health perspectives, 2005, 113(11), 1549-1554
    [68] Payne J, Rajapakse N, Wilkins M, et al. Prediction and assessment of the effects of mixtures of four xenoestrogens, Environmental health perspectives, 2000, 108(10), 983-987
    [69] Payne J, Scholze M, Kortenkamp A. Mixtures of four organochlorines enhance human breast cancer cell proliferation, Environmental health perspectives, 2001, 109(4), 391-397
    [70] Sone H, Yonemoto J. Interaction between dioxin signaling and sex steroid hormones, Journal of Health Science, 2002, 48(5), 385-392
    [71] Reen R K, Cadwallader A, Perdew G H. The subdomains of the transactivation domain of the aryl hydrocarbon receptor (AhR) inhibit AhR and estrogen receptor transcriptional activity, Archives of biochemistry and biophysics, 2002, 408(1), 93-102
    [72] Maack G, Segner H. Morphological development of the gonads in zebrafish, Journal of Fish Biology, 2003, 62(4), 895-906
    [73] Oberemm A. The use of a refined zebrafish embryo bioassay for the assessment of aquatic toxicity, LAB ANIMAL-NEW YORK-, 2000, 29(7), 32-43
    [74] Streisinger G, Walker C, Dower N, et al. Production of clones of homozygousdiploid zebra fish (Brachydanio rerio), Nature, 1981, 291(5813), 293-296
    [75] Kimmel C B, Powell S L, Metcalfe W K. Brain neurons which project to the spinal cord in young larvae of the zebrafish, The Journal of Comparative Neurology, 1982, 205(2), 112-127
    [76] Kimmel C B, Metcalfe W K, Schabtach E. T reticular interneurons: a class of serially repeating cells in the zebrafish hindbrain, The Journal of Comparative Neurology, 1985, 233(3), 365-376
    [77] Nawrocki L, Bremiller R, Streisinger G, et al. Larval and adult visual pigments of the zebrafish, Brachydanio rerio, Vision research, 1985, 25(11), 1569-1576
    [78] Kimmel C B, Law R D. Cell lineage of zebrafish blastomeres: I. Cleavage pattern and cytoplasmic bridges between cells, Developmental biology, 1985, 108(1), 78-85
    [79] Kimmel C B, Law R D. Cell lineage of zebrafish blastomeres* 1:: II. Formation of the yolk syncytial layer, Developmental biology, 1985, 108(1), 86-93
    [80] Kimmel C B, Law R D. Cell lineage of zebrafish blastomeres: III. clonal analyses of the blastula and gastrula stages, Developmental biology, 1985, 108(1), 94-101
    [81] Westerfield M, McMurray J V, Eisen J S. Identified motoneurons and their innervation of axial muscles in the zebrafish, The Journal of neuroscience, 1986, 6(8), 2267-2277
    [82] Hanneman E, Trevarrow B, Metcalfe W, et al. Segmental pattern of development of the hindbrain and spinal cord of the zebrafish embryo, Development, 1988, 103(1), 49-58
    [83] Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio, Development, 1996, 123(1), 1-36
    [84] Driever W, Solnica-Krezel L, Schier A, et al. A genetic screen for mutations affecting embryogenesis in zebrafish, Development, 1996, 123(1), 37-46
    [85] Chen J N, Fishman M C. Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation, Development, 1996, 122(12), 3809-3816
    [86] Langheinrich U. Zebrafish: a new model on the pharmaceutical catwalk,Bioessays, 2003, 25(9), 904-912
    [87] Dooley K, Zon L I. Zebrafish: a model system for the study of human disease, Current opinion in genetics & development, 2000, 10(3), 252-256
    [88] Haffter P, Odenthal J, Mullins M, et al. Mutations affecting pigmentation and shape of the adult zebrafish, Development Genes and Evolution, 1996, 206(4), 260-276
