用户名: 密码: 验证码:
藓羽藻叶绿体基因组及其Rubisco的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从不同的层次对藓羽藻叶绿体进行了研究,从其叶绿体基因组的大小测定、功能基因的克隆到基因编码产物的生理生化特性的研究,获得了藓羽藻叶绿体基因组和其编码的重要功能蛋白的信息,有助于海洋光合碳同化和海洋碳循环的研究,并为进一步研究打下坚实的基础。
    用DNaseⅠ法和蔗糖密度梯度离心技术分离纯化藓羽藻叶绿体,并运用脉冲场电泳技术测定了叶绿体基因组的大小。结果表明藓羽藻叶绿体基因组大小约为150 kb。同时藓羽藻的叶绿体基因组与某些高等植物相似,存在叶绿体二聚体、三聚体、四聚体甚至多聚体的形式。
    用高盐低pH法与氯化铯密度梯度离心相结合的方法纯化了藓羽藻叶绿体基因组DNA,并构建了其叶绿体基因组EcoRⅠ文库。
     PCR扩增出藓羽藻Rubisco大亚基外显子基因,并克隆测序,用邻接法和最大简约法分别对藻类各门代表种的Rubisco大亚基外显子基因序列构建系统进化树,显示出明显的绿藻与非绿藻体系界限。绿藻体系中各种藻的亲缘关系在两种进化树中相近,而非绿藻体系各种藻在不同的进化树中亲缘关系不同。密码子偏爱性分析结果表明藓羽藻Rubisco大亚基外显子与光合细菌等原核生物同等序列的密码子偏爱性有较大差异。
    采用硫酸铵分部沉淀与凝胶过滤的方法进行藓羽藻Rubisco的分离研究。结果表明,分离的藓羽藻Rubisco经SDS-PAGE检测呈两条清晰条带,分别为Rubisco大亚基与小亚基。藓羽藻Rubisco活力测定结果表明Rubisco分离过程中硫酸铵分部沉淀对Rubisco活力有较大影响;低温下活化对藓羽藻Rubisco活力测定效果较好,说明藓羽藻Rubisco相对陆地高等植物结构不稳定。
Study on the size of chloroplast genome and characterization of the Rubisco from Bryopsis hypnoides
    Tian chao (Marine Biology)
    Directed by Prof. Wang Guangce
     Chloroplast from Bryopsis hypnoides was studied on different aspects in this dissertation. With researches carried on the size of B. hypnoides chloroplast genome, cloning of functional genes and physiological characteristics of functional protein, some information of the chloroplast genome and vital functional protein encoded by the genome were abtained. These results will contribute to the study of photosynthesis and carbon cycle in marine and be convenient to the further research.
    Chloroplasts from B. hypnoides were isolated and purified by DNaseⅠmethod and sucrose density gradient centrifugation, and the size of the chloroplast genome was determined by pulse field gel electrophoresis. The results showed that the size of B. hypnoides chloroplast genome was about 150 kb. PFGE analysis of B. hypnoides revealed that there were dimeric, trimeric, tetrameric and even larger multimetic cpDNA forms in chloroplasts.
    Chloroplast genome DNA of B. hypnoides was purified by high ionic buffer and low pH method combined with CsCl density gradient centrifugation , EcoRⅠlibrary of the chloroplast genome DNA was also constructed in the experiment.
    RbcL exon of B. hypnoides was amplified by PCR and its sequence was determined, Neighbor-joining method and Maximum Parsimony method were used respectively to build phylogenetic tree according to rbcL exon sequence. Two kinds of trees showed clear that there were two groups among those species, green lineage and non-green lineage. And the relationships of algae in green lineage were similar in two trees but that in non-green lineage were not consistent. Analysis of codon preference indicated codon preference of rbcL exon of B. hypnoides distinctly differed from the relevant sequence of photosynthetic bacteria.
    
