用户名: 密码: 验证码:
基于功能分配的汽车底盘集成系统协调控制与稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车是重要的载运工具之一,与人们的生产生活联系最为密切。底盘作为汽车的重要总成之一,对改善汽车的乘坐舒适性、操纵稳定性和安全性等性能具有重要作用。底盘系统由悬架、转向和制动等子系统构成,对其施加主动控制作用可以改善汽车的某方面的性能。由于其子系统之间存在相互耦合,对底盘集成系统的优化控制带来了困难,研究者所设计的控制系统均能从某些方面改善底盘系统的控制性能。如何考虑各子系统间功能区别,对底盘集成系统各子系统进行功能分配且协调控制系统设计,保证底盘全局控制系统性能最优,是当前研究的难点。
     本文针对汽车底盘系统的悬架、转向和制动三个子系统间耦合作用,展开系统建模、子系统控制器设计和高阶悬架控制器模型降阶、基于功能分配的集成系统协调优化控制和稳定性分析等方面的研究,并进行了硬件在环仿真试验研究。具体为如下几个方面。
     1)针对整车悬架系统控制器阶数高、工程上难以实现的问题,建立整车7自由度主动悬架模型,基于最小信息损失模型降阶方法对20阶主动悬架控制器进行降阶研究,通过对降阶前后主动悬架闭环控制系统频域仿真和乘坐舒适性分析表明,20阶主动悬架控制器阶数能够被大大降低且系统状态能控能观信息损失不大。
     2)在建立汽车悬架与转向耦合动力学系统模型的基础上,选取偏差与偏差微分作为特征量,建立关于特征量的可拓集合。根据关联函数,划分经典域、可拓域、非域三种测度模式。在不同可拓集合范围内对控制功能进行分配,分别设计对应功能控制算法,构建基于功能分配的可拓控制器。通过仿真研究结果表明,基于功能分配的可拓控制可进一步全面提高悬架和转向集成系统的控制性能。
     3)对参数不确定性和时滞的系统,给出了系统稳定的充分性条件,并对悬架和转向系统进行了稳定性分析。在不同控制方法下,以悬架、转向系统参数作为变量,对集成控制系统的稳定性进行分析。结果表明,采用可拓控制,控制系统稳定性更佳;增大悬架阻尼、车速、前轮转向角至一定值时,汽车时域响应不稳定程度增加;改变可拓控制器偏差控制系数,对集成控制系统性能均有不同程度的影响;不断增加可拓控制器功能控制系数,系统各项控制性能会发生突变而失去稳定性。
     4)针对悬架与转向非线性集成系统,基于偏差分离的双线性控制、H∞控制、滑模变结构控制设计了非线性控制器,基于模糊规则的人车功能分配模块协调悬架和转向系统控制输出权重。通过仿真验证了双线性控制较H∞控制、滑模变结构控制,能更好地改善汽车乘坐舒适性和操纵稳定性能,同时体现了人车功能分配模块对进一步提升集成系统控制性能的有效性。
     5)针对汽车底盘悬架、转向、制动子系统耦合动力学关系,对悬架子系统设计非线性H∞控制器,对转向子系统设计直接横摆力矩PID控制器,对制动子系统设计滑模变结构控制器。基于功能分配原理对子系统控制功能进行分配,采用博弈论对子系统控制功能指标进行博弈,模糊规则实时自整定子系统控制器输出量以跟踪期望控制目标。对整车协调控制系统进行仿真,结果表明基于博弈论的整车协调控制系统较子系统单独控制、不加控制时能取得更好的控制性能。
     6)基于NI Compact-cRIO设计了硬件在环仿真试验平台,进行了悬架子系统、转向子系统和悬架与转向集成系统的硬件在环仿真试验,验证了所设计的可拓控制器和双线性控制器对改善汽车乘坐舒适性和操纵稳定性的有效性。在此基础上,采用Compact-cRIO9025在三种不同工况下,进行了基于快速原型的实车试验,进一步验证了所设计的双线性控制器的有效性。
Vehicle is one of the important means of transport, which is most closely related topeople's production and life. The chassis as one of the important vehicle assembly, playsan important role in improving vehicle ride comfort, handling and security performance.The chassis is composed of suspension, steering and braking subsystems. Applying theactive control to them can improve vehicle certain aspects of performance. Due to thecoupling relation among the subsystems, the optimal control to chassis integratedsystem is difficult. The designed control system can improve the chassis system controlperformance from some aspects. But how to consider the function difference of differentsubsystems, carry out the function allocation to the chassis integrated system'ssubsystems and design coordinated control system to guarantee the chassis with thewhole-region optimal control performance, is the difficulty of the current research.