    [89] Van Eeden F, Granato M, Schach U, et al. Mutations affecting somite formation and patterning in the zebrafish, Danio rerio, Development, 1996, 123(1), 153-164
    [90] Spitsbergen J M, Kent M L. The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations, Toxicologic pathology, 2003, 31(1 suppl), 62-87
    [91] Teraoka H, Dong W, Hiraga T. Zebrafish as a novel experimental model for developmental toxicology, Clinical Genetics, 1993, 43(2), 123-132
    [92] Heijne W H M, Kienhuis A S, Van Ommen B, et al. Systems toxicology: applications of toxicogenomics, transcriptomics, proteomics and metabolomics in toxicology, Expert review of proteomics, 2005, 2(5), 767-780
    [93] Song H D, Sun X J, Deng M, et al. Hematopoietic gene expression profile in zebrafish kidney marrow, Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(46), 16240-16245
    [94]吴声敢,吴长兴,陈丽萍,等.两种有机硅表面活性剂和3种农药对斑马鱼的急性毒性与联合毒性研究,农药学学报, 2009, 11(001), 145-148
    [95]吴声敢,吴长兴,陈丽萍,等.种有机硅表面活性剂对斑马鱼的急性毒性与安全评价,浙江农业学报, 2009, 21(4), 395-398
    [96]赵春青,钱坤,李学锋,等.不同类型农药对斑马鱼的急性毒性与安全评价,安徽农业科学, 2008, 36(34), 15027-15028
    [97]沈万赟,周忠良,李祥军.双酚A和壬基酚长期暴露对斑马鱼繁殖的影响,水产学报, 2007, 31(B09), 59-64
    [98]史清毅.久效磷对斑马鱼(Danio rerio) 2世代繁殖的影响, [学位论文],青岛,中国海洋大学, 2007
    [99]端正花,张斌田,朱琳.双酚A对斑马鱼胚胎发育阶段的毒性及生物蓄积,中国环境科学, 2008, 28(3), 260-263
    [100]端正花,朱琳,宫知远.己烯雌酚在斑马鱼胚胎中的生物蓄积及毒性机制研究,环境科学, 2009, 30(002), 522-526
    [101]余向阳,赵于丁,王冬兰,等毒死蜱和三唑磷对斑马鱼头部AChE活性影响及在鱼体内的富集,农业环境科学学报, 2008, 27(6), 2452-2455
    [102]梁丹涛,沈根祥,胡双庆,等.δ-六六六在斑马鱼体内的生物富集情况研究,农业环境科学学报, 2007, 26(B10), 509-513
    [103] Jiang Y J, Brand M, Heisenberg C P, et al. Mutations affecting neurogenesis and brain morphology in the zebrafish, Danio rerio, Development, 1996, 123(1), 205-216
    [104] Schier A F, Neuhauss S, Harvey M, et al. Mutations affecting the development of the embryonic zebrafish brain, Development, 1996, 123(1), 165-178
    [105] Dong W, Teraoka H, Kondo S, et al. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin induces apoptosis in the dorsal midbrain of zebrafish embryos by activation of arylhydrocarbon receptor, Neuroscience letters, 2001, 303(3), 169-172
    [106] Parng C, Ton C, Lin Y X, et al. A zebrafish assay for identifying neuroprotectants in vivo, Neurotoxicology and teratology, 2006, 28(4), 509-516
    [107] Chow E S H, Hui M N Y, Lin C C, et al. Cadmium inhibits neurogenesis in zebrafish embryonic brain development, Aquatic Toxicology, 2008, 87(3), 157-169
    [108] Tsay H J, Wang Y H, Chen W L, et al. Treatment with sodium benzoate leads to malformation of zebrafish larvae, Neurotoxicology and teratology, 2007, 29(5), 562-569
    [109] Raldúa D, Babin P J. BLT-1, a specific inhibitor of the HDL receptor SR-BI, induces a copper-dependent phenotype during zebrafish development, Toxicology letters, 2007, 175(1-3), 1-7
    [110] Gerlai R, Lee V, Blaser R. Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio), Pharmacology Biochemistry and Behavior, 2006, 85(4), 752-761
    [111] Anichtchik O V, Kaslin J, Peitsaro N, et al. Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6‐hydroxydopamine and 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine, Journal of neurochemistry, 2004, 88(2), 443-453
    [112] Levin E D, Chrysanthis E, Yacisin K, et al. Chlorpyrifos exposure of developing zebrafish: effects on survival and long-term effects on response latency and spatial discrimination, Neurotoxicology and teratology, 2003, 25(1), 51-57
    [113] Baraban S, Taylor M, Castro P, et al. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression, Neuroscience, 2005, 131(3),759-768