     Rubisco from B. hypnoides was isolated by ammonium sulfate fractional precipitation and gel filtration method. SDS-PAGE showed that isolated Rubisco from B. hypnoides was separated into two clear bands which represented the large subunit and small subunit of rubisco respectively. Activity of Rubisco from B. hypnoides was determined during the isolation process and the result indicated that ammonium sulfate had strongly affected the activity. Pre-incubation in ice would be helpful to enhance the activity that implied rubisco from B. hypnoides was less stable than that from higher plants.
引文
于惠敏.植物的叶绿体基因组.植物生理学通讯. 2001. 37(5):483-488
    王广策,曾呈奎. 紫球藻两种藻红蛋白特性的比较研究—γ亚基在稳定藻红蛋白结构方面的作用.海洋与湖沼. 2001.32(6):653-657
    3.王广策,孙海宝,曾呈奎,三角褐指藻磷酸甘油酸变位酶基因可能侧翼序列的筛选、克隆以及序列的测定.海洋与湖沼. 2002. 33(3):259-264
    4.王维光. 植物生理学实验手册.上海:上海科学技术出版社. 1985.125-128
    李立人. 植物生理与分子生物学(第二版).北京:科学出版社. 1999. 223-236
    李继耕. 叶绿体与叶绿体遗传. 生物学通报,1981(3).
    7.郭尧君编著.蛋白质电泳实验技术.北京:科学出版社,1999.141-143
    8.莫日根,哈斯阿古拉,姜金安. 叶绿体DNA种内多样性. 内蒙古大学学报(自然科学版). 1998. 29(4):574-579
    9. J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯. 分子克隆实验指南第二版. 北京:科学出版社. 1996. 880-885
    10.J.萨姆布鲁克等著. 分子克隆实验指南第三版. 北京:科学出版社. 2002. 53-56
    11. 龚小松,阎隆飞. 高等植物叶绿体DNA提纯方法的改进. 科学通报. 1991. 6:467-469
    12. [捷] B.福迪著. 罗迪安译. 藻类学. 上海:上海科学技术出版社. 1980. 3-4; 206
    13.Andrews T J. Catalysis of cyanobacterial ribulose-bisphosphate carboxylase large subunits in the complete absence of small subunits. J Biol Chem. 1988. 263:12213-12219
    14.Anderssom I et al. Crystal Structure of the Active Site of Ribulose-bisphosphate Carboxylase. Nature. 1989. 337:229-234
    
    15. Backert S,Dortel P and Borner T. Investigation of plant organellar DNAs by pulsed-field gel electrophoresis. Curr Genet. 1995. 28: 390-399
    16. Badger M R and Price G D. The role of Carbonic anhydrase in photosynthesis .Annu.Rev.Plant Physiol.Phant Mol.Biol. 1994. 45:369-392
    17.Bedbrook J R, Bogorad L. Endonuclease recognition sites mapped on Zea mays chloroplast DNA. Proc Natl Acad Sci USA. 1976. 73: 4309-4319
    18.Bedbrook J R,Kolodner R,Bogorad L. Zea mays chloroplast ribosomal RNA genes are part of a 22,000 base pair inverted repeat. Cell. 1977. 11:739-749
    19.Beer S ,Sand-Jensen K and Vindbaek Madsen T et al. The carboxylase activity of Rubisco and the photosynthetic performance in aquatic plants. Oecologia. 1991. 87:429-434
    20.Bhattacharya D and Medlin L. Algal Phylogeny and the Origin of Land Plants. Plant Physiol. 1998. 116:9-15
    21.Bischof K , Krabs G and Wiencke C et al. Solar ultraviolet radiation affects the activity of ribulose-1,5-bisphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophyll cycle pigments in the intertidal green alga Ulva lactuca L .Planta. 2002. 215:502-509
    22.Bogorad L. Evolution of organelles and eukaryotic genomes. Science. 1975. 188: 891–898
    23.Bonen L, Doolittle W. On the prokaryotic nature of red algal chloroplasts. Proc Natl Acad Sci USA. 1975. 72: 2310–2314
    24.Bookjans G,Stummann B M,Henningsen K W. Preparation of Chloroplast DNA from pea plastids isolated in a medium of high ionic strength. Anal Biochem . 1984 . 141: 244-247
    25.Bremer K. Summary of green plant phylogeny and classification. Cladistics. 1985. 1:369-385
    26.Cavalier-Smith T. The origin of nuclei and of eukaryotic cells. Nature. 1975. 256: 463–468
    27.Chapman M S et al. Tertiary structure of plant RuBisCO: domains and
    
