用户名: 密码: 验证码:
物探飞行模式下的机载LiDAR数据与影像配准研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空地球物理勘查技术(简称航空物探)是一种重要的地球物理勘查技术,与传统的地面探矿方法相比,具有速度快、效率高、使用劳力少,能在短期内取得大面积区域的探测资料等优点,已成为矿产资源普查的重要技术手段,为国民经济发展做出了重大贡献。航空物探侧重于对各种地球物理场信息的探测,缺乏准确的地表几何信息和丰富的纹理信息,将航空遥感与物探集成能够在获得物探数据的同时,获取现势性的影像地图、精确的空间位置信息以及实时的姿态信息,为物探数据的重力地形改正、人文异常剔除、重/磁参数的定位等提供重要参考,对提高物探数据解译的精度和效率具有重要意义。
     由于航空物探飞行方式与航空遥感存在很大差异,物探飞行模式为航空遥感数据处理,特别是航空影像数据与LiDAR数据的配准带来了很大困难,本文在深入分析物探飞行模式的特点后,提出了一套航空影像与LiDAR点云配准的自动化方案:首先对LiDAR系统进行检校以获得系统误差改正参数,然后利用该参数对LiDAR点云进行系统误差纠正,最后对航空影像两两之间构建立体像对,并进行立体影像密集匹配,将匹配点云与LiDAR点云进行ICP配准,利用配准结果解算像机与激光扫描仪之间的偏心角和偏心分量。
     本文的主要工作和创新点总结如下:
     (1)推导了机载LiDAR定位严格方程
     本文详细阐述了LiDAR系统组成,以及各部分工作原理,介绍了LiDAR系统中所采用的坐标系以及坐标转换方法,并在此基础上推导了LiDAR严格定位方程,并对LiDAR系统中的各类系统误差进行了分析。
     (2)提出了一种基于虚拟连接点模型的LiDAR系统误差全自动检校方法
     综合分析了现有的LiDAR系统误差检校方法,实现了一种基于共面约束的LiDAR系统检校。由于同名平面的自动提取与匹配比较困难,本文提出了一种虚拟连接点模型,解决了离散激光点云之间的对应性问题,并在此基础上设计了一种基于虚拟连接点模型的LiDAR系统误差全自动检校方法。
     (3)实现了一种强化拓扑约束和最小二乘传播的立体影像匹配方法
     对现有的立体匹配算法进行了综合分析,并详细讨论了立体匹配中常用的各种约束条件,实现了一种融合多种约束条件的立体匹配算法,在匹配过程中强化了硬性的拓扑约束,用来获取可靠的匹配种子,并利用最小二乘匹配参数的传播来克服地形起伏的影响,提高匹配的可靠性。
     (4)设计了一种立体像对与LiDAR点云的配准方法
     采用ICP算法对影像匹配点云与LiDAR点云进行配准,针对匹配点云与LiDAR点云之间的差异,设计了一套点云预处理方案分别对匹配点云和LiDAR点云进行预处理,以提高ICP算法中对应点确定的精度。
     (5)设计了一种海量离散点云的四叉树索引方法
     由于在ICP算法迭代过程中需要反复确定最近点,涉及到大量的数据查找和定位操作,由于LiDAR点云是非结构化的离散点,在海量LiDAR点云中进行随机查找效率极低,本文设计了一种离散点云的四叉树索引方法,有效的提高了最近点查找效率。
Aerial geophysical prospecting (AGP) is an important method in the field of geophysical prospecting. Comparing with the traditional methods, AGP is much faster and more efficient with less labor force. It has become an important means of mineral resources exploration, making a significant contribution to national economic development. AGP aims at acquiring the geophysical information other than the topographical information and texture information of the ground surface, it motivates the idea of integrating aerial remote sensing into AGP. In this way, we can also get the corresponding aerial images, accurate height information and real-time attitude parameters which can serve as a reference for gravity terrain correction, geophysical anomaly elimination and gravity/magnetic parameters locating, etc. The enhancement of the accuracy and efficiency indicates the promising application prospect of this integrated system.
     Due to the big difference between the flight mode in AGP and traditional aerial remote sensing, however, the data processing becomes a big problem, especially the registration of aerial images and LiDAR points. In this paper, an automatic registration plan is introduced to solve this problem, considering the characteristics of AGP. First, it uses the correction parameters calculated by LiDAR system calibration to rectify the LiDAR point cloud. Second, it performs dense matching in each stereo pair, and carries out the registration procedure using ICP algorithm with the resulting matching point cloud and the LiDAR point cloud. Finally, it gives out the eccentric angle and eccentric component between the camera and the laser scanner. The major work and innovation are summarized as follows:
     (1) Rigorous equation of airborne LiDAR positioning is derived.
