用户名: 密码: 验证码:
基于现代设计方法的轿车天窗开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轿车电动天窗是轿车车身系统中最大的配套分总成,它具有采光性好、改善车内空气质量、提高汽车档次等优点,因此,天窗版的轿车越来越受到人们的青睐。但是,目前国内轿车天窗市场的80%以上份额仍被德国伟巴斯特车顶系统公司所垄断。为了打破国外公司的技术封锁和市场垄断,提高国内汽车关键零部件产品的自主研发能力和国内轿车天窗企业的市场竞争能力,就必须采用现代设计方法进行轿车天窗自主开发研究。
     本文采用逆向工程和正向设计相结合的方法建立轿车天窗产品的三维数字模型;运用多体系统动力学原理建立了天窗运动执行机构的运动学和动力学数学模型;应用ADAMS软件对天窗运动执行机构进行运动仿真分析并进行参数优化设计;应用有限元分析软件ANSYS Workbench对天窗运动执行机构进行动态有限元分析,通过分析,验证设计的合理性。
     通过本研究的实施,会从根本上改变目前国内轿车天窗行业的单纯仿制的被动局面,尽快形成自主开发能力。可以简化产品的设计开发过程,缩短产品开发周期,减少产品开发费用和成本。本研究还会对其他科技含量较高的汽车零部件的自主研发具有示范意义。
With the development of Automobile industry and improving people,s living standard, the Automobile manufacturers and drivers pursue to improve the driving environment inner the car and driving safety. The air quality inner car has a great effect on the driving comfort and safety. The air condition can adjust the temperature and humidity inner car to some extent. But the ventilation effect is not good, because it is a close space in the car. And it can also result in asymmetric distribution of the air and humidity. With the side windows the ventilation can also been done, but it will result in great wind noise and air eddy, which will increase the driving resistance and the fuel consume. The sunroof has the advantage of gut lighting, improved air quality in inner car, more energy saving and it can also make the car looking more luxury. Therefore, now the sunroof becomes more and more popular.
     In the past five years, the Chinese Automobile industry developed very fast. The turnout of passenger car has broken through 2.5 million per year. In order to meet the requirement of customer, the turnout of passenger car with sunroof increased rapidly. At present 80 percent share of china sunroof market is by Webasto Company monopolized. Although there are more than ten local corporations in Guangdong and Zhejiang Province etc., who are producing sunroof for passenger car with a small batch, all of them have no independent product development capacity and their competing ability is very bad. They lie still in the phase of copy or imitation. In order to break the technology quarantine and market monopolization, enhance the local sunroof corporations’competition ability, it is necessary to build a sunroof independent development platform with modern design technique.
     According to the Project of sunroof independence development platform for passenger car with modern design technique, the research object in this paper is the sunroof motion mechanism. We used the modern design technique to solve the key technical problems for sunroof development, researched the new development process for car sunroof development with modern design method. And we also built the parameter simulation model of sunroof motion mechanism for the optimization, which can supply technical support for variation sunroof development. The following is the main content:
     1. In this paper the basic concept, system structure, the key technology and applied engineering field of the reverse engineering are systematically presented. The ATOS no-contact three coordinate optical scanner from Germany was used to scan the sunroof glass assemble, deflector and drain system, which is very difficult to be modeled with the forward design. After the measure we achieved the cloud datum. After the analysis, processing and surface restructure with software CATIA we achieved the 3D digital model from the cloud datum. All of the other parts were built with the forward method. Finally, all of the parts were assembled in CATIA with assembly design module and then we received the whole 3D digital model.
     2. After systemic Introduction of multi-body dynamics theory, the mathematical Model of the sunroof motion mechanism is built up for the first time. The study on the design theory of the rail on the glass supporting bracket and quad of the soft driving shaft assembly is carried out. The concept of“contour line for same opening angle”is brought forward. There are transition lines for the rail design, which is part of the contour lines. When the quad moves on a transition line, the opening angle of sunroof will never change. The rail formed by connecting the endpoints of transition lines can realize the sunroof opening angle change between the predefined angles. This theory solves the technical difficult problem of sunroof rail design, which has puzzled sunroof enterprise.
     3. The dynamical simulation model based on ADAMS software for the Sunroof motion mechanism is built up with the 3D Data. And the research and analysis about the model are carried out. The simulation results show that there are also transition segment for the rail design. The driving force on soft driving shaft is very small, when the quad runs on the transition segment. The forces on every joint are lager during the opening condition than during the closing condition. From the result we can get the die displacement of driving soft shaft assembly and the max. driving force etc. during the sunroof opening or closing case. These data can be used for choosing the Motor, driving soft shaft and so on.