    [114] Isogai S, Lawson N D, Torrealday S, et al. Angiogenic network formation in the developing vertebrate trunk, Development, 2003, 130(21), 5281-5290
    [115] Cross L M, Cook M A, Lin S, et al. Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay, Arteriosclerosis, thrombosis, and vascular biology, 2003, 23(5), 911-912
    [116] Rose J, Holbech H, Lindholst C, et al. Vitellogenin induction by 17 [beta]-estradiol and 17 [alpha]-ethinylestradiol in male zebrafish (Danio rerio), Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2002, 131(4), 531-539
    [117] Hutchinson T H, Ankley G T, Segner H, et al. Screening and testing for endocrine disruption in fish—biomarkers as“signposts,”not“traffic lights,”in risk assessment, Environmental health perspectives, 2006, 114(S-1), 106-114
    [118] Vos J G, Dybing E, Greim H A, et al. Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation, CRC Critical Reviews in Toxicology, 2000, 30(1), 71-133
    [119] Islinger M, Willimski D, V?lkl A, et al. Effects of 17a-ethinylestradiol on the expression of three estrogen-responsive genes and cellular ultrastructure of liver and testes in male zebrafish, Aquatic Toxicology, 2003, 62(2), 85-103
    [120] Van der Ven L, Wester P W, Vos J G. Histopathology as a tool for the evaluation of endocrine disruption in zebrafish (Danio rerio), Environmental Toxicology and Chemistry, 2003, 22(4), 908-913
    [121] Hoffmann J, Torontali S, Thomason R, et al. Hepatic gene expression profiling using Genechips in zebrafish exposed to 17 [alpha]-ethynylestradiol, Aquatic Toxicology, 2006, 79(3), 233-246
    [122] Legler J, Broekhof J L M, Brouwer A, et al. A novel in vivo bioassay for (xeno-) estrogens using transgenic zebrafish, Environmental science & technology, 2000, 34(20), 4439-4444
    [123] Dave G, Xiu R. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio, Archives of environmental contamination and toxicology, 1991, 21(1), 126-134
    [124] Ingermann R, Bencic D, Eroschenko V. Methoxychlor effects on hatching and larval startle response in the salamander Ambystoma macrodactylum are independent of its estrogenic actions, Bulletin of environmental contamination and toxicology,1999, 62(5), 578-583
    [125] Henry T R, Spitsbergen J M, Hornung M W, et al. Early life stage toxicity of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in zebrafish (Danio rerio), Toxicology and applied pharmacology, 1997, 142(1), 56-68
    [126] Jin Y, Chen R, Sun L, et al. Induction of estrogen-responsive gene transcription in the embryo, larval, juvenile and adult life stages of zebrafish as biomarkers of short-term exposure to endocrine disrupting chemicals, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2009, 150(3), 414-420
    [127] McKim J M. Evaluation of tests with early life stages of fish for predicting long-term toxicity, Journal of the Fisheries Board of Canada, 1977, 34(8), 1148-1154
    [128] Bresch H. Investigation of the long-term action of xenobiotics on fish with special regard to reproduction, Ecotoxicology and environmental safety, 1982, 6(1), 102-112
    [129] Wang L, Zhou S, Lin K, et al. Enantioselective estrogenicity of o, p'‐dichlorodiphenyltrichloroethane in the MCF‐7 human breast carcinoma cell line, Environmental Toxicology and Chemistry, 2009, 28(1), 1-8
    [130] Chakraborty T, Katsu Y, Zhou L Y, et al. Estrogen receptors in medaka (Oryzias latipes) and estrogenic environmental contaminants: an in vitro-in vivo correlation, The Journal of steroid biochemistry and molecular biology, 2010, 123(3-5), 115-121