     This paper describes the components of LiDAR system as well as their working principle. It also presents the coordinate systems and coordinates transformation methods used in LiDAR system. On this basis, rigorous equation of airborne LiDAR positioning is given, and the system errors are analyzed.
     (2) An automatic LiDAR system error calibration method based on virtual connection point model is proposed.
     Comprehensive analysis of the existing LiDAR system error calibration methods is given, to achieve a coplanar-constraint-based LiDAR system calibration. As the corresponding planes are difficult for extraction and matching automatically, this paper presents a virtual connection point model, solving the correspondence problem between the discrete laser point clouds. Based on this model, a design is proposed of automatic LiDAR system error calibration.
     (3) A topological constraints strengthened stereo matching method based on least squares propagation is proposed.
     This paper discusses the existing stereo matching algorithms and the various constraints commonly used in stereo matching, then gives out a multi-constraint stereo matching algorithm. This algorithm strengthens rigid topological constraints to get the reliable matching seeds that are used for least squares propagation to overcome the effects of topography, improving the reliability of stereo matching.
     (4) designed an effective method for registration of image matching points with LiDAR points
     ICP algorithm is selected for registration of image matching points and LiDAR points. Taken into account the differences between the two point clouds, this paper presents a preprocessing program for image matching points and LiDAR points respectively, which greatly enhances the accuracy of the corresponding points under ICP framework.
     (5) designed a quadtree indexing method for massive discrete point cloud
     Since the ICP algorithm requires repeated iterative process to determine the nearest point, it involves large amounts of data search and location operations. As LiDAR point cloud is unstructured, the efficiency is very low of random search in massive LiDAR point cloud. The proposed quadtree indexing method effectively raises the efficiency to find the nearest point.
     (6) proposed a registration model of stereo pair and LiDAR point cloud based on camera eccentric angle and eccentric component
     As camera and laser scanner are tightly connected in Leica ALS50 system, sharing one set of POS data, the major deviation between images and LiDAR data can be seen as the eccentric angle and eccentric component between camera and laser scanner. This paper presents a registration model based on camera eccentric angle and eccentric component. This model reduces the number of unknowns, so that all the stereo pairs can be rectified using a unified system error correction.
引文
[1]Abedini, A., M. Hahn, et al. (2008). "AN INVESTIGATION INTO THE REGISTRATION OF LIDAR INTENSITY DATA AND AERIAL IMAGES USING THE SIFT APPROACH " ISPRS08(B1:169).
    [2]Ackerman F.. Digital image correlation:Performance and potential application in photogrammetry. Photogrammetric Record,11(64):429-439, October 1984.
    [3]ALS50 PII Tech-Note. Leica Document.
    [4]Arun K. S., Huang T. S, Blostein S. D.. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1987.9(5): 698-700.
    [5]Axelsson. P. Processing of laser scanner data-algorithms and application. In: ISPRS Journal of Photogrammetry and Remote Sensing,1999.54(2/3):138~147.
    [6]Baarda W., "A Testing Procedure for Use in Geodetic Networks, "Publications on Geodesy, vol.2, no.5, pp.1-97, Netherlands Geodetic Commission,1968.
    [7]Baltsavias EP. Airborne Laser Scanning:Existing Systems and Firms and Other Resources [J]. ISPRS Journay of Photogrammetry and Remote Sensing,1999, 54(2/3):164~198.
    [8]Bang K., Habib A. F., Kusevi K., Mrstik P. Integration of Terrestrial and Airborne LIDAR Data for System Calibration The internal archives of the photogrammetry, remote sensing and spatial information sciences, Volume ⅩⅩⅩⅦ, Beijing (2008)
    [9]Bentley Jon L.. Multidimensional binary search trees used for associative searching[J], Communications of the ACM,1975,18(9):509-517.
    [10]Bertero, Mario, Poggio, Tomaso, Torre, Vincent. Ⅲ-Posed Problems in Early Vision [J]. Proceedings of the IEEE.1988,76(8).
    [11]Besl Paul J., Mckay Neil D.. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
    [12]Bethel, J. S., B. H. W. v. Gelder, et al. (2006). Corridor Mapping Using Aerial Lidar Technique, Purdue University.
