用户名: 密码: 验证码:
非均匀散射空时频相关MIMO信道建模与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(Multiple-input Multiple-output, MIMO)技术可显著提高系统的信道容量、传输速率与频谱利用率,近年来已成为第四代移动通信系统的关键技术之一。无线传播环境对通信系统性能起着决定性作用,收发天线阵元间距不够大及环境散射不充分导致各信道衰落具有相关性,因此研究相关MIMO信道的建模与仿真对于MIMO系统的参数设计、算法优化和性能分析具有重要的理论意义与应用价值。本文重点研究了非均匀散射环境下相关MIMO衰落信道建模仿真,MIMO信号空时频相关性计算以及阴影多径复合衰落下MIMO系统性能。
     首先,介绍了无线衰落信道传播特性和建模仿真研究现状。针对传统均匀散射环境下瑞利衰落谐波叠加(Sum-of-Sinusoids, SoS)信道模型在平稳和统计独立性等方面的不足,提出一种基于最佳到达角的简化SoS模型,该模型各种统计性能优于现有模型。同时,基于入射角概率面积等分方法提出一种适用于非均匀散射的SoS推广模型,并将该模型应用于更为通用的Nakagami衰落信道情况,为Nakagami-MIMO信道仿真实现奠定基础。
     其次,分析了瑞利衰落下MIMO系统各支路接收信号之间的空时频相关性,推导了接收端移动情况下空时联合相关性的解析表达式。针对实际中空域相关性非常重要但数值计算较复杂的问题,提出一种基于角度域脉冲采样的简化计算模型,该模型误差小于0.01,但运算时间远小于数值积分及其它方法。通过详细分析Nakagami与瑞利衰落相关性的内在联系,推导给出Nakagami-MIMO信号包络之间的空时频相关性解析式,以及相干距离(时间、频率)的近似表达式,为MIMO信道建模与系统性能分析奠定理论基础。
     结合上述单输入单输出信道仿真建模方法和MIMO信道相关性分析,本文随后给出了一种空时频相关Nakagami衰落的MIMO信道模型。该模型首先利用实际测量的数据或统计信息得到各种信道参数,然后利用理论分析方法获得信道空时频相关性矩阵,最后产生具有特定自相关性和互相关性的Nakagami随机过程,从而获得相关Nakagami-MIMO信道。针对大规模多支路MIMO信道实时仿真需求,还提出了一种高效的舍弃法模型用于产生任意衰落系数Nakagami随机序列,新方法效率优于目前文献报道的同类方法。
     最后,针对多径阴影复合衰落分布复杂难以获得系统性能精确解析式的问题,基于矩匹配思想推导给出了相关复合衰落系统的近似性能。为验证近似性能表达式的正确性,本文还提出了一种新的相关复合衰落信道仿真模型,并基于该模型仿真获得了相关复合衰落下MIMO信道的遍历容量。
MIMO technology can be used to improve system capacity, transmission rate and spectralefficiency and becomes one of the key solutions for the4thgeneration wireless communication system.It is well known that the performance of MIMO system is greatly influenced by the wirelesspropagation environment. The correlation between channel fadings cannot be ignored for the compactantenna array and non-ideal propagation. Therefore, it is very important for parameters design,algorithms optimization and performance analysis of MIMO system to study the modeling and thesimulating MIMO channels with space-time-frequency correlation. This dissertation focuses oncorrelated MIMO channel model in non-isotropic scattering environment, space-time-frequencycorrelation between MIMO signals and MIMO system performance analysis for composite fading.
     Firstly, the wireless propagation properties and the researches on channel model and simulationare reviewed. The stability and statistically independence of the traditional SoS models are not good,so an improved model based on optimal angle of arrival (AoA) is proposed, whose statisticalperformance is better than other models. Based on the method of equal probability areas of AoA, anextended SoS model for non-isotropic scattering conditions is presented. It is then applied onmodeling the Nakagami fading channel which is more flexible than Rayleigh fading. Thus it lays thefoundation of Nakagami-MIMO channel model.