     In this thesis, the coupled dynamics among the chassis' three subsystems ofsuspension, steering and braking is considered. The research is on system modeling,subsystems' controller design and order reduction for high-order suspension controller,integrated system corordinated control and optimization based on function allocation,and stability analysis. And the hardware-in-loop simulation is carried out to verify thedesigned control method. The details are illustrateed as follows.
     1) To solve the problems of high-order and hard to engineering realization offull-vehicle suspension controller, the7degree-of-freedom full-vehicle activesuspension model is built. Based on the minimal information loss method, theorder-reduction of active suspension controller is studied. Through thefrequency-domain simulation and ride-comfort analysis to the full-order andreduced-order active suspension control systems, the research results demonstrate thatthe20th-order of active suspension controller can be significantly reduced, and systemstate controllability and observability information loss is less.
     2) Based on building the vehicle syspension and steering system coupled dynamicmodel, the deviation and deviation derivative are chosen as the characteristic quantities,and the extension set is established. The three measure modes of the classical domain,extension domain and non-domain are divided according to the correlation function.The control functions are allocated in different extension sets, and the correspondingcontrol algorithms are separately designed to form the function allocation based extension controller (FAEC). The simulation research results demonstrate that the FAECcan further improve the control performance of the suspension and steering integratedsystem.
     3) For the system with parameters uncertainty and time-delay, the sufficient conditionof system stability is given. And then the stability is analyzed for the suspension andsteering system. The integrated control system stability is analyzed when utilizing thesuspension and steering system parameters as the variables by different control methods.The analysis results show that adopting the FAEC, the control system is with betterstability. When increasing suspension damping, vehicle velocity and the front-wheelsteering angle to certain values, vehicle time-domain responses’ instability degreeincreases. And when changing the FAEC error weighted coefficients, it brings differentdegrees of influences to the integrated control system performance. If constantlyincreasing the extension controller function control coefficient, it leads the vehiclecontrol system to instability.
     4) For suspension and steering nonlinear integrated system, the bilinear control basedon deviation separation(BCDS),H∞control and sliding mode variable structurecontrol (SMVSC) are utilized to design the nonlinear controllers. The human-vehiclefunction allocation module(HVFAM) based on fuzzy rules is adopted to coordinate thesyspension and steering system control weights. The simulation results demonstrate thatthe BCDS can better improve vehicle ride comfort and handling performance thanH∞control and SMVSC. And the HVFAM can futher improve integrated system controlperformance.
     5) Considering the coupled dynamics among suspension, steering and brakingsub-systems in vehicle chassis, the sub-optimal controllers of nonlinearH∞control,direct yaw moment PID control and sliding mode control are separately designed for thesuspension, steering and braking subsystems. The subsystems’ control functions areallocated based on the function allocation principle, and the subsystem’s controlfunction indices are utilized for competing by game theory. The fuzzy rules are utilizedto adaptively adjust the subsystems’ control output in order to follow the whole-regioncontrol object. The considerable simulations are carried out for full-vehicle coordinatedcontrol system. The results demonstrate that the full-vehicle coordinated control systembased on game theory can obtain the best control performances than the uncoordinatedcontrol system and uncontrolled system.
     6) The hardware-in-loop simulation test(HILST) platform is designed based on NI Compact-cRIO. The HILST for vehicle suspension subsystem, steering subsystem andintegrated system are carried out, to varify that the designed extension controller andbilinear controller can futher improve vehicle ride comfort and handling. Then thevehicle test based on rapid prototyping is carried out by adopting Compact-cRIO9025under three different conditions. And the test results also demonstrate the designedbilinear controller can obtain the best vehicle ride comfort and handling performance.
引文
[1]万钢.21世纪让中国的汽车工业展翅飞翔[M].北京:机械工业出版社,2002.
    [2] Rajesh Rajamani. Vehicle dynamics and control[M]. Springer,2005.
    [3] Reimpell D J, Stoll D H, Betzler D J. The automotive chassis: engineering principles. SAE,2001.
    [4]邓方林,廖守忆,孙新利,等.复杂工程系统建模与仿真[M].北京:国防工业出版社,2009.