    [13]Birchfield, S. and C. Tomasi (1999). "Depth Discontinuities by Pixel-to-Pixel Stereo." International Journal of Computer Vision Volume 35 Issue 3, Dec.1999.
    [14]Boykov, Y., O. Veksler, et al. (2001). "Fast approximate energy minimization via graph cuts." IEEE Transactions on Pattern Analysis and Machine Intelligence: 1222-1239.
    [15]Bretar, F.; Pierrot-Deseilligny, M.; Roux, M. Solving the Strip Adjustment Problem of 3D. Airborne Lidar Data. In Proceedings of the IEEE IGARSS,2004.
    [16]Briese, C., N. Pfeifer, and P. Dorninger (2002). Applications of the robust interpolation for DTM determination. IAPRS vol.34 (3A, September 9-13, Graz, Austria), pp.55-61.
    [17]Burt P., Julesz B.. A disparity gradient limit for binocular fusion. In:Science, Vol.208 (1980), p.615--617.
    [18]Chen, Y. and Medioni, G. "Object Modeling by Registration of Multiple Range Images," Proc. IEEE Conf. on Robotics and Automation,1991.
    [19]Cramer M., Stallmann D.. System Calibration for Direct Georeferencing. www.isprs.org/proceedings/ⅩⅩⅩⅣ/part3/papers/paper156.pdf
    [20]Csanyi, N. (2006). "Precision LiDAR Mapping of Transportation Corridors Using LiDAR-Specific Ground Targets."
    [21]Csanyi, N. (2008). A RIGOROUS APPROACH TO COMPREHENSIVE PERFORMANCE ANALYSIS OF STATE-OF-THE-ART AIRBORNE MOBILE MAPPING SYSTEMS, The Ohio State University. Dissertation.
    [22]Csanyi, N. and C. K. Toth (2007). "Improvement of Lidar Data Accuracy Using Lidar-Specific Ground Targets." Photogrammetric Engineering and Remote Sensing Volume 73(Issue Number 4).
    [23]Delara, R. J., E. Mitishita, et al. (2004). "Bundle Adjustment of Images from Non-Metric CCD Camera Using LIDAR Data as Control Points." XXth ISPRS Congress, TS WG Ⅲ/1:Sensor Pose Estimation,13, Istanbul, Turkey, (2004).
    [24]Dorai, C.,Weng, J., and Jain, A. "Registration and Integration of Multiple Object Views for 3D Model Constrution," Trans. PAMI, Vol.20, No.1,1998.
    [25]Filin S. and G, Vosselman,2004. Adjustment of Airborne Laser Altimetry Strips. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,35 (B3):285-289.
    [26]FISCHLER M A, BOLLES R C. Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography [J]. Communications of the ACM,1981,24(6):381-395.
    [27]Gelfand, N., L. Ikemoto, et al. (2003). "Geometrically stable sampling for the ICP algorithm." 3-D Digital Imaging and Modeling,2003.3DIM 2003.
    [28]Habib A. F., Rens J. V. Quality Assurance and Quality Control of LiDAR Systems and Derived Data. Advanced Lidar workshop, University of Northern Iowa, 2007a.
    [29]Habib, A. F., K. Bang, M. Aldelgawya, S. Shin, and K. Kim. Integration of Photogrammetric and LiDAR Data in a Multi-primitive Triangulation Procedure. Proceedings of the ASPRS 2007 Annual Conference, Tampa, Florida,7-11 May, Proceeding CD.2007b.
    [30]Habib, A., K. Bang, et al., LIDAR system self-calibration using planar patches from photogrammetric data. Fifth International Symposium on Mobile Mapping Technology (MMT'07) Padua, Italy.2007c.
    [31]Habib A. F., Kersting A. P., Ruifang Z., Al-Durgham M., Kim C., Lee D. C.. LIDAR Strip Adjustment using Conjugate Linear Features in Overlapping Strips. The internal archives of the photogrammetry, remote sensing and spatial information sciences, Volume XXXVII, Beijing (2008a)
    [32]Habib, A. F. and M. Aldelgawy (2008b). "ALTERNATIVE PROCEDURES FOR THE INCORPORATION OF LIDAR-DERIVED LINEAR AND AREAL FEATURES FOR PHOTOGRAMMETRIC GEO-REFERENCING " The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol.ⅩⅩⅩⅦ Part B1. Beijing 2008
    [33]Habib, A. K., Bang K. I., et al. Alternative Methodologies for LiDAR System Calibration [J]. Remote Sensing.2010,2(3),874-907.