    
    
    their contacts. Science. 1988. 241:71-74
    28.Chapman R L et al. In Molecular Systematics of Plants Ⅱ DNA Sequencing,eds. Soltis D E,Soltis P S and Doyle J J. Kluwer,Norwell. 1998. 508-540
    29.Chase M W et al. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann MO Bot Gard. 1993. 80: 528–580
    30.CHEF Mapper TM and CHEF Mapper XA Plused Field Electrophoresis Systems, USA ,1-72
    31.Deng X W,Wing R A and Gruissem W. The chloroplast genome exists in multimeric forms. Proc Natl Acad Sci USA. 1989. 86: 4156-4160
    32.Dyall S D,Brown M T,Johnson P J . Ancient Invasions: From Endosymbionts to Organelles. SCIENCE. 2004. 304( 9):253-257
    33.Felsenstein J. PHYLIP(phylogeny inference package) Version 3.5(Dept Genet Univ Washington,Seattle. 1995.
    34.Friedl T. The evolution of the green alga. Plant Syst Evol. 1997. 11:87-101
    35.Fujiwara S, Tsuzuki M and Kawachi M et al. 2001. Molecular phylogeny of the Haptophyta based on the rbcL gene and sequence variation in the spacer region of RuBisCO operon. J Phycol. 37:121-129
    36.Geoffery W W ,Kristin K and Robert J K. 2000. Phylogeny of the Bryopsidaceae(Bryopsidales, Chlorophyta):cladistic analyses of morphological and molecular data. Phycologia. 39(6): 471-481
    37.Gerard V A and Driscoll T. A spectrophotometric assay for Rubisco activity: application to the kelp Laminaria saccharina and implications for radiometric assay. J.Phycol. 1996. 32:880-884
    38.Gibbs S P. The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot. 1978. 56: 2883–2889
    39.Goremykin V et al. Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support Gnetalean affinities of angiosperms. Mol Biol Evol. 1996. 13:383–396
    
    40.Hanyuda T, Arai S and Ueda K. 2000. Variability in the rbcL Introns of Caulerpalean Algae (Chlorophyta,Ulvophyceae). J Plant Res. 113:403-413
    41.Harris S A,Ingram R. Chloroplast DNA and biosystematic:The effects of intraspecific diversity and plastid transmission. Taxon. 1991. 40:393-412
    42.Hirai A,Ishibashi T,Morikami A,Iwatsuki N,Shinozaki K and Sugiura M. Rice chloroplast DNA: a physical map and the location of the genes for the large subunit of ribulose 1, 5-bisphosphate carboxilase and the 32KD photosystem II reaction center protein. Theor Appl Genet. 1985. 70: 117-122
    43.Hiratsuka J,Shimada H and Whittier R F et al. The complete sequence of the rice(Oryza sativa) chloroplast genome:intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989. 271:185-194
    44.Ka¨llersjo ¨ M et al. Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Plant Syst Evol. 1998. 213:259–287
    45.Kaneko T, Tanaka A and Sato S et al. 1995. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res. 2 (4):153-166
    46.Kaneko T,Sato S,Kotani H and Tanaka A et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. Strain PCC6803. Ⅱ. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996. 3:109-136
    47.Karol K G,McCourt R M,Cimino M T and Delwiche C F. The closest living relatives of land plants. Science. 2001. 294(5550):2351-2353
    48.Kazuo S ,Chieko Y and Naoyuki T et al. 1983. Molecular cloning and sequence analysis of the cyaonbacterial gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA. 80: 4050-4054
    
