用户名: 密码: 验证码:
厌氧氨氧化过程性能和微生物特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比于传统生物脱氮,厌氧氨氧化(anammox)过程是一种创新而卓越的选择,该过程使用亚硝酸氮作为电子受体,在自养条件下将氨氮氧化为氮气。这一过程是环境友好和可持续过程,其具有很多独特的优点,如不需要投加外部碳源,低能耗,低操作成本和剩余污泥产量。然而,该过程也有着鲜明的缺点,包括anammox细菌生长率较低,可利用的接种污泥源有限,细菌对氧气、有机物甚至基质等多种物质敏感而易受其抑制,这些不足都严重限制了anammox过程的应用。为了克服anammox过程应用中的困难,本论文从不同角度研究了anammox过程性能和微生物特性,主要研究内容和结果如下:
     Ⅰ.通过将一组无纺布膜组件和厌氧反应器相连接,本文设计了一个新型反应器结构来研究anammox细菌的富集。通过形成聚集体和膜内表面生物膜,anammox无纺布膜反应器(ANMR)表现出较好的生物量保持能力。成熟生物膜形成后,没有膜污染问题发生。经过8个月的培养后,反应器氮负荷和去除率分别达到1263mg N/L/d和1047.5 mg N/L/d,最大氨氮消耗率是51 nM/mg protein/min。反应器稳定阶段,NH4+-N和NO2--N平均去除效率分别是90.9%和95.0%。形态学观察表明,anammox聚集体和生物膜表现较高程度的紧密度。同时,实时聚合酶链反应(PCR)分析显示,anammox细菌的富集程度达到97.7%。
     Ⅱ.本论文使用不同数学模型研究了ANMR反应器的脱氮动力学,同时首次研究了anammox过程氮气产量动力学。模型动力学和模型测试均表明Grau二级基质去除模型和Van der Meer and Heertjes气体产量模型是现有模型中最适合描述anammox过程脱氮和氮气产量的模型。
     Ⅲ.厌氧氨氧化颗粒污泥反应器通常采用厌氧/好氧颗粒作为污泥源,由于共竞作用,这种接种方法使得其他细菌的洗出和:anammox菌的富集十分缓慢。本论文通过调查失活产甲烷颗粒与anammox菌的相互作用,发现失活产甲烷颗粒适合用来实现anammox快速颗粒化,尤其是采用高浓度含氮废水启动时。研究中,反应器启动阶段进水NO2--N浓度明显高于已发表的对anammox菌可能产生毒性的水平。三个月的培养可观察到直径1.3±0.4 mm的anammox颗粒,分子学分析显示此时颗粒中65%以上的细胞是anammox细菌。Anammox细菌可以利用失活产甲烷颗粒骨架并在颗粒内增殖是短时间内颗粒中anammox菌实现高纯度的主要原因。在4个月的操作时间里,氮负荷由141 mg/L/d增加到180 mg/L/d,同时总氮去除率高达96.0±0.6%。形态学观察证明了胞外多聚物在颗粒结构中的重要作用。
     Ⅳ.厌氧氨氧化过程的应用部分受制于anammox接种污泥的匮乏。近来,欧洲与亚洲均成功运行了anammox处理厂。本章研究了从国外引进污泥接种反应器处理高浓度含氮废水并实现快速启动的可能性。实验表明,反应器可实现快速启动,并且较长时间内,反应器可以达到高氮去除率,稳定运行时,NH4+-N和NO2--N的去除率稳定在95%-99.2%和97.7%-99%之间。反应化学计量学分析显示,NO2--N转化量和NO3--N生成量与NH4+-N消耗量的摩尔比是1.26±0.02:1和0.26±0.01:1,与经验值基本吻合。修正的Stover-Kincannon模型首次应用于anammox颗粒反应器,其具有较高的相关系数,并得出颗粒反应器具有27.8kg/m3/d的高除氮能力。电镜及荧光原位杂交技术被用来表征Anammox颗粒。实时PCR技术显示,颗粒微生物群落中anammox细菌占91.4-92.4%。
     Ⅴ.本文还系统研究了包括絮状污泥、颗粒污泥和由失活产甲烷颗粒富集的污泥在内的3种anammox污泥的性能、抑制和活性恢复过程。不同污泥性能比较和动力学研究得出,接种由失活产甲烷颗粒富集的anammox污泥的反应器具有最高的除氮能力,之后是颗粒污泥反应器和絮状污泥反应器。研究发现988.3 mgNH4+-N/L和484.4 mg NO2--N/L能完全抑制颗粒反应器活性,但仅能引起絮状污泥反应器50%活性降低。抑制后,接种絮状污泥和颗粒污泥的反应器可以通过降低反应器进水得到完全恢复,而接种失活产甲烷颗粒培养的anammox污泥反应器只能重拾75%活性。本研究中,污泥中anammox菌纯度是比污泥类型更适合评价反应器恢复能力的参数。同时发现,游离氨比游离亚硝酸更适合来监测anammox反应器抑制和恢复过程。
     Ⅵ.有机物的存在会对anammox过程产生负面影响。实际废水中不可避免地含有有机物,本文第一次研究了有机物的存在下,颗粒污泥的性能。在没有投加有机物时,颗粒反应器表现出极好的NH4+-N和NO2--N去除率。实时PCR分析得出细菌群体中anammox细菌占89.3-90.6%,少量反硝化菌也存在于污泥中。低浓度有机物并没有显著影响NH4+-N和NO2--N去除率,但却通过反硝化菌提高了总氮去除率。高浓度有机物抑制了anammox活性,使得NH4+-N去除率降低,而NO2--N去除率却没有因有机物存在而受到影响。当反应器进水COD为400 mg/L时,实时PCR分析显示污泥中anammox菌减少,而反硝化菌数量有增加趋势。文中定义NH4+-N去除率降为80%时,COD浓度为有机物对anammox活性抑制的阈值,实验得出该值为308 mg COD/L,可见anammox颗粒污泥比絮状污泥对有机物有更高忍受能力。
The anammox (anaerobic ammonium oxidation) process is a novel and promising alternative to biological treatment of ammonium, in which ammonium is oxidized to nitrogen gas using nitrite as the electron acceptor autotrophically. This process can be considered as an environmental friendly and sustainable process with several advantages, such as no need for addition of external carbon sources, low power consumption, low operational costs and biomass yields. However, this process has strong drawbacks, including slowly bacteria growing rate, limited availability of biomass and being sensitive to oxygen, organic matters and substrate, which limit the application of this process critically. In order to solve these difficulties, performance of anammox process and anammox microbial characteristics were studied in this dissertation. Main contents and conclusions obtained from this research are concluded as follows:
     Ⅰ. An innovative reactor configuration for anammox enrichment by connecting a non-woven membrane module with an anaerobic reactor was developed in this study. The anammox non-woven membrane reactor (ANMR) exhibited high biomass retention ability through the formation of aggregates in the reactor and biofilm on the interior surface of the non-woven membrane. No fouling problems occurred on the membrane after the development of mature biofilms. At steady state, the average ammonium and nitrite removal efficiencies were 90.9% and 95.0%, respectively. The enrichment of anammox bacteria was quantified by real-time polymerase chain reaction (PCR) analysis as 97.7%.
     Ⅱ. Different mathematical models were used to study the process kinetics of the nitrogen removal in the ANMR. The kinetics of nitrogen gas production of anammox process was first evaluated in this paper. Both model kinetics study and modeling test showed that the Grau second-order model and the Van der Meer and Heertjes model seemed to be the best models to describe the nitrogen removal and nitrogen gas production in the ANMR, respectively.
     Ⅲ. In previous granular anammox process, the washout of other species and enrichment of anammox biomass were very slow because of the competition of the coexisting bacteria. In this study, inactive methanogenic granules were proved to be suitable for rapid anammox granulation under high nitrogen concentrations by investigating their interaction with anammox bacteria. The start-up nitrite concentration was significantly higher than the published toxic level for anammox bacteria and other lab-scale studies. The nitrogen loading rate increased from 141 to 480 mg/L/d in 120 days operation with a total nitrogen removal efficiency of 96.0±0.6%. Anammox granules with high purity were observed over the course of three months. The accommodations and proliferations of anammox bacteria in the inactive methanogenic granules might be the main reason for the high anammox purity in a short period.
     IV. The application of anammox process is partly limited by the availability of anammox biomass. The possibility to introduce the exotic anammox sludge to seed the reactor and fast start-up of an anammox granular reactor for treating high nitrogen concentration wastewater were confirmed in this study. High nitrogen removal was achieved for a long period. During the stable period, the NH4+-N and NO2--N removal efficiencies varied from 95%to 99.2% and from 97.7% to 100%, respectively. The Stover-Kincannon model was first applied in granular anammox process with high correlation coefficient, indicating that the granular anammox reactor in this study possessed high nitrogen removal potential of 27.8 kg/m3/d. The anammox granules in the reactor were characterized via microscope observation and fluorescence in-situ hybridization technique. Moreover, the microbial community of the granules was quantified to be composed of 91.4-92.4% anammox bacteria by real-time polymerase chain reaction.