    [131] Hoekstra P F, Burnison B K, Neheli T, et al. Enantiomer-specific activity of o, p'-DDT with the human estrogen receptor, Toxicology letters, 2001, 125(1-3), 75-81
    [132] Qiu X, Zhu T, Li J, et al. Organochlorine pesticides in the air around the Taihu Lake, China, Environmental science & technology, 2004, 38(5), 1368-1374
    [133] Qiu X, Zhu T, Yao B, et al. Contribution of dicofol to the current DDT pollution in China, Environmental science & technology, 2005, 39(12), 4385-4390
    [134] Halling-S?rensen B, Nors Nielsen S, Lanzky P, et al. Occurrence, fate and effects of pharmaceutical substances in the environment-a review, Chemosphere, 1998, 36(2), 357-393
    [135] Fent K, Weston A A, Caminada D. Ecotoxicology of human pharmaceuticals, Aquatic Toxicology, 2006, 76(2), 122-159
    [136] Ring A, Dowsett M. Mechanisms of tamoxifen resistance, Endocrine-related cancer, 2004, 11(4), 643-658
    [137] Howell A. Pure oestrogen antagonists for the treatment of advanced breastcancer, Endocrine-related cancer, 2006, 13(3), 689-706
    [138] Jordan V, Dix C, Rowsby L, et al. Studies on the mechanism of action of the nonsteroidal antioestrogen tamoxifen (ICI 46,474) in the rat, Molecular and cellular endocrinology, 1977, 7(2), 177-192
    [139] Osborne C K, Elledge R M, Fuqua S A W. Estrogen receptors in breast cancer therapy, Sci Med, 1996, 3(32-41
    [140] Mueller S, Korach K. Mechanisms of estrogen receptor-mediated agonistic and antagonistic effects, Endocrine Disruptors–Part I, 2001, 3(L), 545-545
    [141] Osborne C K, Jarman M, McCague R, et al. The importance of tamoxifen metabolism in tamoxifen-stimulated breast tumor growth, Cancer chemotherapy and pharmacology, 1994, 34(2), 89-95
    [142] Westerfield M. The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio), Portland, University of Oregon Press, 1993
    [143] Jin Y, Chen R, Sun L, et al. Enantioselective induction of estrogen-responsive gene expression by permethrin enantiomers in embryo-larval zebrafish, Chemosphere, 2009, 74(9), 1238-1244
    [144] Chen J Y, Chen J C, Wu J L. Molecular cloning and functional analysis of zebrafish high-density lipoprotein-binding protein, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2003, 136(1), 117-130
    [145] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method, methods, 2001, 25(4), 402-408
    [146] Ankley G T, Kahl M D, Jensen K M, et al. Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas), Toxicological Sciences, 2002, 67(1), 121-130
    [147] Santos M, Micael J, Carvalho A, et al. Estrogens counteract the masculinizing effect of tributyltin in zebrafish, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2006, 142(1-2), 151-155
    [148] Elias E E, Kalombo E, Mercurio S D. Tamoxifen protects against 17α‐ethynylestradiol‐induced liver damage and the development of urogenital papillae in the rainbow darter (Etheostoma caeruleum), Environmental Toxicology and Chemistry, 2007, 26(9), 1879-1889
    [149] Sun L, Zha J, Wang Z. Effects of binary mixtures of estrogen and antiestrogens on Japanese medaka (Oryzias latipes), Aquatic Toxicology, 2009, 93(1), 83-89
    [150] Sun L, Shao X, Hu X, et al. Transcriptional responses in Japanese medaka (Oryzias latipes) exposed to binary mixtures of an estrogen and anti-estrogens, Aquatic Toxicology, 2011, 105(3-4), 629-639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700