    [34]Hartley R. and Zisserman A., Multiple View Geometry in Computer Vision, Cambridge University Press, Cambridge,2000.
    [35]Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, "SURF:Speeded Up Robust Features", Computer Vision and Image Understanding (CVIU), Vol.110, No.3, pp.346--359,2008
    [36]Hirschmuller, H. (2005). "Accurate and efficient stereo processing by semi-global matching and mutual information."
    [37]Horn B. K. P., Schunk B. G. Determing optical flow[J]. Artificial Intelligence, 1987.17:185-203.
    [38]Jung, J., and S. Lee,2006. Computing Determinant Method for Calibrating Airborne Laser Surveying System. Patent document, URL: http://patent2.kipris.or.kr/patent/KP/KPDI1010.jsp#Bookl 0
    [39]Kaula, W. M., Schubert, G, et al. Apollo laser altimetry and inferences as to lunar structure. In:Lunar Science Conference,5th, Houston, Tex., March 18-22,1974. Proceedings. Volume 3:3049-3058.
    [40]Kilian, J., N. Haala, and M. Englich. Capture and evaluation of airborne laser scanner data [J]. IAPRS,1996 (31-B3):383.
    [41]Kirkpatrick, S., C. D. Gelatt, et al. (1983). "Optimization by simulated annealing." science 220(4598):671.
    [42]Kolmogorov, V. and R. Zabih (2001). "Computing visual correspondence with occlusions using graph cuts."
    [43]Kraus, K. and N. Pfeifer (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS JPRS vol.53, pp.193-203
    [44]Kruck E. Combined IMU Sensor Calibration and Bundle Adjustment with BINGO-F[C]. Integrated Sensor Orientation Test Report and Workshop, Hannover, 2001.
    [45]Li Z. Hu G. Analysis of Disparity Gradient Based Cooperative Stereo[J]. IEEE Trans. on Image Processing,1996,5(11):1493~1506.
    [46]LOWE, D G. Distinctive Image Features from Scale-Invariant Keypoints [J]. International Journal of Computer Vision.2004.60(2):91-110.
    [47]Maas H. G.. On the use of pulse reflectance data for laserscanner strip adjustment, vol. ⅩⅩⅩⅣ-3/W4. Annapolis:International Archives of Photogrammetry and Remote Sensing, Oct.2001, pp.53-56.
    [48]Maas H.-G., "Method for measuring height and planimetry discrepancies in airborne laserscanner data," Photogrammetric Engineering and Remote Sensing, vol. 68, no.9, pp.933-940, Sept.2002.
    [49]MORE J J. The Levenberg-Marquardt Algorithm:Implementation and Theory[M]. WATSON G A. Numerical Analysis:603. New York:Springer,1978: 105-116.
    [50]Morin K. W. Calibration of Airborne Laser Scanners [D]. Calgary:University of Calgary,2002.
    [51]Nister, D. (2004). "An Efficient Solution to the Five-Point Relative Pose Problem." IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 26(6):756-770, June 2004.
    [52]Ohta, Y. and T. Kanade (1985). "Stereo by intra-and inter-scanline search using dynamic programming." Pattern Analysis and Machine Intelligence, IEEE Transactions on(2):139-154.
    [53]Pollard S B, Mayhew J V W, Frisby J P. PMF:A stereo correspondence algorithm using a disparity gradient limit[J]. Percept,1985,14:449~470.
    [54]Pollard S B, Porrill J. Mayhew J E W, Frisby J P. Disparity gradient, Lipschitz continuity, and computing binocular correspondence [J]. In:Q D. Faugeras and G. Giralt, eds. Proc.3rd Int. Symp. Robot. Ras,1986.19~26.
    [55]Postolov Y., Krupnik A., and McIntosh K.,1999. Registration of airborne laser data to surfaces generated by photogrammetric means. International Archives of Photogrammetry and Remote Sensing,32(3W14):95-99.
    [56]Pothou, A., Karamitsos S., et al. (2006). "Assessment and comparison of registration algorithms between aerial images and laser point clouds." ISPRS, Com.1, Symposium:'From sensor to imagery'WGI/2, Part A, France.
    [57]Prazdny, K. (1985). "Detection of binocular disparities." Biological Cybernetics 52(2):93-99.
    [58]Ridgway, J. R., J. B. Minster, N. Williams, J. L. Bufton and W. B. Krabill, 1997. Airborne Laser Altimeter Survey of Long Valley California. Int. J. Geophysics, 131:267-280.