     Ⅴ. The performance, inhibition and recovery processes of different types of anammox sludge, including flocculent sludge, granular sludge, and cultured inactive methanogenic granules were evaluated. Both process performance and kinetics study indicated that the reactor seeded with cultured inactive methanogenic granules possessed the highest nitrogen removal potential, followed by the granular anammox reactor and the flocculent anammox reactor. The study suggested that the concentration that as high as 988.3 mg NH4+-N/L and 484.4 mg NO2--N/L could totally inhibit granular anammox bacteria and result in a inhibition of 50% flocculent anammox activity. In addition, reactors seeded with flocculent sludge and anammox granules could be fully recovered by decreasing their influent substrate concentrations. However, the decrease of influent substrate concentration for the reactor with cultured inactive methanogenic granules could only restore about 75% of its bacterial activity. In this study, anammox bacteria purity was the major factor to evaluate the recovery ability in comparison with sludge type. Free ammonia was a more appropriate indicator for the anammox recovery process compared to free nitric acid.
     VI. The presence of organic matter (OM) would affect the anammox process adversely. In practice, wastewaters containing ammonium are not free from OM. In this paper, the performance of anammox granular sludge in presence of OM was first evaluated under different COD to N ratios. Low OM concentration did not affect ammonium and nitrite removal significantly but improved the total nitrogen removal via denitrifiers. High OM could suppress anammox activity, resulting in a lower ammonium removal. Nitrite removal was not affected by the existence of OM in the presence of denitrifiers. PCR test revealed that there was a reduction in the number of anammox bacteria and denitrifiers quantity increased when 400mg COD/L influent was applied. A COD threshold concentration for anammox inhibition, which was, defined when ammonium removal dropped to 80%, was 308 mg COD/L. Anammox granular sludge had higher tolerance to OM than flocculent sludge.
引文
Abma, W.R., Mulder, J.W., van Loosdrect, M.C.M., Strous, M., Tokutomi, T.,2005. Anammox demonstration on full scale in Rotterdam. In:The Proceedings of Third IWA Leading-Edge Conference and Exhibition on Water and Wastewater Treatment Technologies at Sapporo.
    Abma, W.R., Schultz, C.E., Mulder, J.W., van der Star, W.R.L., Strous, M., Tokutomi, T., van Loosdrecht, M.C.M.,2007a. Full-scale granular sludge Anammox process. Water Sci. Technol.55 (8-9),27-33.
    Abma, W., Schultz, C, Mulder, J.W., van Loosdrecht, M., van der Star, W., Strous, M., Tokutomi, T.,2007b. The advance of Anammox. Water 21 (February),36-37.
    Adav, S.S., Lee, D.J., Tay, J.H.,2008. Extracellular polymeric substances and structural stability of aerobic granule. Water Res.42,1644-1650.
    Ahn, Y.H.,2006. Sustainable nitrogen elimination biotechnologies:a review. Process Biochem.41,1709-1721.
    Allen, G. C, Flores-Vergara, M. A., Krasnyanski, S., Kumar, S., Thompson, W. F.,2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc.1(5),2320-2325.
    Amann, R.I., Krumholz, L., Stahl, D.A.,1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol.172,762-770.
    Anthonisen, A.C., Loehr, R.C., Prakasam, T.B.S., Srinath, E.G.,1976. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed.48,835-852.
    APHA, AWWA, WEF,1998. Standard Methods for the Examinations of Water and Wastewater,20th ed. American Public Health Association, Washington DC, USA.
    Arrigo, K.A.,2005. Marine microorganisms and global nutrient cycles. Nature 437, 349-455.
    Arrojo, B., Mosquera-Corral, A., Campos, J.L., Mendez, R.,2006. Effects of mechanical stress on anammox granules in a sequencing batch reactor (SBR). J. Biotechnol.123, 453-463.
    Baloch, M.I., Akunna, J.C., Kierans, M., Collier, P.J.,2008. Structural analysis of anaerobic granules in a phase separated reactor by electron microscopy. Bioresour. Technol.99,922-929.
    Broda, E.,1977. Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol.17, 491-493.
    Buyukkamaci, N., Filibeli, A.,2002. Determination of kinetic constants of an anaerobic hybrid reactor. Process Biochem.38,73-79.
    Castrillon, L., Fernandez-Nava, Y., Maranon, E., Garcia, L., Berrueta, J.,2009. Anoxic-aerobic treatment of the liquid fraction of cattle manure. Waste Manage.29, 761-766.
    Chamchoi, N., Nitisoravut, S.,2007. Anammox enrichment from different conventional sludges. Chemosphere 66(11),2225-2232.
    Chamchoi, N., Nitisorvut, S., Schmidt, J.E.,2008. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresour. Technol.99,3331-3336.
    Chang, I.S., Gander, M., Jefferson, B., Judd, S.J.,2001. Low-cost membranes for use in a submerged MBR. Process Saf. Environ. Prot.79,183-188.
    Chen, J., Lun, S.Y.,1993. Study on mechanism of anaerobic sludge granulation in UASB reactors. Water Sci. Technol.28 (7),171-178.
    Chen, M.Y., Lee, D.J., Tay, J.H.,2007. Distribution of extracellular polymeric substances in aerobic granules. Appl. Microbiol. Biotechnol.73,1463-1469.