     Secondly, this paper analyzes the space-time-frequency correlations of MIMO system underRayleigh fading and derives the expression of spatial-temporal joint correlation with mobile antenna.The evaluation of spatial correlation is very important but also complicated for needing numericalcomputation, so a simple spatial correlation calculation method based on pulse sampling principle inangle domain is presented. The maximum error of the new method is less than0.01while thecomputation time is far less than numerical integration method or other methods. Based on therelationships between Rayleigh and Nakagami fading, a general close-form expression of thespace-time-frequency correlation for Nakagami fading, as well as coherence time and coherencebandwidth, are derived. These results are useful and important for MIMO channel model andperformance analysis.
     Thirdly, based on the SoS model proposed and correlation properties derived, this paper thenpresents a new correlated MIMO channel model with Nakagam fading. It obtains the channelparameters from field data or statistical information, and then calculates the space-time-frequencycorrelation matrix by theoretical method. Finally, the Nakagami-MIMO channels are obtained by generating Nakagami stochastic processes with specific auto-correlation and cross-correlation. Inorder to realize the large-scale and real-time MIMO channel simulation, a new rejection method isalso presented for generating Nakagami sequences with arbitrary fading factor, which has higherefficiency than other methods reported.
     Finally, it is very difficult to analyze the system performance with the complicated distribution ofcomposite fading, so an approximate method based on moments match is proposed. In order toconfirm the validity of the new method, a novel simulation model for composite fading channel isthen presented. Moreover, it is applied on getting the ergodic capacity of correlated composite fadingMIMO channels.
引文
[1] Clarker H. A statistical theory of mobile-radio reception. Bell Syst Tech,1968,47(6):957-1000.
    [2] Jakes W C. Microwave mobile communications. IEEE Press, New York,1974.
    [3] Bello P A. Characterization of random time-variant linear channels. IEEE Transactions onCommunications Systems,1963,11(4):360-393.
    [4] Durgin G D. Space-time Wireless Channels. London, Prentice Hall,2003.
    [5] Foschini G J, Gans M J. On limits of wireless communications in a fading environment whenusing multiple antennas. Wireless Personal Communications,1998,6(3):311-335.
    [6] Telatar E. Capacity of multi-antenna Gaussian channels. European Transaction on Telecom-munincations,1999,10(6):585-595.
    [7] Ottersten B, Kai Yu. Models for MIMO propagation channels: a review, Wireless Communica-tions and Mobile Computing.2002,2(7):653-666.
    [8] Almers P, Bonek E, Burr A. Survey of channel and radio propagation models for wirelessMIMO systems. EURASIP Journal on Wireless Communication Network,2007,(1):56-56.
    [9] Black D M and Reudink D O. Some characteristics of mobile radio propagation at836MHz inthe Philadelphia area. IEEE Transactions on Vehicular Technology,1972,21:45-51.
    [10] Nakagami M. The m-Distribution: a general formula of intensity distribution of rapid fadingstatistical methods of radio wave propagation. Japan: W C Hoffman,1960.
    [11]杨大成.移动传播环境-理论基础、分析方法和建模.北京,机械工业出版社,2003.
    [12] Ullmo D, Baranger H U. Wireless propagation in buildings:a statistical scattenng approach.IEEE Transactions on Vehicular Technology,1999,47(9):947-955.
    [13] Franceschet G, Marano S, Palmieri F. Propagation without wave equation toward an urban areamodel. IEEE Transactions on Antennas Propagation,1999,47(9):1393-1404.
    [14]扈罗全.基于随机射线的无线信道传播特性研究[博士学位论文],南京:南京邮电大学通信与信息工程学院,2007.
    [15] Hoeher P. A statistical discrete-time model for the wssus multipath channel. IEEE Transactionson Vehicular Technology,1992,41(4):461-468.
    [16]3rd generation partnership project technical specification group radio access network spatialchannel model for MIMO simulations.3GPPTR25.996V6.1,2003.
    [17] IST-4-027756WINNER II D1.1.2. WINNER II interim channel models.V1.0. December2007.