    [59]Rusinkiewicz, S. and M. Levoy (2001). "Efficient Variants of the ICP Algorithm " INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING
    [60]Scharstein D., Szeliski R.. (2001). "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms " International Journal of Computer Vision Volume 47, Numbers 1-3, p.7-42.
    [61]Schenk, T. Modeling and Analyzing Systematic Errors in Airborne Laser Scanners[R]. (2001). Technical Notes in Photogrammetry No 19.
    [62]SHEPARD M. K., CAMPBELL B. A., et al. The Roughness of Natural Terrain: A Planetary and Remote Sensing Perspective [J]. Journal of Geophysical Research-Planets,106(E12):32777-95.2001.
    [63]Shewchuk, J. R,2005. Triangle:A Two Dimensional Quality Mesh Generator and Delaunay Triangulator. http://www.cs.cmu.edu/~quake/triangle.html
    [64]Sithole, G. and G Vosselman (2003). Comparison of filtering algorithms. IAPRS vol.34(3/W13), pp.71-78.
    [65]Skaloud J, Schaer P. Towards a More Rigorous Boresight Calibration [C]. ISPRS International Workshop on Theory, Technology and Realities of Inertial/GPS/Sensor Orientation, Commission 1, WGI/5, Castelldefels, Spain,2003.
    [66]Skaloud J., Lichti D. Rigorous Approach to Bore-sight Self-calibration in Airborne Laser Scanning [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006,61(1):47-59.
    [67]Sun, J., N. N. Zheng, et al. (2003). "Stereo matching using belief propagation." IEEE Transactions on Pattern Analysis and Machine Intelligence:787-800.
    [68]Taravudh Tipdecho,2002. Automatic Image Registration between Image and Object Spaces. Proceedings of the Open source GIS-GRASS users conference 2002-Trento, Italy,11-13 September 2002.
    [69]Toth, C. K., N. Csanyi, et al. (2007). "Improving LiDAR-based Surface Reconstruction Using Ground Control." International Association of Geodesy Symposia,2007 Volume 130, Part Ⅶ,817-824, DOI: 10.1007/978-3-540-49350-1 116
    [70]Tuytelaars, T. and K. Mikolajczyk (2008). "Local invariant feature detectors:a survey." Foundations and Trends(?) in Computer Graphics and Vision Volume 3(Issue 3):Pages:177-280.
    [71]Vaughn, C. R., J. L. Bufton, W. B. Krabill and D. L. Rabine,1996. Georeferencing of Airborne Laser Altimeter Measurements. Int. J. Remote Sensing, 17(11):2185-2200.
    [72]Vosselman, G. and Maas, H.-G Adjustment and filtering of raw laser altimetry data. In Proceedings of OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Terrain Models, Stockholm, Sweden.2001.
    [73]Vosselman, G. (2002). "STRIP OFFSET ESTIMATION USING LINEAR FEATURES." In 3rd International Workshop on Mapping Geo-Surfical Processes using Laser Altimetry, Columbus, OH,USA.
    [74]Wagner, W., Ullrich, A., Ducic, V., Melzer, T. and Studnicka, N.,2006. Gaussian decomposition and calibration of a novel smallfootprint fullwaveform digitising airborne laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing 66, pp.100-112.
    [75]Wehr A., Lohr U. Airborne laser scanning-an introduction and overview[J]. ISPRS Journal of Photogrammetry and Remote Sensing.1999,54(2-3).
    [76]Yan Ke, Sukthankar, R.. PCA-SIFT:a more distinctive representation for local image descriptors. Computer Vision and Pattern Recognition,2004. CVPR 2004.
    [77]Zabih, R. and J. Woodfill (1994). "Non-parametric local transforms for computing visual correspondence." Computer Vision-ECCV'94:151-158.
    [78]Zhang Li. Automatic Digital Surface Model (DSM) Generation from Linear Array Images [D]. Zurich:Swiss Federal Institute of Technology Zurich. Ph.D. Disssertation,2004.
    [79]Zhang Xiaohong. Precise Point Positioning Evaluation and Airborne Lidar Calibration[R]. Copenhagen:Danish National Space Center,2005.
    [80]白明,庄严,王伟,双目立体匹配算法的研究与进展,控制与决策,第23卷第7期,2008年7月.
    [81]邓非LIDAR数据与数字影像的配准和地物提取研究[D].武汉:武汉大学.博士学位论文,2006.
    [82]杜全叶.无地面控制的航空影像与LiDAR数据自动高精度配准[D].武汉:武汉大学.博士学位论文,2010.
