用户名: 密码: 验证码:
机载LIDAR数据处理与土地利用分类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球空间信息技术是当今世界各国研究的热点之一,信息的获取、处理和应用是其研究的三大主题。上世纪80年代末,机载激光雷达技术(Light Detection and Ranging,LIDAR)在三维地球空间信息的实时获取方面取得了重大突破,为获取高时空分辨率地球空间信息提供了一种全新的技术手段。作为一种新型的主动式直接对地观测技术,机载LIDAR正逐步得到广泛的应用。
     机载LIDAR系统获取的数据是一系列空间分布不规则的离散的三维点云,如何处理大量的点云数据,从中提取有用的地形和地物信息等,并研究机载LIDAR数据以及与其它数据源的融合在地形测绘、土地利用、城市规划及建设等领域的应用,是当前急需解决的问题。基于此,本论文开展了机载LIDAR数据处理与土地利用分类的研究。
     本文系统地分析了机载激光雷达技术的原理和特点,对机载激光雷达数据处理以及土地利用分类的关键技术和方法进行了深入的研究和探讨。论文主要研究内容和成果包括:
     1、系统总结了在机载LIDAR数据条带平差、机载LIDAR数据滤波以及土地利用分类方面的国内外的研究现状。
     2、介绍了机载激光雷达系统的系统组成和工作原理,并着重介绍了ALS50-II系统,系统总结了机载LIDAR的数据处理的流程和点云数据的特点,详细分析了机载LIDAR数据中的误差。
     3、在LIDAR数据条带平差的误差理论研究的基础上,针对经过检校后的LIDAR数据中存在的GPS定位误差和INS测姿误差,从LIDAR的严格传感器模型出发,提出一种无需原始观测值的条带平差的数学模型;针对LIDAR数据中连接点难以选取的问题,研究了基于最小二乘3D表面匹配原理的连接点选取方法。试验结果表明该模型能够提高机载LIDAR数据的精度,有效地消除相邻条带数据间存在的方向和位置偏移。
     4、探讨了机载LIDAR数据滤波的原理及难点,在本文算法假设的基础上,设计并实现了一种机载LIDAR数据的自适应滤波算法。该方法首先将原始LIDAR点云数据内插成规则格网数据,接着基于规则格网数据进行光滑分割,并建立区域邻接矩阵和高程指向矩阵,然后根据分割段之间的几何拓扑关系对分割段进行分类,最后根据分类得到的地面点内插得到地形表面,再从原始点云数据中精确提取出地面点,实现自适应滤波。试验结果表明,该方法整体上优于已有的典型滤波算法,能够有效地进行滤波,得到的DEM保留了地形特征细节,效果较好。
     5、研究在融合高分辨率的机载LIDAR数据和RCD105获取的彩色航空影像的基础上,进行土地利用分类的方法。首先根据试验区的实际情况,选取一定数量的土地利用类型模板样本,对其进行统计分析,提取出各种典型地物的波谱特征以及空间分布特征;设计和发展了一组特征提取的空间算子,提取土地利用类型的波谱特征、空间分布特征、形状、尺寸等;根据框架理论和试验区内土地利用类型建立了土地利用类型的框架系统,实现了土地利用分类的原型试验系统,并利用试验区的数据进行土地利用分类整个流程的试验,输出试验区的土地利用类型分布图。
Geo-spatial information technology is the focus research in the geo-science world presently. Information capturing, processing as well as application are the three main items. At the end of 1980s, Airborne LIDAR technology got break through in real time acquiring of 3D earth spatial information, providing a new technique means for acquiring earth spatial information with high time and spatial resolution. As a new, active and direct earth observation technique, airborne LIDAR is applied widely gradually.
     The data set obtained by airborne LIDAR system is 3D discrete sub-randomly spatial distributed point cloud. At present, how to process LIDAR point cloud data to extract topographic information and different object information from point cloud, and how to apply airborne LIDAR data and other data source to topographic surveying and mapping, land use, and city construction and planning are key problems of LIDAR research. The application research of LIDAR data in many fields such as topographic mapping, urban construction and forestry programming and so on is the active studying topic too. Therefore, this dissertation develops the research on DEM extraction and classification of land use of airborne LIDAR data.
     This dissertation comprehensively analyzes airborne LIDAR technology and characteristics. Then, the paper carries on through researches in critical technology and methods of data processing and classification of land use. The main studies and contributions are described as follows:
     1. The paper systematically summarized the research status strip adjustment of LIDAR data, filtering method of LIDAR data and classification of land use home and abroad.