    [5]曹少中.非线性协调控制理论研究及应用[M].北京:科学出版社,2009.
    [6]钱学森,宋健.工程控制论(第三版)[M].北京:科学出版社,2011.
    [7]喻凡,李道飞.车辆动力学集成控制综述[J].农业机械学报,2008,39(6):1-7.
    [8] Sato S, Inoue H, Tabata M, et al. Integrated chassis control system for improved vehicledynamics [C]. Proc, AVEC92, Yokohama, Japan,1992.
    [9]刘维平,聂俊峰,渠景阳,等.装甲车辆综合显控系统人机功能分配方法研究[J].湖北理工学院学报,2013,29(1):1-4.
    [10]易华辉,宋笔锋,姬东朝.场景的无人机控制站人机功能分配[J].火力与指挥控制,2007,32(12):129-132.
    [11]周锐,吴雯漫,罗广文.自主多无人机的分散化协同控制[J].航空学报,2008,29(增刊),S26-S32.
    [12]贺正洪,张金成.基于专家系统的防空火力分配模型[J].系统工程与电子技术,2001,23(7):44-46.
    [13]柳平,胡孟权,胡文东,等.作战飞机人机功能分配方法[J].火力与指挥控制,2012,37(12):19-22.
    [14]王磊,王立新,贾重任.多操纵面飞翼布局作战飞机的控制分配方法[J].航空学报,2011,32(4):571-579.
    [15] ZHANG An, TANG Zhili, ZHANG Chao. Man-machine Function Allocation Based onUncertain Linguistic Multiple Attribute Decision Making [J]. Chinese Journal of Aeronautics,2011,24(6):816-822.
    [16]栾义春,薛红军,宋笔锋,等.无人作战飞机地面控制系统动态功能分配探讨[J].人类工效学,2007,13(1):37-39.
    [17] HE J J, CROLLA D A, LEVESLEY M C, et al. Coordination of active steering, driveline, andbraking for integrated vehicle dynamics control[J]. Proc. IMechE, Part D:J. Automobile,Engineering,2006(220):1401-1421.
    [18]黄琳,段志生.控制科学中的复杂性[J].自动化学报,2003,29(5):748-754.
    [19]钱学森.工程控制论[M].北京:科学出版社,1958.
    [20] HWANG T H, PARK K, HEO S J, et al. Design of integrated chassis control logic for AFS andESP[J]. International Journal of Automotive Technology,2008,9(1):17-27.
    [21]刘力,罗禹贡,江青云,等.基于广义预测理论的AFS/DYC底盘一体化控制[J].汽车工程,2011,33(1):52-55.
    [22]陈无畏,周慧会,刘翔宇.汽车ESP与ASS分层协调控制研究[J].机械工程学报,2009,45(8):190-196.
    [23]王金湘,陈南.监督控制下的车辆集成底盘控制策略与仿真[J].农业机械学报,2009,40(9):1-6.
    [24] DOWNHAUL K, HYUNSOO K. Vehicle stability control with regenerative braking andelectronic brake force distribution for a four wheel drive hybrid electricvehicle[C]//Proceedings of the Institution of Mechanical Engineers. Part D, Journal ofAutomobile Engineering.2006,220(D6):683~693.
    [25]蔡文,杨春燕.可拓学的基础理论与方法体系[J].科学通报,2013,58(13):1190-1199.
    [26] Yang C Y, Cai W. Extenics: Theory, Method and Application[M]. Beijing: Science Press,2013.
    [27] Lee Y C, Terashima N. An Extenics-based intelligent distance learning system[J]. Int JComput Sci Netw Sec,2011,11:57–63.
    [28] Tao D F, Lee L T. An Extenics-based load balancing mechanism in distributed computingsystems[J]. Int J Comput Sci Netw Sec,2006,6:70–76.
    [29]杨玉中,邓叶飞,孟祥中,等.基于AHP的汽车供应链绩效可拓评价方法[J].长安大学学报(自然科学版),2011,31(5):91-96.
    [30]张恩元,刘瑞军,于胜武,等.基于可拓理论的汽车检测设备选型评价研究[J].汽车技术,2009,(1):48-51.
    [31]何英萍,芮延年,柳胜.变速器设计方案可拓综合评价方法[J].机械设计与研究,2009,25(6):79-81.
    [32]刘艳彬,李兴森,袁平.基于可拓变换的商业模式创新研究—以电动汽车商业模式创新为例[J].数学的实践与认识,2012,42(10):25-31.