    [18] Erceg V, Hari K, Smith M S, Baum D S, Channel models for fixed wireless applications. IEEE802.16.3c-01/29r1,23Feb.2001.
    [19] Young D J, Beaulieu N C. The generation of correlated Rayleigh random variates by inverseFourier transform. IEEE Transactions on Wireless Communications,2000,48(7):1114-1127.
    [20] Zhang Qinqing, Kasam S A. Finite-state Markov model for Rayleigh fading channels. IEEETransactions on Wireless Communications,1999,47(11):1688-1692.
    [21] Beaulieu N C. Generation of correlated Rayleigh fading envelopes. IEEE Transactions onWireless Communications,19996(3):172-174.
    [22] Le Chung Tran, Tadeusz A.Wysocki, Jennifer Seberry. A generalized algorithm for thegeneration of correlated Rayleigh fading envelopes in radio channels. IEEE InternationalConference on Parallel and Distributed Processing Symposium, Denver, USA,2005:238-245.
    [23]朱秋明,徐大专,陈小敏.非相关瑞利衰落信道的改进模型.南京航空航天大学学报,2009,4:536-539.
    [24]朱秋明,徐大专,陈小敏.二维非均匀散射信道改进模型.系统工程与电子技术,2010,32(10):2049-2052.
    [25]朱秋明,徐大专,吕卫华,陈小敏.航空信道统计模型的改进与实现.应用科学学报,2009,27(6):569-573.
    [26] Zhu Q M, Dang X Y, Xu D Z, Chen X M. High efficient rejection method for generatingnakagami-m sequences. Electronic Letter,2011,47(19):1100-1001.
    [27]朱秋明,徐大专,许凌云,陈小敏.任意时域相关Nakagami复衰落模型.数据采集与处理,2011,11:100-104.
    [28]朱秋明,徐大专,罗艳强,陈小敏.多输入多输出信道空域相关性评估简化模型.电波科学学报,2011,26(2):203-208.
    [29]朱秋明,徐大专,陈小敏.接收天线阵列三维空域相关性快速评估算法,信号处理,2011,27(4):541-545.
    [30] ZHU Qiuming, XU Dazhuan, CHEN Xiaomin and XU Yihua, A generalized spatial correlationapproximation under arbitrary aoa scenarios.2011International Conference on Communicationand Electronics Information, Haikou, China, Feb.22,2011,1-4.
    [31] Patzold M, Laue F. Level-crossing rate and average duration of fades of deterministicsimulation models for Rice fading channels. IEEE Transactions on Vehicular Technology,1999,48(4):1121-1129.
    [32] Santos Filho J C S, Yacoub M D. On the second-order statistics of nakagami fading simulators.IEEE Transactions on Wireless Communications,2009,57(12):3443-3446.
    [33] Marius F P, Beaulieu N C. Limitations of sum-of-sinusoids fading channel simulators. IEEETransactions on Wireless Communications,2001,49(4):699-708.
    [34] Zheng Y R, Xiao C S. Simulation models with correct statistical properties for Rayleigh fadingchannels. IEEE Transactions on Wireless Communications,2003,5(6):920-927.
    [35] Xiao C S, Zheng Y R, Beaulieu N C. Novel sum-of-sinusoids simulation models for Rayleighand Rician fading channels. IEEE Transactions on Wireless Communications,2006,5(12):3667-3679.
    [36]王欣,酆广增.多径非相关瑞利信道生成的改进.通信学报,2007,5(28):122-125.
    [37] Wang ChengXiang, Patzold M, Yuan Dongfeng. Accurate and efficient simulation of multipleuncorrelated Rayleigh fading waveforms. IEEE Transactions on Wireless Communication,2007,6(3):833-839.
    [38] Patzold M, Killat U, Laue F. On the statistical properties of deterministic simulation models formobile fading channels. IEEE Transactions on Vehicular Technology,1998,47(1):254-269.
    [39] Gutierrez C A, Patzold M. Efficient sum-of-sinusoids-based simulation of mobile fadingchannels with asymmetric Doppler power spectra. Proc.of4th IEEE International Symposium onWireless Communication Systems, Trondheim, Norway,2007:246-251.