    49.Kono M ,Satoh H and Okabe Y. Nucleotide sequence of the large subunit of ribulose-1,5-bisphosphate carboxylase-oxygenase from the green alga Bryopsis maxima. Plant Mol Biol. 1991. 17(3):505-508
    50.Lemieux C,Otis C and Turmel M. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green evolution. Nature. 2000. 403:649-652
    51.Lilly J W,Havey M J, Jason S A and Jiang J. Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. The Plant Cell. 2001. 13:245-254
    52.Loiseaux-de G S,Markowicz Y,Dalmon J,Audren H. Physical maps of the two circular plastid DNA molecules of the brown alga Pylaiella littoralis(L.) Kjellm. Curr Genet. 1988. 14:155-162
    53.Manhart J R and VonderHaar R A. Intron revealed by nucleotide sequence of large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from codium fragile (Chlorophyta): Phylogenetic analysis. J Phycol. 1991. 27:613-617
    54.Manning J E,Wolstenholme D R,Ryan R S,Hunter J A,Richards O C. Circular chloroplast DNA from Euglena gracilis . Proc Natl Acad Sci USA. 1971. 68:1169-1173
    55.Martin W and Herrmann R G. Gene transfer from organelles to the nucleus:how much,what happens,and why?Plant Physiol. 1998. 118: 9-17
    56.Mathews S and Donoghue M J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science. 1999. 286:947–950
    57.McCurry S D , Gee R ,and Tolbert N E. Ribulose-1,5-bisphosphate carbo xylase/oxygenase from spinach,tomato,or tobacco leaves. Methods In Enzymology. Academic Press, 1982. Vol.90. 515-521.
    58.McFadden G I. Chloroplast Origin and Integration. Plant Physiology. 2001. 125:50–53
    59.Miziorko H M,Lorimer G H. Ribulose-1,5-Bisphosphate Carboxylase-Oxygenase. Ann Rev Biochem. 1983. 52:507-535
    
    60.Niels D and Robert A A. 1997. Phylogenetic Analyses of the rbcL Sequences from Haptophytes and Heterokont Algae Suggest Their Chloroplasts are Unrelated. Mol Biol Evol. 14(12): 1242-1251
    61.Ogren W T,Bowes C T. Nature. 1971. 230:159
    62.Ohyama K,Fukuzawa H and Kohchi T et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature. 1986. 322:572-574
    63.Paech C and Dybing C D. Purification and degradation of Ribulose Bisphophate Carboxylase from Soybean leaves. Plant Physiol. 1986. 81:97-102
    64.Palmer J D and Delwiche C F. In Molecular Systematics of Plants Ⅱ DNA Sequencing,eds. Soltis D E,Soltis P S and Doyle J J. Kluwer,Norwell,MA. 1998. 375-409
    65.Palmer J D. Cell organelles. In Plant Gene Research. 1992. 99-122
    66.Palmer J D. Comparative organization of chloroplast genomes. Annu Rev Genet . 1985. 19: 325-354
    67.Qiu Y-L et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature. 1999. 402:404–407
    68.Qiu, Y-L et al. Phylogeny of basal angiosperms: analysis of five genes from three genomes. Int J Plant Sci. 2000. 161:S3–S27
    69.Raghvendra A S. Photosynthesis:a comprehensive treatise. Cambridge:Cambridge Univ Press. 1998. 72-84
    70.Sager R,Schlanger G. Chloroplast DNA:physical and genetic studied. King RC(ed) Handbook of Genetics. Plenum Press,New York. 1976. Vol 5,371-423
    71.Satoh H,Okada M,Nakayama K et al. Purification and futher characterization of pyrenoid proteins and Ribulose-1,5-bisphosphate carboxylase-oxygenase from the green alga Bryopsis maxima. Plant & Cell Physiol. 1984. 25(7):1205-1214
    72.Savolainen V et al. Phylogenetics of flowering plants based upon a combined
    
    
    analysis of plastid atpB and rbcL gene sequences. Syst Biol. 2000. 49:306–362
    73.Savolainen V et al. Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bull. 2000. 55:257–309
    74.Schmitz-Linneweber C, Maier R M and Alcaraz J P. 2001. The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol. 45 (3):307-315
    75.Schwarz Z, Kossel H . Nature. 1980. 283: 739–742
    76.Shimada A, Kanai S and Maruyama T. 1995. Partial sequence of ribulose-1,5-bisphosphate carboxylase/oxygenase and the phylogeny of Prochloron and Prochlorococcus (Prochlorales). J Mol Evol. 40 (6):671-677
    77.Shinozaki K,Ohme M and Tanaka M et al. The complete nucleotide sequence of the tobacco chloroplast genome:its gene organization and expression. EMBO J. 1986. 5:2043-2049
    78. Sluiman H G. A cladistic evaluation of the lower and higher green plants(Viridiplantae). Plant Syst Evol. 1985. 149:217-232
    79.Soltis D E et al. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann MO Bot Gard. 1997. 84:1–49
    80.Soltis D E et al. Angiosperm phylogeny inferred from a combined data set of 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc. 2000. 133:381–461
    81.Soltis D E et al. Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. Syst Biol. 1998. 47:32–42
    82.Soltis P S et al. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature. 1999. 402:402–404
    83.Strimmer K and Von Haeseler A. Quartet puzzling:a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol. 1996. 13:964-969
    84.Sugiura M. The chloroplast genome. Plant Molecular Biology . 1992 .19: 149-168
    