     2. This article introduces the composition and working theory of airborne LIDAR system and the composition of ALS50-II system emphatically. Then the process flow of airborne LIDAR data and characteristics of points cloud are discussed and errors in airborne LIDAR data are analyzed.
     3. Based on errors theory of strip adjustment of airborne LIDAR data, according to errors in LIDAR data after calibration, it puts forward a mathematical model of strip adjustment. This model comes from rigorous sensor model of LIDAR and doesn’t need any raw measurements. Considering difficulties of tie points selection from LIDAR data, it takes research on method of tie points selection based on least squares 3D surface matching theory.
     4. Theory and difficulties of filtering of airborne LIDAR data are discussed. Based on the assumption of algorithm of this paper, it designs and realizes a self-adaptive filtering method of airborne LIDAR data. This method first interpolates irregular LIDAR point cloud data into grid, and then takes smooth segmentation on grid data and builds region adjacency and height pointing matrixes. After that, it classifies segments according to geometry and topology relation between segments. At last, terrain surface is interpolated according to terrain points classified, and then terrain points are extracted from raw point cloud precisely.
     5. Based on fusion of high resolution airborne LIDAR data and color airborne image acquired by RCD105 camera, it does research on classification of land use. First according to the actual situation of test area, it selects a num of patterns of different land use types, and carries on statistical analyzes on them, extracting spectrum features and space distribution features. Then it designs a group of operators to extract spectrum features, features of space distribution, shape, size of land use types. According to frame theory and land use types of test area, frame system of land use types is built. A prototype system of classification of land use is realized, and land use types are recognized. At last, experiment using data of test area is carried out to test the whole flow of classification of land use are distribution map of land use types are derived.
引文
[1]边肇祺.模式识别[M].北京:清华大学出版社,1988.
    [2]陈刚,张芯等.基于四叉树的LIDAR点云数据组织研究[J].测绘通报,2008,11:21-23.
    [3]程民德,沈燮昌等.图像识别导论[M].上海:上海科学技术出版社,1983.
    [4]戴永江.激光雷达原理[M].北京:国防工业出版社,2002.
    [5]邓非.基于LIDAR与数字影像的配准和地物提取研究[D].武汉:武汉大学,2006.
    [6]丁士俊.测量数据的建模与半参数估计[D].武汉:武汉大学,2005.
    [7]冯聪慧.机载激光雷达系统数据处理方法的研究[D].郑州:解放军信息工程大学,2007.
    [8]冯义丛.无控制DEM匹配与差异探测研究[D].成都:西南交通大学,2005.
    [9]冯义丛,岑敏仪.三维自由表面匹配及其应用[J].测绘工程,2005,14(3):36-40.
    [10]冯仲科,杨伯钢,罗旭等.应用LIDAR技术预测林分蓄积量[J].北京林业大学学报,2007,29(增刊2):45-51.
    [11]顾祝军.植被覆盖度的照相法测算及其与植被指数关系研究[D].南京:南京师范大学,2005.
    [12]黄先锋.利用机载LiDAR数据重建3D建筑物模型的关键技术研究[D].武汉:武汉大学,2006.
    [13]黄先锋,李卉等.机载激光扫描数据误差分析与精度改善研究进展[J].遥感信息,2007,3:91-95
    [14]黄先锋,陶闯等.机载激光雷达点云数据的实时渲染[J].武汉大学学报信息科学版,2005,30(11):975-978
    [15]季铮.基于LIDAR数据与IKONOS影像的房屋三维重建[D].武汉:武汉大学,2003.
    [16]季铮.近景目标三维重建自动化关键技术研究[D].武汉:武汉大学,2007.
    [17]贾广帅.机载激光雷达数据特点和滤波方法研究[D].青岛:山东科技大学,2007.
    [18]江万寿.航空影像多视匹配与规则建筑物自动提取方法研究[D].武汉:武汉大学,2004.
    [19]蒋晶珏. LiDAR数据基于点集的表示与分类[D].武汉:武汉大学,2006.
    [20]蒋晶珏.复杂城市环境的机载Lidar点云滤波[J].武汉大学学报信息科学版,2007,32(5):402-405.
    [21]赖旭东.机载激光雷达数据处理中若干关键技术的研究[D].武汉:武汉大学,2006.