    [40] Teal P D, Abhayapala T D, Kennedy R A. Spatial correlation for general distributions ofscatterers. IEEE Signal Processing Letters,2002,9(10):305-308.
    [41] Carlos A, Gutierrez-D az-de-Leon, Patzold M. Sum-of-Sinusoids-Based simulation of flatfading wireless propagation channels under non-isotropic scattering conditions. Proc.of GlobalTelecommunications Conference, Washington, America,2007:3842-3846.
    [42] Spencer Q, Rice M, Jeffs B. A statistical model for angle of arrival in indoor multipathpropagation. IEEE Vehicular Technology Conference, Phoenix, America,1997:1415-1419.
    [43] Abdi A, Barger J A, Kaveh M. A parameteric model for the distribution of the angle of arrivaland the associated correlation function and power spectrum at the mobile station. IEEETransactions on Vehicular Technology,2002,51(3):425-434.
    [44] Patzold M, Hogstad B O, Kim D. A new design concept for high-performance fading channelsimulators using set partitioning. Journal of Wireless Personal Communications,2007,40(3):267-279.
    [45] Yacoub M D. Nakagami-m phase-envelope joint distribution: a new model. IEEE Transactionson Vehicular Technology,2010,59(3):1552-1557.
    [46] Yip K W, Ng T S. An efficient model for Nakagami-m fading channels, m <1. IEEETransactions on Communications,2000,48:214-221
    [47] Beaulieu N C, Cheng C. Efficent Nakagami-m fading simulation. IEEE Transactions onVehicular Technology,2005,52(2):413-424.
    [48] Matthaiou M, Laurenson D I. Rejection method for generating Nakagami-m independentdeviates. Electronics Letters,2007,43(25):1474-1475.
    [49] Santos Filho J C S and Yacoub M D. On the Simulation and Correlation Properties ofPhase-Envelope Nakagami Fading Processes. IEEE Transaction Communication2009,57(4):906-909.
    [50] Ma Yao, Zhang Dongbo. A method for simulating complex Nakagami fading time series withnonuniform phase and prescribed autocorrelation characteristics, IEEE Transactions on VehicularTechnology,2010,59(1):29-35
    [51] ZHANG Q T. A Decomposition technique for efficient generation of correlated Nakagamifading channels, IEEE Journal on Selected Areas in Communication,2000,18(11):2385-2392.
    [52] Erik Haas. Aeronautical channel modeling, IEEE Transactions on Vehicular Technology,2002,51(2):254-264.
    [53] RCTA. Signal-in-space minimum aviation system performance standards (masps) for advancedVHF digital data communications including compatibility with digital voice techniques. Draftdoc.26-93, Jan.1993
    [54] Salz J, Winters J H. Effect of fading correlation on adaptive arrays in digital wirelesscommunications. IEEE Transactions on Vehicular Technology,1994,43(4):1049-1057.
    [55] Kalkan M, Clarke R H. Prediction of the space-frequency correlation function for base stationdiversity reception. IEEE Transactions on Vehicular Technology,1997,46(1):176-184.
    [56] Aszetly D. On antenna arrays in mobile communication systems: fast fading and GSM basestation receiver algorithm. Stockholm, Royal Institute Technology Press,1996.
    [57] Pedersen K I, Mogensen P E, Fleury B H. Power azimuth spectrum in outdoor environments.Electronics Letters,1997,33(18):1583-1584.
    [58]高凯,张尔扬.MIMO信道的空间相关特性及信道容量分析.电子与信息学报,2007,7(29):1542-1544.
    [59] Kalliola K, Sulonen K, Laitinen H. Angular power distribution and mean effective gain ofmobile antenna in different propagation environments. Transactions on Vehicular Technology,2002,51(5):823-838.
    [60]李忻,聂在平.MIMO信道中衰落信号的空域相关性评估.电子学报,2004,12(32):1949-1953
    [61] Teal P D, Abhayapala T D and Kennedy R A. Spatial correlation for general distributions ofscatterers. IEEE Signal Processing Letters,2002,9(10):305-308.