    85.Swofford D L. PAUP*.Phylogenetic Analysis Using Parsimony (*and other methods).Version 4. Sinauer Associates, Sunderland Massachusetts. 1998.
    86.Takeaki H, Shogo A and Kunihiko U et al. 2000. Variability in the rbcL introns of Caulerpalean algae(Chlorophyta ,Ulvophyceae). J. Plant Res. 113: 403-413
    87.Takishita K, Nakano K and Uchida A. 2000. Origin of the plastid in the anomalously pigmented dinoflagellate Gymnodinium mikimotoi (Gymnodiniales, Dinophyta) as inferred from phylogenetic analysis based on the gene encoding the large subunit of form I-type RuBisCO. Phycol Res. 48:85-89
    88.Thompson J D,Higgins D G and Gibson T J. CLUSTALW:improving the sensitivity of progressive multiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994. 22:4673-4680
    89.Thorne J L and Kishino H. Divergence time and evolutionary rate estimation with multilocus data. Syst Biol. 2002. 51:689-70
    90.Triboush S O,Danilenko N G and Davydenko O G. A method for isolation of chloroplast DNA and mitochondrial DNA from sunflower. Plant Molecular Biology Reporter. 1998. 16: 183-189
    91.Turmel M,Boulanger J,Schnare M N,Gray M W,Lemieux C. Six group Ⅰ introns and three internal transcribed spacers in the chloroplast large subunit ribosomal RNA gene of the green alga Chlamydomonas eugametos. J Mol Biol. 1991. 218:293-311
    92.Turmel M,Otis C and Lemieux C. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum:insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. PNAS. 2002. 99(17):11275-11280
    93.Turmel M,Otis C and Lemieux C. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea:insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci USA. 1999. 96:10248-10253
    
    94.Uemura K , Suzuki Y and Shikanai T et al. A rapid and sensitive method for determination of relative specificity of Rubisco from various species by anion-exchange chromatography. Plant Cell Physiol. 1996. 37(3):325-331
    95.Vincent S and Mark W C et al. 2003. A decade of progress in plant molecular Phylogenetics. Trends in Genetics. 19(12):717-724
    96.Wakasugi T,Nagai T and Kapoor M et al. Complete nucleotide sequence of the chloroplast genome from the green alga chlorella vulgaris:The existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA. 1997. 94:5967-5972
    97.Weissbach A et al. The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J Biol Chem. 1956. 218:795-810
    98.Whitney S M and Yellowlees D. Preliminary investigations into the structure and activity of Ribulose bisphosphate carboxylase from two photosynthetic dinoflagellates. J.Phycol. 1995. 31:138-146
    99.Wildman S G,Bonner J. The proteins of green leaves. I. Isolation, enzymatic properties and auxin content of spinach cytoplasmic proteins. Arch Biochem. 1947. 14:381-413
    100.Zechman F W. 2003. Phylogeny of the Dasycladales (Chlorophyta, Ulvophyceae) based on analyses of Rubisco Large Subunit (rbcL) Gene Sequences. J Phycol. 39 (4): 819-827
    101.Zhang Z, Green B, Cavalier-Smith T. Single gene circles in dinoflagellate chloroplast genomes. Nature. 1999. 400: 155–159
    102.Zurawski G et al. 1981. The structure of the gene for the large subunit of ribulose 1,5 bisphosphate carboxylase from spinach chloroplastDNA. Nucleic Acids Res. 9:3251–3270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700