    [33]王行愚,李健.论可拓控制[J].控制理论与应用,1994,11(1):125–128.
    [34]陈珍源,翁庆昌.基于滑模控制的可拓控制器设计[J].中国工程科学,2001,3(9):48-51.
    [35]管凤旭,王科俊.基于倒立摆系统的可拓控制策略研究[J].哈尔滨工业大学学报,2006,38(7):1146-1149.
    [36]何斌,朱学锋.可拓自适应混杂控制[J].控制理论与应用,2005,22(2):165-170.
    [37]阳林,吴黎明,黄爱华.可拓控制的物元模型及其控制算法[J].系统工程理论与实践,2000,(6):126-130.
    [38]蒋文娟,黄海斌.预瞄驾驶员模型中车辆操控稳定性的分析[J].汽车技术,2011,(12):27-31.
    [39]邓涛,孙冬野,胡丰宾,等.遗传算法优化的方向与速度综合控制驾驶员模型[J].重庆大学学报,2011,34(9):1-8.
    [40] ZHOU Qunzhi, WANG Feiyue. Driver assisted fuzzy control of yaw dynamics for4WDvehicles[C]//IEEE Intelligent Vehicles Symposium,2004, Parma, Italy,425-430.
    [41] CAO Miaolong, LI Qiang, CHENG Feng. A Nonlinear Analysis of Driver-vehicle Performancewith Four Wheel Steering using Time Delay Control Method[C]//Asia-Pacific Conference onWearable Computing Systems,2010,186–189.
    [42] Harada M,Harada H.Analysis of lateral stability with integrated contro1of suspension andsteering systems.JSAE Review,1999,20:465-470.
    [43] LI Junxiang. The algebraic criteria for the stability of gray discrete large-scale systems[J]. ActaScientiarum Naturalium Universitatis Nankaiensis,2006,39(3):110-112.
    [44]邓小飞,年晓红,潘欢.多个线性时滞系统的关联稳定与协调控制[J].控制理论与应用,2010,27(11):1504-1510.
    [45] Gaspar P, Szaszi I. Design of robust controllers for active vehicle suspension using the mixedμ synthesis[J]. Vehicle System Dynamics,2003,40(4):193-228.
    [46]孙涛,冯金芝,俞凡.车辆悬架不确定性对行驶平顺性能影响的鲁棒保守性分析[J].振动与冲击,2008,27(8):52-55.
    [47]任殿波,张继业,孙林夫.基于向量Liapunov函数的时滞车辆跟随系统稳定性分析[J].交通运输工程学报,2007,7(4):89-92.
    [48] Masashi Yamashita, Kazuo Fujimori, Kisaburo Hayakawa, et al. Application ofH∞control toactive suspension systems[J]. Automatica,1994,30(11):1717~1729.
    [49] A.C. Antoulas. An overview of approximation methods for large-scale dynamical systems[J].Annual Reviews in Control,2005,29:181–190.
    [50] Serkan Gugercin, Athanasios C. Antoulas. Model reduction of large-scale systems by leastsquares[J]. Linear Algebra and its Applications,2006,415:290-321.
    [51]马连增.大系统的模型降阶研究[D].鞍山科技大学,2005.
    [52] R. Amirifar. A low-orderH∞controller design for an active suspension system via linearmatrix inequalities. Journal of Vibration and Control,2004,10(8):1181~1197.
    [53] Keith G. All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bounds[J]. Int. J. Control,1984,39(6):1115-1193.
    [54] Jun Wang, Wenli Xu, Wuwei Chen. Optimal Hankel-norm reduction of active suspensionmodel with application in suspension multiobjective control[J]. International Journal of VehicleDesign,2006,40(1/2/3):175~195.
    [55]曹清,章辉,孙优贤.改进的用于模型降阶的最小信息损失方法[J].信息与控制,2005,34(4):423~428.
    [56] Hui ZHANG, Youxian SUN. Information Theoretic Methods for Stochastic ModelReduction Based on State Projection[C]//Proceedings of American Control conference,Portland, USA,2005,2596-2601.
    [57]蒋耀林.模型降阶方法[M].北京:科学出版社,2010.
    [58]陈无畏,祝辉.基于状态识别的整车操纵性和平顺性的协调控制[J].机械工程学报,2011,47(6):121-129.
    [59]祝辉,陈无畏.汽车悬架、转向和制动系统建模与相互影响分析[J].农业机械学报,2010,41(1):7-13.