    [62]李纪,张尔扬.应用定向天线测量无线信道角度功率谱.电波科学学报,2007,2(1):59-63
    [63] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series and Products, USA: Academic Press,1980.
    [64] Hsieh P C, Chen F C. A new spatial correlation formulation of arbitrary AoA scenarios. IEEEAntennas and Wireless Propagation Letters,2009,8:398-401.
    [65] Hsieh P C, Chen F C. Comparison of MIMO spatial correlation approximations under largeangular spread. Antennas and Propagation Society International Symposium, California, UnitedStates,2008,1-4.
    [66] Jussi Vesma, Tapio Saramaki. Interpolation filters with arbitrary frequency response for alldigital receivers. Circuits and Systems,1996,6:568-571.
    [67] Jose Candido S, Santos Filho, Gustavo Fraidenraich and Ugo S. Dias. On the Nakagami-mcross-correlation function. International conference on microwave and optoelectronics, Brasilia,Brazil,2005,513-516.
    [68]吴群英,肖先赐.无线时空信道模型.电子与信息学报,2005,27(3):377-379
    [69] Pedersen K I, Andersen J B, Kermoal J P. A stochastic multiple input multiple output radiochannel model for evaluation of space-time coding algorithms. IEEE Vehicular TechonolgyConference, Boston, USA, Sept.2000,893-897.
    [70] Yu K, Bengtsson M, Ottersten B. Second order statistics of NLOS indoor MIMO channelsbased on5.2GHz measurements.1th Global Telecommunications Conference, San Antonio,Texas, USA,2001,1:156-160.
    [71] Burr A. Evaluation of capacity of indoor wireless MIMO channel using ray tracing.2002International Zurich Seminar on Broadband Communications, Zurich, Switzerland,2002:281-286.
    [72] Zctterbe P, Ottersten B. The spectrum efficiency of a base station antenna array system forspatially selective transmission. IEEE Transactions on Vehicular Technology,1995,44(3):651-660
    [73] Saleh A A M, Valenzuela R A. A statistical model for indoor multipath propagation. IEEEJournal on Selected Areas in Communications,1987,5(2):128-137
    [74] Wallace J W. Jensen M A. Modeling the indoor MIMO wireless channel. IEEE Transactions onAntennas and Propagation,2002,50(5):591-599.
    [75] Raleigh G, Boros T. Joint space-time parameter estimation for wireless communication channels.IEEE Transactions on Signal Processing,1998,46(5):1333-1343.
    [76] Burr A. Capacity bounds and estimates for the finite scatterers MIMO wireless channel. IEEEJournal on Selected Areas in Communications,2003,21(5):812-818
    [77]罗飞,杜明辉.一种改进的椭圆散射空时无线信道模型.电子学报,2006,34(12):2200-2203.
    [78] Lu M, Lo T, Litva J. A physical spatio-temporal model of multipath propagation channels. IEEE47th Vehicular Technology Conference,1997,810-814.
    [79] Latinovic Z, Abdi A, Bar-Ness Y. On the utility of the circular ring model for wideband MIMOchannels. IEEE60th Vehicular Technology Conference.2004.96-100.
    [80] Abdi A and Kaveh M. A space-time correlation model for multielement antenna systems inmobile fading channels. IEEE Journal Selected Areas in Communications,2002,20(3):550-560.
    [81] Kermoal J P, Schumacher L, Pedersen K I. A stochastic MIMO radio channel model withexperimental validation. IEEE Journal on Selected Areas in Communication,2002,20(6):1211-1226.
    [82] Weichselberger W. Spatial structure of multiple antenna radio channels. Ph.D. dissertation,Vienna University of Technology, Vienna, Austria,2003.
    [83] Cao L, Beaulieu N C. Simple efficient methods for generating independent and bivariateNakagami-m fading envelope samples. IEEE Transactions on Vehicular Technology,2007,56(4):1573-1579.