     4. The simplified parameter simulation model for Sunroof driving mechanism is built up. And the model is validated by comparing the simulation data with the model built up by 3D data. Applied with the function Design Study of ADAMS the sensitivity of design variables to the sunroof opening angle are carried out. Then the design variables with higher sensitivity to the sunroof opening angle are divided into two groups and studied with the function DOE of ADAMS. Finally, a optimization calculation with the target function max. sunroof opening angle and constraint driving force on driving soft shaft less than 25N are executed with the design variables obtain from the last step.
     5. By applying the software ANSYS Workbench the FEA model for sunroof motion mechanism was set up. And a EFA analysis about flexible dynamics was carried out to study the stress level during the sunroof opening process. The simulation results show that the safety coefficient of current design is very high and it can meet the requirement of strength.
     6. In order to shorten more the development period, a sunroof development platform should be built up. Based on the summary of the previous works, the feasibility of building up a sunroof development platform with the software CATIA, ADAMS and ANSYS workbench is discussed and the functions that this platform should provide are suggested. At last the development flow chart for sunroof development with modern design technology is presented.
     In a word, in this paper a deep and systematic study of the sunroof motion mechanism has been carried out. And we have obtained some innovational achievements for the sunroof motion mechanism design theory and applying the modern design technique in Productions development. The study of design theory provides the theoretical foundation for sunroof motion mechanism design and improvement. And the theory has solved the key technical problem in sunroof motion mechanism design. The applied modern design techniques can shorten the development period, reduce the development cost, and enhance the independent development capacity of the sunroof enterprise. These design theory and method have already accepted and applied in the new sunroof product design by Shenghuabo Group Ltd. Co.. The trial produce has already finished and they have signed a contract with a certain automobile manufacturer for a small batch of production. The Study in this paper can be an example for the development of others automobile parts with high technology. And this study will be meaningful for enhancing the technology standard of automobile parts industry.
引文
[1]洪鹏.关于汽车天窗[J].汽车实用技术,2003(10): 37-38.
    [2]赵国强,孙海涛.现代轿车天窗应用及匹配优化[J].设计研究,2004(5): 29-32.
    [3]林静,王明涛.安装天窗有哪些好处[J].车友沙龙,2004(4): 53.
    [4]方斌.轿车天窗的功能、结构及性能要求[J].设计与计算,2002(5): 28-30.
    [5]时美.伟巴斯特天窗及其使用[J].汽车与配件,1999(4): 31.
    [6] Kenji Maeta, Hiroshi Makino, Robert Gore, etc. Development of Resin Made Belt Type Sunroof With Light Weight[R]. SAE TECHNICAL PAPER SERIES, 2003-01-1177.
    [7] Ota, D.K., Chakravarthy, S.R., Becker, T. and Sturzenegger, T.. Computational study of resonance suppression of open sunroofs [J]. Fluids Eng., 1994, 116: 877-882.
    [8] Karbon, K.J., Singh, R.. Simulation and design of automobile sunroof buffeting noise control[C]. 8th AIAA paper, 2002: 2002-2550.
    [9] Inagaki, M., Murata, O., Horinouchi, N., Takeda, I. and Kakamu, T.. Numerical prediction of wind-throb noise in vehicle cabin [C]. Proc. of 6th World Congress on Computational Mechanics. 2004, 1: 5-10.
    [10] Hendriana, D., Sovani, S.D. and Schiemann, M.K.. On simulating passenger car side window buffeting[R]. SAE Paper, 2003-01-1316.
    [11] Chang-Fa An, Kanwerdip Singh. Optimization Study for Sunroof Buffeting Reduction [R]. SAE TECHNICAL PAPER SERIES, 2006-01-0138.
    [12] An, C.-F., Alaie, S.M. and Scislowicz, M.S.. Impact of cavity on sunroof buffeting-a two dimensional CFD study [C]. Proc. ASME 5th Int’l Symp. on Comp. Tech. with Industrial Applications, 2004, 1: 133-144.
    [13] An, C.-F., Puskarz, M., Singh, K. and Gleason, M.E.. Attempts for reduction of rear window buffeting using CFD[R]. SAE paper, 2005-01-0603.
    [14] Lee, B.H.K.. Vertical tail buffeting of fighter aircraft [J]. Progress in Aerospace Sciences, 2000, 36: 193 -279.
    [15] Minh, N.N., Miyata, T., Yamada, H. and Sanada, Y.. Numerical simulation of wind turbulence and buffeting analysis of long-span bridge [J]. Wind Eng. & Industrial Aerodynamics, 1999, 83: 301-315.