    [22]李春华.基于光谱信息和空间信息的高分辨率遥感图像模式识别[D].福州:福建师范大学,2007.
    [23]李德仁.摄影测量与遥感的现状及发展区域[J].武汉测绘科技大学学报,2000,25(1):1-6.
    [24]李德仁.地球空间信息学的机遇[J].武汉大学学报信息科学版,2004,29(9):754-756.
    [25]李清泉,李必军,陈静.激光雷达测量技术及其应用研究[J].武汉测绘科技大学学报,2000,25(5):387-392.
    [26]李树楷.遥感时空信息集成技术及其应用[M].北京:科学出版社,2003.
    [27]李树楷,薛永祺.高效三维遥感集成技术系统[M].北京:科学出版社,2000.
    [28]李英成,文沃根,王伟.快速获取地面三维数据的LIDAR技术系统[J].测绘科学,2002,27(4):35-38.
    [29]李勇,吴华意.基于形态学梯度的机载激光扫描数据滤波方法[J].遥感学报,2008,12(4):633-639.
    [30]李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2000.
    [31]粱欣廉,张继贤等.激光雷达数据特点[J].遥感信息,2005,10:71-76.
    [32]梁欣廉,张继贤,李海涛.一种应用于城市区域的自适应形态学滤波方法[J].遥感学报,2007,11(2):276-281.
    [33]刘春,陈华云,吴杭彬.激光三维遥感的数据处理与特征提取[M].北京:科学出版社,2010.
    [34]刘海龙.基于框架理论的电机故障诊断专家系统的研究[D].大连:大连理工大学,2002.
    [35]刘洁.数字影像和点云的文物关键技术研究[D].武汉:武汉大学,2007.
    [36]刘经南,张小红等.影响机载激光扫描测高精度的系统误差分析[J].武汉大学学报信息科学版,2002,27(2):111-117.
    [37]刘沛.多源数据辅助机载LIDAR数据处理的关键技术研究[D].中国测绘科学研究院硕士学位论文,2008.
    [38]刘艳华.机载激光扫描测高数据的应用与试验[D].太原理工大学硕士学位论文,2006.
    [39]刘晓平,朱晓强等.基于LIDAR点云数据的三角网构建算法[J].软件学报,2008,19:1-9.
    [40]陆祖康,臧侃.激光雷达三维成像系统的研究[J].浙江大学学报,1999,33(4):418-421.
    [41]罗洪波. LiDAR点云数据处理中滤波与内插方法的研究与比较[D].武汉:武汉大学,2008.
    [42]罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报自然科学版,2004,44(8):1104-1106.
    [43]江月松.机载GPS、姿态和激光扫描测距集成定位系统的精确定位方程、误差分析与精度评估[J].遥感学报,2001,5(4):241-247.
    [44]马洪超,姚春静.徕卡机载激光雷达的数据获取与处理[J].测绘通报,2008,10:70-71.
    [45]沈海平,达飞鹏,雷家勇.基于最小二乘法的点云数据拼接研究[J].中国图象图形学报,2005,10(9):1112-1116.
    [46]沈蔚.基于LIDAR数据的地形、地物提取与三维重建——以马来西亚吉隆坡中心区为例[D].北京:北京师范大学,2007.
    [47]史照良,曹敏.基于LIDAR技术的海岛礁、滩涂测绘研究[J].测绘通报,2007,(5)49-53.
    [48]舒宁.激光成像[M].武汉:武汉大学出版社,2005.
    [49]隋立春,张宝印. Lidar遥感基本原理及其发展[J].测绘科学技术学报,2006,23(2):127-129.
    [50]孙步阳.机载激光雷达航带拼接技术研究[D].武汉:中国地质大学,2009.
    [51]童庆禧.空间对地观测与全球变化的人文因素[J].地球科学年兆年,2005,20(1):1-5.
    [52]童庆禧,张兵,郑兰芬.高光谱遥感[M].北京:高等教育出版社,2006.
    [53]尤红建,刘彤,刘少创等.利用3维成像仪快速生成遥感地学编码图像[J].测绘学报,2000,29(4):324-328.
    [54]万幼川,徐景中.基于多分辨率方向预测的LIDAR点云滤波方法[J].武汉大学学报(信息科学版)32(11):1011-1015.
    [55]王成,MenentiM等.机载激光雷达数据的误差分析及校正[J].遥感学报,2007,11(3):390-397.