    [84] Lehmann E L, Abrera H L. Nonparametrics: Statistical methods based on ranks. New York,McGraw-Hill,1975.
    [85] Zhang Qitu. A generic correlated Nakagami fading model for wireless communications. IEEETransactions on Communications,2003,51(7):1745-1748.
    [86] Zhang Keli, Song Zhefeng, Guan Yong Liang. Simulation of Nakagami fading channels witharbitrary cross-correlation and fading parameters. IEEE Transactions on WirelessCommunications,2004,3(5):1463-1468.
    [87] Simon C H. Generation of Poisson and Gamma random vectors with given marginal andcovariance matrix. Journal of Statistical Computation and Simulation,1993,47(1):1-10.
    [88] Tran T A, Sesay A B. Sum of arbitrarily correlated Gamma variates and performance of wirelesscommunication systems over Nakagami-m fading channels. IET Communications,2007,1(6):1133-137.
    [89] Abdi A, Kaveh M. On the utility of Gamma PDF in modeling shadow fading.49th IEEEVehicular Technology Conference, Houston, TX,1999,3:2308-2312.
    [90] Abdi A, Kaveh M. K-distribution: An appropriate substitute for Rayleigh-lognormal distributionin fading-shadowing wireless channels. Electronic Letters,1998,34(9):851-852.
    [91] Lewinsky D J. Nonstationary probabilistic target and clutter scattering models. IEEETransactions on Antenna Propagation,1983,31(3):490-498.
    [92] Gu M, Abraham D A. Using McDaniel’s model to represent non-Rayleigh reverberation. IEEETransactions on Oceanic Engineering,2001,26:348-357.
    [93] Kostic P M. Analytical approach to performance analysis for channel subject to shadowing andfading. IEE Proceeding Communication,2005,152(6):821-827.
    [94] Bithas P S, Sagias N C, Mathiopoulos P T, et al. On the performance analysis of digitalcommunications over generalized-K fading channels. IEEE Communications Letters,2006,5(10):353-355.
    [95] Laourine A, Alouini M S, Affes S, et al. On the capacity of generalized-K fading channels.IEEE Transactions on Communications,2008,7(7):2441-2445.
    [96] Bithas P S, Mathiopoulos P T, Kotsopoulos S A. Diversity reception over generalized-K fadingchannels. IEEE Transactions on Communications,2007,6(12):4238-4243.
    [97] Peppas K P. Performance evaluation of triple-branch GSC diversity receivers overgeneralized-K fading channels. IEEE Communications Letters,2009,13(11):829-831.
    [98] Simon M K, Alouini M S. Digital Communication over Fading Channels. New York, Wiley,2000.
    [99] Skander C D, Mathiopoulos P T. Analytical level crossing rates and average fade durations fordiversity techniques in Nakagami fading channels. IEEE Transactions on Communications,2002,50(8):1301-1309.
    [100] Moschopoulos P G. The distribution of the sum of independent Gamma random variables. Ann.Inst. Statist. Math.(Part A),1985,37:541-544.
    [101] Yacoub M D, da silva C R C M, Bautista J E V. Second-order statistics for diversity-combiningtechniques in Nakagami-fading channels. IEEE Transactions on Vehicular Technology,2001,50(11):1464-1470.
    [102]高凯,张尔扬.一种改进的衰落分集信道量化FSMC模型及其性能分析.电子学报,2006,34(12):2227-2231.
    [103] Dharmawansa P, Rajatheva N, Ahmed K. On the distribution of the sum of Nakagami-mrandom variables. IEEE Transactions on Communications,2007,55(7):1407-1416.
    [104] Rahman M A, Harada H. New exact closed-form pdf of the sum of nakagami random variableswith applications. IEEE Transactions on Communications,2011,59(2):395-401.
    [105] Karagiannidis G K, Zogas D A, Kotsopoulos S A. BER performance of dual predetection EGCin correlative Nakagami-m fading. IEEE Transactions on Communications,2004,52(1):50-53.