    [16] An, C.-F., Alaie, S.M., Sovani, S.D., Scislowicz, M.S. and Singh, K.. Side window buffeting characteristics of a SUV[R]. SAE paper , 2004-01-0230.
    [17] Henderson, B.. Sound generation by flow over a cavity [J]. NASA/CP, 2004, 71-77.
    [18]李增刚. ADAMS入门详解与实例[M].北京:国防工业出版社,2006.
    [19]魏小辉.飞机起落架着陆动力学分析及减震技术研究[D].南京航空航天大学, 2005.
    [20]邓宗全,王少纯,高海波,等.基于ADAMS平台的月球着陆器上限振幅研究[J].哈尔滨工业大学学报, 2003, 35(12): 1492-1495.
    [21] Guo Jun, Wang Shen-shen, Li Xiao-lei, etc. Dynamics simulation of tracked vehicle using the DADS software [J]. Journal of Beijing institute of technology, 2001, 10(4): 370-375.
    [22] Tatsuro Muro.Takahisa, Shigematsu. Automation and optimal design method of a wheeled vehicle operating over sloped weak sand terrain [J]. Automation in Construction, 2000 (9): 277-297.
    [23] Mousseau C.W, Laursen T.A, Lidberg M, etc. Vehicle dynamics simulation with coupled multibody and finite element models [J]. Finite Elements in Analysis and Design, 1999 (31): 295-315.
    [24]张永德,汪洋涛,王沫楠,等.基于ANSYS与ADAMS的柔性体联合仿真[J].系统仿真学报, 2008, 20(17): 4501-4504.
    [25]杨忠炯.地下铲运机多体系统虚拟样机建模及系统动态特性仿真研究[D].中南大学, 2007.
    [26] Mark J. Clayton, paul Teicholz, Martin Fiseher, John Kunz, etc. Virtual components consisting of form, function and behavior. Automation in Construction [J], 1999, 350-365.
    [27] M. Durali. A Neural Network Approximation of Nonlinear Car Model Using AdamsSimulation Results [R]. SAE Paper , 2001-01-3324.
    [28]郑建荣. ADAMS—虚拟样机技术入门与提高[M].北京:机械工业出版社,2001.
    [29] Mujber T S, Szecsi T, Hashmi M S J. Virtual reality applications in manufacturing process simulation[J]. Journal of Materials Processing Technology, 2004, 155: 1834-1838.
    [30] Zhang Wei, Lu Bao-chun, Wu Hui-zhong, etc. Modeling and Simulation Approach for Multidisciplinary Virtual Prototyping [C]. In: Proceedings of the 4th World Congress on Intelligent Control and Automation. Shanghai, P. R. China, 2002, 1586-1590.
    [31] Junji Nomura, Kazuya Sawada. Virtual Reality Technology and Its Industrial Applications [J]. Control Engineering Practice, 1999(7): 1381-1394.
    [32]陈立平,张云清,等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [33] Reinhard Gandl. Virtual Process week in the experimental vehicle build at BMW AG [J] Robotics and Computer Integrated Manu facturing. 2001 (17): 65-71.
    [34]柳江.基于虚拟样机技术悬架系统性能分析和优化设计[D].上海交通大学,2007.
    [35]廉伟东,成凯,廖清德,等. CATIA和ADAMS软件在装载机设计中的应用[J].矿山机械, 2004, 31(5): 25-27.
    [36]王欣.大型履带起重机设计的关键问题研究及软件系统研制[D].大连:大连理工大学,2000.
    [37]杨海成.基于虚拟样机的系统仿真技术[J].中国机械工程, 1998,11(9): 66-67.
    [38] J.Y. Wong, John. Theory of ground vehicles [M]. Wiley & Sons, 1993.
    [39] Shabana. Computational Dynamics [M]. Wiley & Sons, New York, 2001.
    [40] Stejskal, Valasek. Kinematics and Dynamics of Machinery[M]. Hardcover, January 1996.
    [41] F.M.L. Amirouche. Computational methods in multibody dynamics [M], New Jersey, Prentice Hall, Englewood Cliffs, 1992.
    [42]朱浩.基于多体动力学理论的车辆主动悬挂的控制策略研究[D].中南大学,2006.
    [43]范成建,熊光明,等.虚拟样机软件MSC.ADAMS应用与提高[M].北京:机械工业出版社,2006.
    [44]袁士杰,吕哲勤.多刚体系统动力学[M].北京:北京理工大学出版社, 1996.
    [45] A.G. Erdman and G.N. Sandor. Kineto-Elastodynamic-A review of the state of the art and trends [J]. Mechanism and Machine Theory, 1972, (7): 22-29.