    [56]王桥,杨一鹏,黄家柱等.环境遥感[M].北京:科学出版社,2005.
    [57]王刃.机载LIDAR数据滤波与建筑物提取技术研究[D].郑州:解放军信息工程大学,2008.
    [58]王涛,杨建思,廖明生.一种从LIDAR数据中提取城区DTM的方法[J].遥感学报,2007,11(2):210-213.
    [59]王永平.机载LIDAR数据处理及林业三维信息提取研究[D].北京:中国测绘科学研究院,2006.
    [60]王之卓.摄影测量原理[M].北京:测绘出版社,1979.
    [61]文援兰.航天器精密轨道抗差估计理论与应用的研究[D].郑州:中国人民解放军信息工程大学,2001.
    [62]吴华意,宋爱红等.机载激光雷达系统的应用与数据后处理技术[J].测绘与空间地理信息,2006,29(3):58-63.
    [63]邬建国.景观生态学[M].北京:高等教育出版社,2000.
    [64]邬建伟.机载LIDAR系统检校和航带平差方法研究[D].武汉:武汉大学,2008.
    [65]邬建伟,马红超.机载LIDAR激光束与扫描镜对准误差影响分析[J].红外与激光工程,2008,37(2):243-246.
    [66]熊育久.湖南省EOS/MODIS植被指数时空变化研究[D].长沙:中南林业科技大学,2006.
    [67]徐逢亮,李树楷.机载激光影像制图系统中的3维定位技术[J].测绘学报,2000,29(2):137-141.
    [68]徐景中.基于LIDAR点云的DTM重建及道路特征提取的关键技术研究[D].武汉:武汉大学,2008.
    [69]杨轶.遥感影像处理技术在土地利用资源调查中的应用研究.昆明:昆明理工大学,2008.
    [70]易邦进.面向对象技术在土地利用分类中的应用研究[D].昆明:云南师范大学,2009.
    [71]尤红建.基于三维遥感数据的快速处理与建筑物提取研究[D].北京:中国科学院博士学位论文,2001.
    [72]尤红建,李树楷.适用于机载三维遥感的动态GPS定位技术及其数据处理[J].遥感学报,2000,4(1):22-26.
    [73]游丽平.面向对象的高分辨率遥感影像分类方法研究[D].福州:福建师范大学,2007.
    [74]俞瑞钊,史济建.人工智能原理与技术[M].杭州:浙江大学出版社,1993.
    [75]曾齐红.机载激光雷达点云年数据处理与建筑物三维重建[D].上海:上海大学,2009.
    [76]赵萍,冯学智等. SPOT卫星影像居民地信息自动提取的决策树方法研究[J].遥感学报,2003,7(4):309-315.
    [77]张帆,黄先锋等.激光扫描与光学影像数据配准的研究进展[J].测绘通报,2008,2:7-10.
    [78]张靖,高伟等.基于纹理信息的机载激光数据分类[J].软件技术评述,No.21,pp:13-15,2005.
    [79]张凯.三维激光扫描数据的空间配准研究[D].南京师范大学硕士学位论文,2008.
    [80]张立福.通用光谱模式分解算法及植被指数的建立[D].武汉:武汉大学,2005.
    [81]章锍晋.图像分割[M].北京:科学出版社,2001.
    [82]张圣望.基于机载激光雷达点云与航空影像融合的建筑物检测及其轮廓细化方法研究[D].武汉:武汉大学,2008.
    [83]张同刚.无控制DEM匹配与差异探测及其在泥石流灾害地区的应用[D].成都:西南交通大学, 2004.
    [84]张同刚,岑敏仪,吴兴华.无控制DEM表面差异探测研究[J].测绘科学,2006,31(3):36-38.
    [85]张小红.机载激光扫描测高数据滤波及地物提取[D].武汉大学博士学位论文,2004.
    [86]张小红,耿江辉.机载激光扫描测高中数据脚点点群分割新方法[J].武汉大学学报信息科学版,2006,37(7):586-588.
    [87]张永生,巩丹超.高分辨率遥感卫星应用[M].北京:科学出版社,2004.
    [88]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉大学出版社,2001.
    [89]郑团结,缪剑等.基于机载三维激光扫描的实时一体化摄影测量及数据处理[J].测绘科学,2007,32(1):64-66.
    [90]朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481.
    [91]Abdullatif Alharthy. Airborne laser scanning:system evaluation and building extraction[D]. Purdue University,2003.