    [106] Prabhat Patel, Sahu P R, Chaturvedi A K. ABER of dual predetection EGC in correlatedNakagami-m fading channels with arbitrary m. IEEE Communications Letters,2008,12(7):487-489.
    [107] Karagiannidis G K. Moments-based approach to the performance analysis of equal gaindiversity in Nakagami fading. IEEE Transactions on Communications,2004,52(5):685-690.
    [108] Chen Y, Tellambura C. Moment analysis of the equal gain combiner output in equally correlatedfading channels. IEEE Transactions on Vehicular Technology,2005,54(6):1971-1979.
    [109] Reig J, Cardona N. Nakagami-m approximate distribution of sum of two Nakagami-mcorrelated variables. Electronics Letters,2000,36(11):978-980.
    [110] Filho J C S S and Yacoub M D. Nakagami-m approximation to the sum of M non-identicalindependent Nakagami-m variates. Electronics Letters,2004,40(15):951-952.
    [111] Costa Daniel B, Yacoub M D, Santos Filho J C S S. An improved closed-form approximation tothe sum of arbitrary Nakagami-m variates. IEEE Transactions on Vehicular Technology,2008,57(6):3854-3858.
    [112] Nikola Zlatanov, Zoran Hadzi-Velkov, George K. Karagiannidis. An efficient approximation tothe correlated nakagami-m sums and its application in equal gain diversity receivers. IEEETransactions on Wireless Communications,2010,9(1):302-310.
    [113] Yacoub M D. The α–μ distribution: A physical fading model for the stacy distribution. IEEETransactions on Vehicular Technology,2007,56(1):27-34.
    [114] Saad Al-Ahmadi, Halim Yanikomeroglu. On the approximation of the pdf of the sum ofindependent generalized-k RVs by another generalized-k pdf with applications to distributedantenna systems. Wireless Communications and Networking Conference, Sydney, Australia,2010,1-6.
    [115] Kostas P P. A simple, accurate approximation to the sum of gamma-gamma variates andapplications in MIMO free-space optical systems. IEEE Photonics Technology Letters,2011,23(13):839-841.
    [116] Peppas K P, Alexandropoulos C K, Datsikas F I L. Multivariate gamma-gamma distributionwith exponential correlation and its applications in radio frequency and optical wirelesscommunications. IET Microwave Antennas Propagation,2011,5(3):364-371.
    [117] Saad Al-Ahmadi, and Halim Yanikomeroglu. On the approximation of the Generalized-Kdistribution by a gamma distribution for modeling composite fading channels. IEEE Transactionson Wireless Communications,2010,9(2):706-712.
    [118] Foschini G J and Gans M J. On limits of wireless communications in a fading environmentwhen using multiple antennas. Wireless Personal Communication,1998,6(3):311-335.
    [119] Marzetta T L and Hochwald B M. Capacity of a mobile multiple-antenna communication link inRayleigh flat fading. IEEE Transactions on Information Theory,1999,45:139-157.
    [120] Loyka S and Tsoulos G. Estimating MIMO system performance using the correlation matrixapproach. IEEE Communication Letters,2002,6:19-21.
    [121] Marco Chiani, Moe Z. Win, and Alberto Zanella. On the capacity of spatially correlated MIMORayleigh-fading Channels. IEEE Transactions on Information Theory,2003,49(10):2363-2371.
    [122] Zheng F, Kaiser T. On the channel capacity of multiantenna systems with Nakagami fading.EURASIP Journal on Applied Signal Process,2006,1-11.
    [123] Fraidenraich G, Leveque O, Cioffi J M. On the MIMO channel capacity for Nakagami-mchannel. IEEE Transactions on Information Theory,2008,54(8):3752-3757.
    [124] Caijun Zhong, Shi Jin, T. Ratnarajah, and Kai-Kit Wong. On the capacity of non-uniform phaseMIMO Nakagami-m fading channels. IEEE Communications Letters,2010,14(6):536-538.
    [125] Yilmaz F, Alouini M S. A new simple model for composite fading channels: Second orderstatistics and channel capacity.7th International Symposium on Wireless CommunicationSystems,19-22Sept.2010,676-680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700