    Dalsgaard, T., Canfield, D.E., Petersen, J., Thamdruo, B., Acuna-Gonzalez, J.,2003. N2 production by the Anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422,606-609.
    Dalsgaard, T, Thamdrup, B., Canfield, D.E.,2005. Anaerobic ammonium oxidation (anammox) in the marine environment. Res. Microbiol.156,457-464.
    Dapena-Mora, A., Fernadez, I., Campos, J.L., Mosquera-Corral, A., Mendez, R., Jetten, M.S.M.,2007. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production, Enzyme Microb. Technol.40, 859-865.
    Dapena-Mora, A., Van Hulle, S.W.H., Campos, J.L., Mendez, R., Vanrolleghem, P.A., Jetten, M.,2004. Enrichment of Anammox biomass from municipal activated sludge: experimental and modelling results. J Chem. Technol. Biotechnol.79(12),1421-1428.
    Date, Y, Isaka, K., Ikuta, H., Sumino, T., Kaneko, N., Yoshie, S., Tsuneda, S., Inamori, Y., 2009. Microbial diversity of anammox bacteria enriched from different types of seed sludge in an anaerobic continuous-feeding cultivation reactor. J. Biosci. Bioeng.107, 281-286.
    de Beer, D., Flaharty, V.O., Thaveesri, J., Lens, P., Verstraete, W.,1996. Distribution of extracellular polysaccharides and flotation of anaerobic sludge. Appl. Microbiol. Biotechnol.46,197-201.
    Devol, A.H.,2003. Solution to a marine mystery. Nature 422,575-576.
    Dilworth, M.J., Eady, R.R.,1991. Hydrazine is a product of dinitrogen reduction by the vanadium nitrogenase from Azotobacter chroococcum. Biochem. J.277,465-468.
    Egli, K., Fanger, U., Alvarez, P.J. J., Siegrist, H., van der Meer, J.R., Zehnder, A.J. B., 2001. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch. Microbiol.175(3), 198-207.
    Fernandez, I., Vazquez-Padin, J.R., Mosquera-Corral, A., Campos, J.L., Mendez, R.,2008. Biofilm and granular systems to improve Anammox biomass retention. Biochem. Eng. J.42,308-313.
    Fessehaie A., Wydra K., Rudolph K.,1999. Development of a new semiselective medium for isolating Xanthomonas campestris pv. manihotis from plant material and soil. Phytopathology 89,591-597.
    Forster, C.F.,1992. Anaerobic upflow sludge blanket reactors:aspects of their microbiology and chemistry. J. Biotechnol.17,221-232.
    Francis, C. A., Beman, J. M, Kuypers, M. M. M,2007. New processes and players in the nitrogen cycle:the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J.1,19-27.
    Fujji, T., Sugino, H., Rouse, J.D., Furukawa, K.,2002. Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a nonwoven biomass carrier. J. Biosci. Bioeng.94 (5),412-418.
    Grau, P., Dohanyas, M., Chudoba, J.,1975. Kinetic of multicomponent substrate removal by activated sludge. Water Res 9,337-342.
    Guven, D., Dapena, A., Kartal, B., Schmid, M. C, Maas, B., van de Pas-Schoonen, K., Sozen, S., Mendez, R., Op den Camp, H. J. M., Jetten, M. S. M., Strous, M., Schmidt, I.,2005. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol.71,1066-1071.
    Ho, J.H., Khanal, S.K., Sung, S.,2007. Anaerobic membrane bioreactor for treatment of synthetic municipal wastewater at ambient temperature. Water Sci. Technol.55(7), 79-86.
    Hooper, A.B., Vannelli, T., Bergmann, D.J., Arciero, D.M.,1997. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek 71,59-67.
    Hulshoff Pol, L.W., de Castro Lopes, S.I., Lettinga, G., Lens, P.N.L.,2004. Anaerobic sludge granulation. Water Res.38,1376-1389.
    Imajo, U., Tokutomi, T., Furukawa, K.,2004. Granulation of Anammox microorganisms in up-flow reactors. Water Sci. Technol.49 (5-6),155-163.
    Isaka, K., Sumino, T., Tsuneda, S.,2007. High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions. J. Biosci. Bioeng.103,486-490.
    Isaka, K., Suwa, Y, Kimura, Y, Yamagishi, T., Sumino, T., Tsuneda, S.,2008. Anaerobic ammonium oxidation (anammox) irreversibly inhibited by methanol. Appl. Microbiol. Biotechnol.81,379-385.
    Isik, M., Sponza, T.,2005. Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorising simulated textile wastewater. Process Biochem.40, 1189-1198.
    Jensen, M.M., Thamdrup, B., Dalsgaard, T.,2007. Effects of specific inhibitors on Anammox and denitrification in marine sediments. Appl. Environ. Microbiol.73, 3151-3158.