    [92]Akca,D.,Least squares 3D surface matching[D]. Institute of Geodesy and Photogrammetry,ETH Zurich,2005.
    [93]Akca, D., Grun, A. Recent advances in least squares 3D surface matching[J]. Optical 3-D Measurement Techniques VII, II: 197-206, 2005.
    [94]Ackermann,F. Airborne laser scanning-present status and future expectations[J]. ISPRS Journal of Photogrammetry and Remote Sensing,1999,54:64-67.
    [95]Aloysius Wehr,Uwe Lohr. Airborne laser scanning-an introduction and overview[J]. ISPRS Journal of Photogrammetry & Remote Sensing. 1999,54:68-82.
    [96]Axelsson, P. Processing of laser scanner data-algorithms and applications[J]. ISPRS Journal of Photogrammetry & Remote Sensing. 1999,54:138-147.
    [97]Axelsson,P.,DEM generation from laser scanner data using adaptive TIN models[J]. IAPRS,2000,33(B4):110-117.
    [98]Axelsson, P. Ground estimation of laser data using adaptive tin-models[C]. Proceedings of OEEPE workshop on airborne laser scanning and interferometric SAR for detailed Digital Elevation Models. Stockholm, Sweden, 2001.
    [99]Axelsson, P. DEM Generatio from laser scanner data using adaptive TIN-models[J]. International Archives of Photogrammetry and Remote Sensing. 2000, 33(B4/1): 110-117.
    [100] Behan A.,On the matching of rasterized scanning laser altimeter data[C]. International Archives of Photogrammetry and Remote Sensing,2000.
    [101] Baltsavias,E. P. Airborne laser scanning: basic relations and formulas[J]. ISPRS Journal of Photogrammetry & Remote Sensing. 1999,54:199-214.
    [102] Baltsavias,E.P. Airborne laser scanning: existing systems and firms and other resources. ISPRS Journal of Photogrammetry and Remote Sensing. 1999,54(2-3): 164-198..
    [103] Baltsavias,E. A comparison between photogrammetry and laser scanning[J]. ISPRSJPRS . 1999,(54):83-94.
    [104] Bretar,F. Pierrot-Deseilligny,M. Roux,M. Solving the strip adjustment problem of 3D airborne LIDAR data[C]. Geoscience and Remote Sensing Symposium 2004. IGARSS 04. 2004.
    [105] Breise, C. and N. Pfeifer. Airborne laser scanning and derivation of digital terrain models[C]. Proceedings of the 5th conference on optical 3D measurement technique, Vienna, Austria, 2001.
    [106] Briese,C. Breakline modeling from airborne laser scanner data[D]. TU Wien,2004.
    [107] Briese,CH.,Pfeifer,N.,Dorniger,P.,Applications of the robust interplolation for DTM determination[C]. In IAPRS,Volume XXXIV/3A,Commission III WG III/3A,Graz,Austria,2002.
    [108] Brovelli,M.,M. Cannata,and U. Longoni. Managing and processing lidar data within GRASS[C]. Proceedings of the Open GIS-GRASS users conference,Trento,Italy,2002.
    [109] Brovelli,M. M. Cannata,and U. Longoni. Lidar data filtering and DTM interpolation within grass[J]. Transactions in GIS.,2004,8(2):155-174.
    [110] Brugelmann,R. Automatic breakline detection from airborne laser range data[J]. International Archives of Photogrammetry and Remote Sensing,2000,XXXIII(B3):109-115.
    [111] Burman,H.,Adjustment of laser scanner data for correction of orientation errors[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Science,2000,XXXIII(3A):548-555.
    [112] Champion, N. and Boldo, D. A robust algorithm for estimating digital terrain models from digital surface models in dense urban areas[C]. IAPRS Vol. XXXVI part 3, Comm. III Symposium on Photogrammetric Computer Vision, Bonn, Germany, 2006.
    [113] Crombaghs, M., E. De Min, and R. Bruegelmann. On the adjustment of overlapping strips of laser altimeter height data[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(B3/1): 230-237.
    [114] Elmqvist,M. Ground surface estimation from airborne laser scanner data using active shape models[J]. International Archives of Photogrammetry and Remote Sensing,2002,34:114-118.
    [115] Elmqvist,M. E, Jungert, etc. Terrain modelling and analysis using laser scanner data[J]. International Archives of Photogrammetry and Remote Sensing ,2001,34:219-227.