    [60] Tr chtler A. Integrated vehicle dynamics control using active brake, steering and suspensionsystems[J].International Journal of vehicle Design,2004,13(6):789-193.
    [61] CHEN Wuwei, XIAO Hansong. Integrated control of automotive electrical power steering andactive suspension systems based on random sub-optimal control[J]. Int.J.Vehicle Design,2006,42:370-391.
    [62] BAKKER E, NYBORG L, PACEJKA B. Tyre modeling for use in vehicle dynamics studies[R].SAE,870421,1987.
    [63]喻凡.车辆动力学及其控制[M].北京:人民交通出版社,2005.
    [64] GREEN M, LIMEBEER D J N. Linear Robust Control[M]. USA: Prentice-Hall, Inc,1995.
    [65]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2008.
    [66]申铁龙. H∞控制理论及应用[M].北京:清华大学出版社,1996.
    [67]陈无畏,孙启启,胡延平,等.基于干扰抑制的汽车转向与悬架系统的集成控制[J].机械工程学报,2007,43(11):98-104.
    [68] Yoshiyuki Y,Kenji T,Noriaki H. Improvement of Vehicle Directional Stability for TransientSteering Maneuvers Using Active Brake Control[J]. SAE paper960485.
    [69] Esmailzadeh E,Goodarzi A,Vossoughi G. R. Optimal yaw moment control law for improvedvehicle handling[J]. Mechatronics,2003,2003(13):659–675.
    [70]余志生.汽车理论[M].北京:机械工业出版社,2012.
    [71] Sanchez-Torres J D, Loukianov A G, Galicia M I. Robust nested sliding mode integral controlfor anti-lock brake system[J]. Int. J. Vehicle Design,2013,62(2/3/4):188-205.
    [72] Drakunov S, Ozguner U, Dix P, et al. ABS control using optimum search via Sliding Modes[J].IEEE Transactions on Control Systems Technology,1995,3(1):79–85.
    [73] Drakunov S V, Utkin V. Sliding Mode control in dynamic systems[J]. Int. J. of Control,1992,55:1029–1037.
    [74]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [75] Ikenaga S, Lewis F L, Campos J, et al. Active suspension control of ground vehicle basedon a full-vehicle model[C]//Proceedings of the American Control Conference, Chicago,lllinois,2000:4019~4024.
    [76] Wang J. Generalized multi-objective control with application to vehicle syspension systems[D].UK: University of Leeds,2003.
    [77] Wang J, David A W. Mixed GL2/H2/GH2control with pole placement and its application tovehicle suspension systems[J]. Int. J. Control,2001,74(13):1353-1369.
    [78]俞立.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [79] John J D, Constantine H H. Linear control system analysis and design: conventional andmodern[M].北京:清华大学出版社,2000.
    [80]章辉.控制系统中的信息描述与方法[D].浙江:浙江大学,2003.
    [81] ISO2631-1. Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-bodyVibration-Part1: General Requirements[S]. International Standards Organization, SecondEdition,1997.
    [82]黄长喜,汪洪波.基于频率加权的整车主动悬架系统控制器降阶研究[J].中国机械工程,2011,22(11):1366-1369.
    [83] Varga A. On Frequency-weighted Coprime Factorization Based Controller Reduction[C]//Proceedings of the American Control Conference. Denver,2003:3892-3897.
    [84] Yoshimura T, Emoto Y. Steering and suspension system of a full car model using fuzzyreasoning based on single input rule modules[J]. International Journal of Vehicle AutonomousSystems,2003,1(2):237-254.
    [85] March C, Shim T. Integrated control of suspension and front steering to enhance vehiclehandling[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering,2007,221:377-391.
    [86] Yu F, Li D F, Crolla D A. Integrated vehicle dynamics control-state-of-the art review[C]//IEEEconference on Vehicle Power and Propulsion, Harbin,2008:1-6.
    [87]陈无畏,汪洪波.基于功能分配的汽车悬架/转向系统可拓控制及稳定性分析[J].机械工程学报,2013,49(24):67-75.
    [88] Zimmermann H J. Fuzzy set theory-and its applications[M].北京:世界图书出版公司,2011.
    [89]杨春燕,蔡文.可拓集中关联函数的研究进展[J].广东工业大学学报,2012,29(2):7–14.
    [90]蔡文,杨春燕,陈文伟.可拓集与可拓数据挖掘[M].北京:科学出版社,2008.