    Jetten, M.S.M., Horn, S.J., Van Loosdrecht, M.C.M.,1997. Towards a more sustainable municipal wastewater treatment system. Water Sci. Technol.35,171-180.
    Jetten, M.S.M, van Niftrik, L., Strous, M., Kartal, B., Keltjens, J.T., Op den Camp, H.J.M.,2009. Biochemistry and molecular biology of anammox bacteria. Crit. Rev. Biochem. Mol. Biol.44,65-84.
    Jetten, M.S.M., Strous, M., van de Pas-Schoonen, K.T., Schalk, J., van Dongen, U.G.J.M., van de Graff, A.A., Logemann, S., Muyzer, G., van Loosdrecht, M.C.M., Kuenen, J.G.,1999. The anaerobic oxidation of ammonium. FEMS Microbiol. Rev.22, 421-437.
    Jetten, M.S.M., Wagner, M., Fuerst, J., van Loosdrecht, M., Kuenen, G., Strous, M.,2001. Microbiology and application of the anaerobic ammonium oxidation ('anammox') process. Curr. Opin. Biotechnol.12(3),283-288.
    Jianlong, W., Jing, K.,2005. The characteristics of anaerobic ammonia oxidation (ANAMMOX) by granular sludge from an EGSB reactor. Process Biochem.40, 1973-1978.
    Jin, R.C., Zheng, P.,2009. Kinetics of nitrogen removal in high rate anammox upflow filter. J. Hazard. Mater.170,652-656.
    Jung, J.Y., Kang, S.H., Chung, Y.C., Ahn, D.H.,2007. Factors affecting the activity of anammox bacteria during start up in the continuous culture reactor. Water Sci. Technol.55(1-2),459-468.
    Kapdan, I.K.; Aslan, S.,2008. Application of the Stover-Kincannon kinetic model to nitrogen removal by Chlorella vulgaris in a continuously operated immobilized photobioreactor system. J. Chem. Technol. Biotechnol.83,998-1005.
    Kartal, B., Kuypers, M.M.M., Lavik, G., Schalk, J., Op den Camp, H.J.M., Jetten, M.S.M., Strous, M,2007. Anammox bacteria disguised as denitrifiers:nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol.9, 635-642.
    Kartal, B., Rattray, J., van Niftrik, L., van de Vossenberg, J., Schmid, M, Webb, R.I., Schouten S., Fuerst J.A., Sinninghe Damste J.S., Jetten, M.S.M., Strous, M.,2007. Candidates "Anammoxoglobus propionicus" gen. nov., sp. nov., a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol. 30,39-49.
    Kartal, B., van Niftrik, L., Rattray, J., van de Vossenberg, J., Schmid, M.C., Damste, J.S.S., Jetten, M.S.M, Strous, M.,2008. Candidatus "Brocadia fulgida":an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol. Ecol.63, 46-55.
    Kim, I., Lee, H.H., Chung, Y.C., Jung, J.Y.,2009. High-strength nitrogenous wastewater treatment in biofilm and granule anammox processes. Water Sci. Technol.60, 2365-2371.
    Kridelbaugh. D.; Doerne.r K.C.,2009. Development of a defined medium for Clostridium scatologenes ATCC 25775. Lett. Appl. Microbiol.48,426-432.
    Kuenen. J.G.,2008. Anammox bacteria:from discovery to application. Nat. Rev. Microbiol.6,320-326.
    Kuenen. J.G., Jetten. M.S.M.,2001. Extraordinary anaerobic ammonium oxidising bacteria. ASM News 67,456-463.
    Kuscu, O.S., Sponza, D.T.,2009. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor. J. Hazard. Mater.161,787-799.
    Kuypers, M.M.M., Sliekers, A.O., Lavik, G., Schmid, M., Jorgensen, B.B., Kuenen, J.G., Sinninghe Damste, J.S., Strous, M., Jetten, M.S.M.,2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422,608-611.
    Lettinga, G., van Velsen, A.F.M., Hobma, S.W., de Zeeuw, W., Klapwijk, A.,1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng.22,699-734.
    Liao, D., Li, X., Yang, Q., Zhao, Z., Zeng, G.,2007. Enrichment and granulation of Anammox biomass started up with methanogenic granular sludge. World J. Microbiol. Biotechnol.23,1015-1020.
    Liu, Y., Xu, H.L., Yang, S.F., Tay, J.H.,2003. Mechanism s and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res.37,661-673.
    Li, X.R., Du, B., Fu, H.X., Wang, R.F., Shi, J.H., Wang, Y, Jetten, M.S.M., Quan, Z.X., 2009. The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community. Syst. Appl. Microbiol.32,278-289.