    [116] Emmanuel P.,Baltsavias. A comparison between photogrammetry and laser scanning[J]. ISPRS Journal of Photogrammetry & Remote Sensing,1999,54:83-94.
    [117] Filin,S.,Surface clustering from airborne laser scanning data[C]. Int Arch Phogogramm Remote Sens Spat Inf Sci,2002.
    [118] Filin S.,Pfeifer N. Segmentation of airborne laser scanning data using a slope adaptive neighborhood[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2006,60(2):71-80.
    [119] Filin S.,Vosselman G. Adjustment of airborne laser altimetry stripe[C]. International Archives of Photogrammetry,Remote Sensing and Spatial Information Science,2004.
    [120] Flood,M. Commercial development of airborne laser altimetry: a review of the commercial instrument market and its projected growth[J]. International Archives of Photogrammetry and Remote Sensing,1999,32:13-20.
    [121] G. Sohn, I. Dowman. Data fusion of high-resolution satellite imagery and LIDAR data for automatic building extraction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(1): 43-63.
    [122] Geibel,R.,Stilla,U. Segmentation of laser altimetry data for building reconstruction: different procedures and comparison[J]. International Archives of Photogrammetry and Remote Sensing,2005,33(B3):326-334.
    [123] Gruen. A. Adaptive least square coorelation: a powerful image matching technique[J]. South African Journal of Photogrammetry and Remote Sensing, 1985, 14(3): 175-187.
    [124] Gorte,B. Segmentation of TIN-structured surface models[C]. ISPRS WG IV/6,Joint conference on Geospatial theory,processing and applications. July 8-12,Ottawa,Canada,2002.
    [125] Guo T. 3D city modeling using high-resolution satellite and airborne laser scanning data[D]. The University of Tokyo, 2003.
    [126] Habib, A. Schenk, T. A new approach for matching surfaces from laser scanners and optical sensors[J]. International Archives of Photogrammetry and Remote Sensing. 1999, 32(3-4W2): 68-75.
    [127] Haralick, R. Survey-image segmentation technique[J]. Computer Vision Graphics and Image Processing,1985,29:100-132.
    [128] Hoffman,R. and A. Jain. Segmentation and classification of range images[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1987,9(5):608-620.
    [129] Hoover,A.,Jean-Baptiste,G. etc. An experimental comparison of range image segmentation algorithms[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,1996,18(7):673-689.
    [130] Huising,E.J. and L.M.Gomes Pereira,Errors and accuracy estimates of laser dataacquired by various laser scanning systems for topographic applications[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 1998, 53(5): 245-261.
    [131] Hyypa,H. and J. Hyyppa. Comparing the accuracy of laser scanner with other optical remote sensing data sources for stand attributee retrieval[J]. Photogrammetric Journal of Finland, 1999, 16(2): 5-15.
    [132] Jie Shan,Aparajithan Sampath. Urban DEM generation from raw Lidar Data:a labeling algorithm and its performance[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(2): 217-226.
    [133] Kager, H. Discrepancies between overlapping laser scanning strips-simultaneous filtering of aerial laser scanner strips. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 2004, XXXV(B/1): 555-560.
    [134] Kager,H. Adjustment of algebraic surface by least squared distance[C]. International Archives of Photogrammetry and Remote Sensing,XXXIII(B3),Amsterdam,2000.
    [135] Kager,H.,Discrepancies between overlapping laser scanning strips——simultaneous fitting of aerial laser scanner strips[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Science,2004,XXXV(Part B/1):555-560.
    [136] Karl Kraus. Principles of airborne laser scanning[J]. Journal of the Swedish Society for Photogrammetry and Remote Sensing,2002,1:53-56.
    [137] Kilian,J.,Haala,N.et. Capturing and evaluation of airborne laser scanner data[C]. IAPRS,1996,32(B3),pp:383-388.
    [138] Kim C.,Habib A.,Mrstik P. New approach for planar patch segmentation using airborne laser data[C]. Proceedings of the ASPRS 2007,Tampa,Florida,2007.
    [139] Kraus,N. Pfeifer. Determination of terrain models in wooded areas with airborne laser scanner data[J]. ISPRS Journal of Photogrammetry and Remote Sensing,1998, 53:193-203.