    [91]潘东,金以慧.可拓控制的探索与研究[J].控制理论与应用,1996,13(3):305-311.
    [92]翁庆昌,陈珍源.非线性系统的自适应可拓控制器设计[J].中国工程科学,2001,3(7):54-57.
    [93]张永,吴晓蓓,徐志良,等.一种多变量自校正系统的可拓控制[J].南京理工大学学报,2002,26(5):486-489.
    [94]黄辉.基于可拓控制的仿真研究[D].南京:南京理工大学,2003.
    [95]叶伟琼.基于可拓学的仿人控制及应用研究[D].广州:广东工业大学,2011.
    [96]杨春燕,蔡文.可拓工程研究[J].中国工程科学,2000,2(12):90-96.
    [97]管凤旭.倒立摆系统的可拓控制策略及实验研究[D].哈尔滨:哈尔滨工程大学,2006.
    [98] Berkoritz L.最优控制理论[D].上海:上海科学技术出版社,1985.
    [99] Kim Hyo-Seok, Do Won-Joo, Shim Jeong-Soo, et al. The stability analysis of steering andsuspension parameters on hands free motion [C]//SAE2002World Congress,2002.
    [100] He J, Crolla D A, Levesley M, et al. Coordination of active steering, driveline, and braking forintegrated vehicle dynamics control[J]. IMechE, Part D: J. automobile Engineering,2006,220:1401-1421.
    [101] Li Gang, Zong Changfu, Zhang Zexing, et al. Study on Vehicle Chassis Integrated Control[J].Journal of Shanghai Jiaotong University,2012,46(8):1291-1296.
    [102] LIU Xiangui, CHEN Wuwei. Improved parameter-dependent robust stability criteria fortime-delay systems with polytopic uncertainties[J]. International Journal of InnovativeComputing, Information and Control,2009,5(4):923-930.
    [103]朱茂飞,陈无畏,祝辉.基于磁流变减振器的半主动悬架时滞变结构控制[J].机械工程学报,2010,46(12):113-120.
    [104]潘立登,潘仰东.系统辨识与建模[M].北京:化学工业出版社,2004.
    [105]郭孔辉,马凤军,孔繁森.人一车一路闭环系统驾驶员模型参数辨识[J].汽车工程,2002,24(1):20-24.
    [106]杨玲玲,章云,陈贞丰.不确定非线性系统基于偏差分离的双线性控制[J].自动化学报,2010,36(10):1432-1442.
    [107] John H L. Fuzzy control and identification[D]. Wiley,2010.
    [108]张国良,邓方林.模糊控制及其Matlab应用[M].西安:西安交通大学出版社,2003.
    [109]汪洪波,陈无畏,杨柳青,夏光.基于博弈论和功能分配的汽车底盘系统协调控制[J].机械工程学报,2012,48(22):105-112.
    [110] Lim E, Hedrick J. Lateral and Longitudinal vehicle control coupling for automated vehicleoperation[C]//Proceedings of American Control Conference,1999,3676-3680.
    [111] Weibull J W. Evolutionary game theory[D]. USA: MIT Press,1996.
    [112] Song Chongzhi, hao Youqun, Xie Nenggang, et al. Multiobjective optimization of eight-DOFvehicle suspension based on game theory[J]. Transactions of Nanjing University of Aeronautics&Astronautics,2010,27(02):138-147.
    [113]史明光,陈无畏.基于博弈论的H2/H∞混合控制及其在汽车主动悬架中的应用[J].控制理论与应用,2005,22(6):882-887.
    [114] Wang J. Reduced multiobjective control of active vehicle suspensions in an HiLframework[C]//Proceeding of2008IEEE International Conference on Control Applications,USA,2008,450-455.
    [115] Shen Y, Wang J. A dSPACE-based HiL platform for model identification of active suspensionwith MR dampers[C]//The21st International Symposium on Dynamics of Vehicles on Roadsand Tracks, Sweden,2009.
    [116] Choi S B, Choi Y T, Park D W. A sliding mode control of a full-car electrorheologicalsuspension system via Hardware in-the-Loop Simulation[J]. J. Dyn. Sys. Meas. Control,1998,122(1):114-121.
    [117] Gietelink O, Ploeg J,Schutter B D, et al. Development of advanced driver assistance systemswith vehicle hardware-in-the-loop simulations[J]. Vehicle System Dynamics,2006,44(7):569-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700