    Lopez, H., Puig, S., Ganigue, R., Ruscalleda, M., Balaguer, M.D., Colprim, J.,2008. Start-up and enrichment of a granular Anammox SBR to treat high nitrogen load wastewaters. J. Chem. Technol. Biotechnol.83,233-241.
    Lundberg, J.O., Weitzberg, E., Cole, J.A., Benjamin, N.,2004. Nitrate, bacteria and human health. Nat. Rev. Microbiol.2,593-602.
    McCarty, P.L., Smith, D.P.,1986. Anaerobic wastewater treatment. Environ. Sci. Technol. 20,1200-1206.
    McSwain, B.S., Irvine, R.L., Hausner, M., Wilderer, P.A.,2005. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl. Environ. Microbiol.71,1051-1057.
    Molinuevo, B., Garcia, M. C, Karakashev, D., Angelidaki, I.,2009. Anammox for ammonia removal from pig manure effluents:Effect of organic matter content on process performance. Bioresour. Technol.100,2171-2175.
    Monod J.,1949. The growth of bacterial cultures. Annu. Rev. Microbiol.3,371-376.
    Mulder, A.,1992. Anoxic ammonia oxidation. US patent 5078884.
    Mulder, A.,1993. Anoxic ammonia oxidation. US patent 5259959.
    Mulder, A., van de Graaf, A.A., Roberton, L.A., Kuenen, J.G.,1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbial. Ecol.,16,177-184.
    Nandi, B.K., Uppaluri, R., Purkait, M.K.,2009. Treatment of oily waste water using low-cost ceramic membrane:flux decline mechanism and economic feasibility. Separ. Sci. Technol.44,2840-2869.
    Ni, B.J., Chen, Y.P., Liu, S.Y., Fang, F., Xie, W.M., Yu, H.Q.,2009. Modeling a granule-based anaerobic ammonium oxidizing (ANAMMOX) process. Biotechnol. Bioeng.103,490-499.
    Ni, S.Q., Lee, P.H., Fessehaie, A., Gao, B.Y., Sung, S.,2010. Enrichment and biofilm formation of Anammox bacteria in a non-woven membrane reactor. Bioresour. Technol.101,1792-1799.
    Olav Sliekers, A., Derwort, N., Campos Gomez, J.L., Strous, M., Kuenen, J.G., Jetten, M.S.M.,2002. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res.36(10),2475-2482.
    Olav Sliekers, A., Third, K.A., Abma, W., Kuenen, G.J., Jetten, M.S.M.,2003. CANON and anammox in a gas-lift reactor. FEMS Microbiol. Lett.218(2),339-344.
    Penton, C.R., Devol, A.H., Tiedje, J.M.,2006. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl. Environ. Microbiol.72,6829-6832.
    Pynaert, K., Smets, B.F., Beheydt, D., Verstraete, W.,2004. Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition. Environ. Sci. Technol. 38,1228-1235.
    Qiao, S., Kawakubo, Y, Cheng, Y, Nishiyama, T., Fujii, T., Furukawa, K.,2009. Identification of bacteria coexisting with anammox bacteria in an upflow column type reactor. Biodegradation 20,117-124.
    Qin, L., Liu, Q.S., Yang, S.F., Tay, J.H., Liu, Y.,2004. Stressful conditions-induced production of extracellular polysaccharides in aerobic granulation process. Civil Eng. Res.17,49-51.
    Quan, Z.X., Rhee, S.K., Zuo, J.E., Yang, Y, Bae, J.W., Park, J.R., Lee, S.T., Park, Y.H., 2008. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ. Microbiol.10,3130-3139.
    Richards, F.A.,1965. Chemical observations in some anoxic, sulfide-bearing basins and fjords. In:Pearson E.A. (Eds.). Advances in Water Pollution Research. Pergamon Press, Oxford, United Kingdom, pp.215-232.
    Sabumon, P.C.,2007. Anaerobic ammonia removal in presence of organic matter:A novel route. J. Hazard. Mater.149,49-59.
    Schalk, J., Oustad, H., Kuenen, J.G., Jetten, M.S.M.,1998. The anaerobic oxidation of hydrazine-a novel reaction in microbial nitrogen metabolism. FEMS Microbiol. Lett. 158,61-67.
    Schleper, C.,2008. Metabolism of the deep. Nature 456,712-714.
    Schmid, M.C., Risgaard-Petersen, N., van de Vossenberg, J., Kuypers, M.M., Lavik, G., Petersen, J., Hulth, S., Thamdrup, B., Canfield, D., Dalsgaard, T., Rysgaard, S., Sejr, M.K., Strous, M., op den Camp, H.J.M., Jetten, M.S.M.,2007. Anammox bacteria in marine environments:widespread occurrence but low diversity. Environ. Microbiol.9, 1476-1484.
    Schmid, M, Twachtmann, U., Klein, M, Strous, M., Juretschko, S., Jetten, M.S.M., Metzger, J.W., Schleifer, K.H., Wagner, M.,2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol.23,93-106.