    [140] Kraus,K.,C. Briese,etc. Qualtiy measures for digital terrain models[C]. International Archives of Photogrammetry and Remote Sensing,Vol. XXXV,B2, Istanbul,Turkey,2004.
    [141] Kraus,K. and E. M. Mikhail. Linear least-squares interpolation[J]. Photogrammetric Engineering,1972,38:1016-1029.
    [142] Kraus,K.,Reeger,W.,Processing of laser scanning data for wooded areas[C]. Photogrammetric Week,Stuttgart,German,2000.
    [143] Lee, H., and N.H., Younan. DEM extraction of lidar return via adaptive processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 41(9): 2063-2069, 2003.
    [144] Leica Geosystems. Leica ALS50-II徕卡机载激光扫描系统第二代[J/OL],2006. http://www.leica-geosystems.com.cn/brochure/ALS50III%20Product%20Specification_CN.pdf.
    [145] Lindenberger. Methods and results of high precision airborne laser profiling[C]. Proceedings of the 43rd Photogrammetric Week at Stuttgart University, September 9-14, Stuttgart, Germany, 1991.
    [146] Lohmann,P. Segmentation and filtering of laser scanner digital surface models[C]. Proc. of ISPRS Commission II Symposium on Integrated Systems for Spatial Data Production,Custodian and Decision Support,IAPRS,Volume XXXIV,Part 2,2002.
    [147] Lohmann,P.,Koch,A. Schaeffer,M.,Approaches to the filtering of laser scanner data[C],In IAPRS,Vol.XXXIII,Amsterdam,Netherlands,2000.
    [148] Mass, H. G., Vosselman, G. Two algorithms for extracting building models from raw laser altimetry data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3): 153-163.
    [149] Masaharu,H. and K. Ohtsuo. A filtering method of airborne laser scanner data for complex terrain[J]. IAPRS,2002,34:165-169.
    [150] Mass, H. G. Least-squares matching with airborne laserscanning data in a TIN structure[J]. International Archives of Photogrammetry and Remote Sensing, 2000,33(B3/1):548-555.
    [151] Mass,H.G.,Methods for measuring height and planimetry discrepancies in airborne laserscanner Data[J]. Photogrammetric Engineering and Remote Sensing,2002,68(9):933-940.
    [152] Mundt, J. T., Streutker, D. R., Glenn, N. F. Mapping sagebrush distribution using fusion of hyperspectral and lidar classifications[J]. Photogrammetric Engineering & Remote Sensing, 2006,72(1):47-54.
    [153] Peter Axelsson. Processing of laser scanner data-algorithms and applications[J]. ISPRS Journal of Photogrammetry & Remote Sensing,1999,54:138-147.
    [154] Petzold,B.,P. Reiss,and W. Stossel. Laser scanning-surveying and mapping agencies are using a new technique for the derivation of digital terrain models[J]. ISPRS JPRS,1999,54:95-104.
    [155] Pfeifer,N. 3D terrain models on the basis of a triangulation[D]. Vienna University of Technology,2002.
    [156] Pfeifer,N. Kostli,A.,Kraus,K. Interpolation and filtering of laser scanner data– implementation and first results[J]. International Archives of Photogrammetry and Remote Sensing, 1998,XXXII(3/1):153-159.
    [157] Pfeifer N,Reiter T,Briese C,et al. Interpolation of high quality ground models fromlaser scanner data in forested areas[J]. International Archives of Photogrammetry and Remote Sensing,1999,32(3/W14):31-36.
    [158] Pfeifer, N., A. Kostli, and K. Kraus. Restitution of airborne laser scanner data in wooded area[J]. GIS Geo-Information-Systems, 1999, 12: 18-21.
    [159] Rabbani, T., Heuvel, F. A. van den, Vosselman G. Segmentation of point clouds using smoothness constrain[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2006, 36: 248-253.
    [160] Roggero, M. Airborne Laser Scanning: Clustering in raw data[J]. IAPRS, 2001, 34:227-232.
    [161] Roggero, M. Object segmentation with region growing and principal component analysis[J]. International Archives of Photogrammetry and Remote Sensing,2002,XXXIV(3A):289-294.
    [162] Rottensteiner F.,Trinder J.,Clode S. et al. Automated delineation of roof planes from lidar data[J]. International Archives of the Photogrammetry, Remoten Sensing and Spatial Information Sciences,2005,36(3/W19):221-256.
    [163] Ruijin Ma. Building model reconstruction from LIDAR data and aerial photographs[D]. The Ohio State University,2004.