    [83]高波,从双目立体图像中恢复三维信息的研究——加入结构约束的半全局匹配算法的研究与实现[D].上海:上海交通大学.硕士学位论文,2007.
    [84]黄先锋,陶闯,江万寿,龚健雅.机载激光雷达点云数据的实时渲染[J].武汉大学学报·信息科学版,2005年11月.
    [85]江万寿.航空影像多视匹配与规则建筑物自动提取方法研究[D].武汉:武汉大学.博士学位论文,2004.
    [86]江万寿,郭大海,张靖,王建超,张晓君,李乐林.一种基于等高线簇分析的机载激光扫描点云整体滤波方法.(发明专利)2010.
    [87]李学友IMU/DGPS辅助航空摄影测量原理、方法与实践[D].郑州:解放军信息工程大学.博士学位论文,2005.
    [88]李德仁,袁修孝.误差处理与可靠性理论.武汉大学出版社.2002.
    [89]李德仁,论天地一体化的大测绘——地球空间信息学,测绘科学,第29卷第3期,2004年6月.
    [90]李天子,郭辉,非量测数码相机的影像纠正,测绘通报,2006年第10期.
    [91]刘春,陈华云,吴杭彬.激光三维遥感的数据处理与特征提取.科学出版社,2010年1月.
    [92]刘军,王冬红,张永生GPS/INS系统HPR与OPK角元素的剖析与转换[J].测绘科学,第31卷第5期.2006年9月.
    [93]路明月,何永健,三维海量点云数据的组织与索引方法[J].地球信息科学.2008年4月.
    [94]宁津生,陈俊勇,李德仁等,测绘学概论(第二版),武汉大学出版社,2008.
    [95]王怀武,韩长青,航空物探和航天遥感技术在环境评价中的应用现状[J],铀矿地质,第17卷第2期,2001年3月.
    [96]王建超,郭大海,郑雄伟.机载POS直接地理定位的精度分析[J].国土资源遥感.2007年12月.
    [97]卫征,方俊永,张兵,非量测相机镜头光学畸变的改正[J],光学技术,第33卷第6期,2007年11月.
    [98]吴福朝,计算机视觉中的数学方法,科学出版社,2008.
    [99]邬建伟,机载LiDAR系统检校和航带平差方法研究[D].武汉大学.博士学位论文,2008.
    [100]肖艳青,刘党辉,孙明,图像立体匹配研究进展,测控技术,第28卷第8期,2009.
    [101]熊盛青,发展中国航空物探技术有关问题的思考[J],中国地质,第36卷第6期,2009年12月.[102]徐奕,周军,周源华,基于稀疏-密集匹配算法的视差度量,红外与激光工程,第32卷第6期,2003年12月.
    [103]姚春静,机载LiDAR点云数据与遥感影像配准的方法研究[D].武汉大学.博士学位论文,2010.
    [104]袁修孝.一种补偿POS定位测姿系统误差的新方法[J],自然科学进展.第18卷,第8期.2008年8月.
    [105]张帆,黄先锋,李德仁.激光扫描与光学影像数据配准的研究进展[J].测绘通报,2008(2)
    [106]张凤.基于SIFT特征匹配的航空影像自动空三研究.武汉大学.硕士学位论文,2010.
    [107]张吴,蒋立辉,汪承义,基于LiDAR点云生成DSM的插值方法研究[J].现代电子技术,2007年第11期.
    [108]张剑清,潘励,王树根,摄影测量学,武汉大学出版社,2003.
    [109]张靖,郭大海,江万寿,王建超.一种基于四叉树索引的海量激光扫描点云实时绘制方法.发明专利.2010a.
    [110]张靖,李乐林,江万寿.基于等高线簇分析的复杂建筑物模型重建方法.地球信息科学学报.2010年10月,2010b.
    [111]张靖,张晓君,江万寿等.一种改进的线性预测滤波算法[J].国土资源遥感.第88期,2011年3月.
    [112]张小红,机载激光扫描测高技术[D].武汉大学.博士学位论文,2002.
    [113]张小红,机载激光雷达技术理论与方法,武汉大学出版社,2007.
    [114]张晓君,基于等高线族的机载LiDAR点云滤波.武汉大学.硕士学位论文,2010.
    [115]支晓栋,林宗坚,苏国中,钟良,基于改进四叉树的LiDAR点云数据组织研究.计算机工程与应用.2010,46(9).
    [116]朱肇光,孙护,崔炳光,摄影测量学(修订版),测绘出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700