    Schmid, M., Walsh, K., Webb, R., Rijpstra, W.I.C., van de Pas-Schoonen, K., Verbruggen, M.J., Hill, T., Moffett, B., Fuerst, J., Schouten, S., Damste, J.S., Harris, J., Shaw, P., Jetten, M.S.M., Strous, M.,2003. Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol.26,529-538.
    Schmidt, I., Sliekers, O., Schmid, M, Bock, E., Fuerst, J., Kuenen, J.G., Jetten, M.S.M., Strous, M.,2003. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol. Rev.27,481-492.
    Schmidt, J.E., Ahring, B.K.,1994. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Appl. Microbiol. Biotechnol.42(2-3),457-462.
    Schmidt, J.E., Ahring, B.K.,1996. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactor. Biotechnol. Bioeng.49(3),229-246.
    Schmidt, J.E., Batstone, D.J., Angelidaki, I.,2004. Improved nitrogen removal in upflow anaerobic sludge blanket (UASB) reactors by incorporation of Anammox bacteria into the granular sludge. Water Sci. Technol.49 (11-12),69-76.
    Shiakowski, D.M., Mavinic, D.S.,1989. Biological treatment of a high ammonia leachate: influence of external carbon during initial startup. Water Res.32,2533-2541.
    Stover, E.L., Kincannon, D.F.,1982. Rotating biological contactor scale-up and design, in: Proceedings of the 1st International Conference on Fixed Film Biological Processes, Kings Island, Ohio, USA, pp.1-21.
    Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K.T., Webb, R., Kuenen, J.G., Jetten, M.S.M.,1999. Missing lithotroph identified as new planctomycete. Nature,400,446-449.
    Strous, M., Heijnen, J.J., Kuenen, J.G., Jetten, M.S.M.,1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol.50(5),589-596.
    Strous, M, Jetten, M.S.M.,2004. Anaerobic oxidation of methane and ammonium. Annu. Rev. Microbiol.58,99-117.
    Strous, M., Kuenen, J.G., Jetten, M.S.M.,1999. Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microbiol.65,3248-3250.
    Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M.W., Horn, M., Daims, H., Bartol-Mavel, D., Wincker, P., Barbe, V., Fonknechten, N., Vallenet, D., Segurens, B., Schenowitz-Truong, C, Medigue, C, Collingro, A., Snel, B., Dutilh, B.E., et al.,2006. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440,790-794.
    Strous, M., van Gerven, E., Kuenen, J.G., Jetten, M.S.M.,1997. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Appl. Environ. Microbiol.63,2446-2448.
    Tang, C.J., Zheng, P., Mahmood, Q., Chen, J.W.,2009. Strat-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge. J. Ind. Microbiol. Biotechnol.36,1093-1100.
    Tay, J.H., Liu, Q.S., Liu, Y.,2001a. The effects of shear force on the formation, structure and metabolism of aerobic granules. Appl. Microbiol. Biotechnol.57,227-233.
    Tay, J.H., Liu, Q.S., Liu, Y.,2001b. The role of cellular polysaccharides in the formation and stability of aerobic granules. Lett. Appl. Microbiol.33,222-226.
    Thamdrup, B., Dalsgaard, T.,2002. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68,1312-1318.
    Third, K.A., Sliekers, O.A., Kuenen, G.J., Jetten, M.S.M.,2001. The CANON system (Completely Autotrophic Nitrogen-Removal Over Nitrite) under ammonium limitation:interaction and competition between three groups of bacteria. Syst. Appl. Microbiol.24(4),588-596.
    Third, K.A., Paxman, J., Schmid, M., Strous, M., Jetten, M.S.M., Cord-Ruwisch, R.,2005. Enrichment of Anammox from Activated Sludge and Its Application in the CANON Process. Microb. Ecol.49(2),236-244.
    Thuan, T.H., Jahng, D.J., Jung, J.Y, Kim, D.J., Kim, W.K., Park, Y.J., Kim, J.E., Ahn, D.H.,2004. Anammox bacteria enrichment in upflow anaerobic sludge blanket (UASB) reactor. Biotechnol. Bioprocess Eng.9,345-351.
    Tran, H.T., Park, Y.J., Cho, M.K., Kim, D.J., Ahn, D.H.,2006. Anaerobic ammonium oxidation process in an upflow anaerobic sludge blanket reactor with granular sludge selected from an anaerobic digestor, Biotechnol. Bioprocess Eng.11,199-204.
    Trigo, C, Campos, J.L., Garrido, J.M., Mendez, R.,2006. Start-up of the Anammox process in a membrane bioreactor, J. Biotechnol.126,475-487.
    Tsushima, I., Kindaichi, T., Okabe, S.,2007a. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR. Water Res. 41,785-794.