    [164] Ruijin Ma. DEM generation and building detection from lidar data[J]. Photogrammery Engineering & Remote Sensing, 2005: 847-854.
    [165] Schenk, T. and Csatho, B. Fusion of LIDAR data and aerial imagery for a more complete surface description[J]. International Archives of Photogrammetry and Remote Sensing, 2002, 34(3A): 310-317.
    [166] Sithole G. Filtering of laser altimetry data using a slope adaptive filter[J]. International Archives of Photogrammetry and Remote Sensing, 2001, 34(3/W4): 203-210.
    [167] Sithole,G. and G. Vosselman. Automatic structure detection in a point-cloud of an urban landscape[C]. Proceedings of 2nd Joint Workshop on Remote Sensing and Data Fusion over Urban Areas,May 22-23,Berlin,Germany,2003.
    [168] Sithole,G. and G. Vosselman. Comparison of filter algorithm[J]. International Archives of Photogrammetry and Remote Sensing,2003,XXXIV(3/W13):71-78.
    [169] Sithole G. Segmentation and classification of airborne laser scanner data[D]. Netherlands: Delft University, 2005.
    [170] Sohn, G., Dowman, I. Terrain surface reconstruction by the use of tetrahedron model with the MDL criterion[C]. IAPRS, Vol XXXIV, ISPRS Commission III, symposium. Graz, Austria. pp: 336-344, 2002.
    [171] Sui, L. Processing of laser scanner data and automatic extraction of structure lines[C]. Proceedings of ISPRS Commission II Symposium,China,2002.
    [172] Suyoung Seo, Refinement of filter LIDAR data using local surface properties[C]. MAPPS/ASPRS 2006 Fall Conference, 2006.
    [173] Tao C.V.,Y.Hu. A review of post-processing algorithms for airborne LIDAR data[C]. ASPRS Annual Conference,St.Louis,2001.
    [174] Tomas Brandtberg. Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar[J]. ISPRS Journal of Photogrammetry & Remote Sensing. 2007,61 :325-340.
    [175] Trias-Sanz,R. and N. Lomenie. Automatic bridge detection in high resolution satellite images[C]. Proceedings of Computer Vision Systems: Third International Conferences,ICVS 2003,Graz,Austria,2003.
    [176] Uwe Lohr. Laserscan DEM for various applications[C]. IAPAS,Vol.32/4 ISPRS Commission IV Symposium on GIS-Between Vision and Applications,Stuttgart,Germany,2000.
    [177] Vaughn , C. R. , J. L. Bufton , W. B. Krabill , and D. L. Rabine. georeferencing of airborne laser altimeter measurements[J]. International Journal of Remote Sensing, 1996,17(11): 2185-2200.
    [178] Voegtle,T. and E. Steinle. On the qualtiy of object classification and automated building modeling based on laser scanning data[C]. Workshop on 3D reconstruction from airborne laser scanner and InSAR data,2003.
    [179] Vosselman G. Slope based filtering of laser altimetry data[J]. International Archives of Photogrammetry and Remote Sensing,2000,33(B3):935-942.
    [180] Vosselman,G. and H. Maas. Adjustment and filtering of raw laser altimetry data[C]. Proceedings of OEEPE workshop on airborne laser scanning and interferometric SAR for detailed Detailed Digital Models,Stockholm,Sweden,2001.
    [181] Wack, R. and Wimmer, A. digital terrain models from airborne laser scanner data - a grid based approach[J]. International Archives of Photogrammetry and Remote Sensing, 2002, 34.
    [182] Wehr A.,Lohr U. Airborne laser scanning-an introduction and overview[J]. ISPRS Journal of Photogrammetry and Remote Sensing,1999,54(2-3):68-82.
    [183] Weidner, U. and W. Forstner. Towards automatic building extraction from high-resolution digital elevation models[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 1995, 50: 38-49.
    [184] Y.Hu,C.V.Tao. Hierarchical recovery of digital terrain models from single and multiplereturn lidar data[J]. Photogrammetric Engineering & Remote Sensing,2005,71(4):425-433.
    [185] Yong Hu. Automated extraction of digital terrain models, Road Networks and Building Using Airborne LIDAR Data[D]. Calgary University, 2003.
    [186] Zhang K,Chen S C,Whiteman D,etal. A progressive morphological filter for removing nonground measurement from LIDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(4):872-882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700