    Tsushima, I., Ogasawara, Y., Kindaichi, T., Satoh, H., Okabe, S.,2007b. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res.41, 1623-1634.
    Van de Graaf, A.A., de Bruijn, P., Robertson, L.A., Jetten, M.S.M., Kuenen, J.G.,1996. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142,2187-2196.
    Van de Graaf, A.A., de Bruijn, P., Robertson, L.A., Jetten, M.S.M., Kuenen, J.G.,1997. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fuidized bed reactor. Microbiology 143,2415-2421.
    Van de Graaf, A.A., Mulder, A., de Bruijn, P., Jetten, M.S.M., Robertson, L.A. and Kuenen, J.G.,1995. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol.61,1246-1251.
    Van de Graaf, A.A., Mulder, A., Slijkhuis, H., Robertson, L.A., Kuenen, J.G.,1990. Anoxic ammonium oxidation. In:Proceedings of the 5th European Congress on Biotechnology (Christiansen, C., Munck, L. and Villadsen, J., Eds.), Vol. Ⅰ, pp. 338-391. Munksgaard, Copenhagen.
    Van der Meer, R.R., Heertjes, P.M.,1983. Mathematical description of anaerobic treatment of wastewater in upflow reactors. Biotechnol. Bioeng.25,2531-2556.
    Van der Star, W.R.L., Abma, W.R., Blommers, D., Mulder, J.W., Tokutomi, T., Strous, M., Picioreanu, C, van Loosdrecht, M.C.M.,2007. Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale anammox reactor in Rotterdam. Water Res.41,4149-4163.
    Van der Star, W.R.L., Miclea, A.I., van Dongen, U.G.J.M., Muyzer, G., Picioreanu, C., van Loosdrecht, M.C.M.,2008. The membrane bioreactor:a novel tool to grow anammox bacteria as free cells. Biotechnol. Bioeng.101(2),286-294.
    Van de Vossenberg, J., Rattray,J.E., Geerts, W., Kartal, B., van Niftrik, L., van Donselaar, E.G., Damste, J.S.S., Strous, M., Jetten, M.S.M.,2008. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environ. Microbiol.10(11),3120-3129.
    Van Dongen, U., Jetten, M.S.M., van Loosdrecht M.C.M.,2001. The Sharon-Anammox process for treatment of ammonium rich wastewater. Water Sci. Technol.44(1), 153-160.
    Van Loosdrecht, M.C.M., Jetten, M.S.M.,1998. Microbiological conversions in nitrogen removal. Water Sci. Technol.38,1-7.
    Vazquez-Padin, J., Fernadez, L, Figueroa, M, Mosquera-Corral, A., Campos, J.L. Mendez, R.,2009a. Applications of Anammox based processes to treat anaerobic digester supernatant at room temperature. Bioresour. Technol.100,2988-2994.
    Vazquez-Padin, J.R., Pozo, M.J., Jarpa, M., Figueroa, M., Franco, A., Mosquera-Corral, A., Campos, J.L., Mendez, R.,2009b. Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR. J. Hazard. Mater.166, 336-341.
    Waki, M., Tokutomi, T, Yokoyama, H., Tanaka Y.,2007. Nitrogen removal from animal waste treatment water by anammox enrichment. Bioresour. Technol.98,2775-2780.
    Wang, C.C., Lee, P.H., Kumar, M., Huang, Y.T., Sung, S., Lin, J.G.,2010. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leach ate treatment plant. J. Hazard. Mater.175,622-628.
    Woebken, D., Lam, P., Kuypers, M.M., Naqvi, S.W., Kartal, B., Strous, M., Jetten, M.S., Fuchs, B.M., Amann, R.,2008. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ. Microbiol.10,3106-3119.
    Yamamoto, T., Takaki, K., Koyama, T., Furukawa, K.,2008. Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox. Bioresour. Technol.99,6419-6425.
    Yang, Y, Zuo, J., Quan, Z., Lee, S., Shen, P., Gu, X.,2006. Study on performance of granular ANAMMOX process and characterization of the microbial community in sludge. Water Sci. Technol.54 (8),197-207.
    Yang, Z., Zhou, S., Sun, Y,2009. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic
    up-flow bioreactor. J. Hazard. Mater.169,113-118.
    Yetilmezsoy, K., Sakar, S.,2008. Development of empirical models for performance evaluation of UASB reactors treating poultry manure wastewater under different operational conditions. J. Hazard. Mater.153,532-543.
    Yu, H.Q., Wilson, F., Tay, J.H.,1998. Kinetic analysis of an anaerobic filter treating soybean wastewater. Water Res.32,3341-3352.
    Zhang, L.L., Feng, X.X., Zhu, N.W., Chen, J.M.,2007. Role of extracellular protein in the formation and stability of aerobic granules. Enzyme Microb. Technol.41, 551-557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700