    [46] Ph. Boland, J.CI. Samin and P.Y. Willems. Stability analysis of interconnected deformable bodies with close-loop configuration [J], Journal of AIAA, 1975, 13(6): 232-242.
    [47]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社, 1996.
    [48]林宝玖,射传锋.柔性多体系统动力学[J].力学学报, 1998, 21(3): 469-478.
    [49]洪嘉振.计算多体系统动力学[M].高等教育出版社, 1999.
    [50]覃正.多体系统动力学压缩建模[M].北京:科学出版社, 2000.
    [51]李杨民.多体系统动力学理论和方法在工程机械与机器人动力学参数辨识中的应用研究[D].天津:天津大学,1994.
    [52]张旭.机械系统虚拟样机技术研究[D].北京:中国农业大学,1999.
    [53]范进桢,秦贵林,骆江锋.轿车电动天窗的结构、控制原理及维修[J].汽车技术, 2005(8): 41-43.
    [54]吴基安,董素荣.汽车电动车顶(天窗)的结构与工作原理[J].汽车电器, 2001(1): 23-26.
    [55] Markus G. Kliffken. Obstacle Detection for Power-Operated Window-Lift and Sunroof Actuation Systems[R]. SAE Paper, 2001-01-0466.
    [56]李志扬,宗志坚等.基于逆向工程的油箱开发[J].机械设计与制造工程, 2002, 31(4): 18-20.
    [57]许智钦,孙长库. 3D逆向工程技术[M].北京:中国计量出版社出版, 2002: 2-10、137-144.
    [58]金国藩,李景镇.激光测量学[M].北京:科学技术出版社, 1998.
    [59]孙长库,叶声华.激光测量技术[M].天津:天津大学出版社, 2001.
    [60]金涛,童水光,等.逆向工程技术[M].北京:机械工业出版社, 2003: 2-10、26-56.
    [61]林文明.快速原型制作技术[J].机械技术, 1998(8): 92-95.
    [62]金婉如.基于UG的汽车天窗设计和开发[D].哈尔滨理工大学,2005.
    [63]龚志辉.基于逆向工程技术的汽车覆盖件回弹问题研究[D].湖南大学, 2007.
    [64]金涛,陈建良,童水光.逆向工程技术研究进展[J].中国机械工程, 2002, 13(16): 1430-1436.
    [65] V Carbone, M Carocci, E Savio et al. Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces [J]. International Journal of Advanced Manufacturing Technology, 2000, 17(4): 263-271.
    [66] Anon. High-speed optical measuring boosts reverse engineering [J]. Professional engineering, 1997, 10(9): 32-35.
    [67] H. Aoyama, Y. Suzuki. Autonomous measurement of physical model shape for reverse engineering [J]. Journal of Manufacturing System, 2001, 19(6):375-382.
    [68] Vincent H. Chan, Colin Bradley, Geoffrey. W Vickers. Automating laser scanning of 3D surfaces for reverse engineering [J]. SPIE, 1999, 32(4): 156-164.
    [69] V. H. CHAN, C. Bradley, G. W.Vickers. A multi-sensor approach to automating coordinate measuring machine-based reverse engineering [J]. Computer in Industry, 2001, 44(2): 105-115.
    [70] Huang M C, Tai C C. The pre-processing of data points for curve fitting in reverse engineering [J].The International Journal of Advanced Manufacturing Technology, 2000, 16(9): 635-642.
    [71] Lee K H, Woo H, Suk T. Data Reduction Methods for Reverse Engineering [J]. The International Journal of Advanced Manufacturing Technology, 2001, 17(10): 735-743.
    [72]刘之生.反求工程技术[M].北京:机械工业出版社, 1992.
    [73]刘志刚.逆向工程中线结构光视觉传感器与CMM集成测量技术研究[D].西安:西安交通大学, 2000. 4.
    [74]武殿梁.汽车覆盖件模具快速开发系统及若干关键技术研究[D].西安:西安交通大学, 2002.
    [75]邢渊.集成反向工程系统及其关键技术的研究[D].上海:上海交通大学, 1998
    [76]李际军.反求工程CAD建模关键技术研究[D].杭州:浙江大学, 1999.
    [77]周儒荣,张丽艳,苏旭,等.海量散乱点的曲面重建算法研究[J].软件学报, 2001,12(2): 249-255.
    [78]李卫国.逆向工程中的曲面重构技术研究及基于Web的应用系统开发[D].南京:南京航空航天大学, 2001.
    [79]慈瑞梅.基于CMM测量数据的曲面重构关键技术研究与实现[D].南京:南京理工大学, 2005.
    [80] Otto Kevin N. Wood Kristin L. Product evolution: A reverse engineering and redesign methodology [J]. Research in Engineering Design, 1998, 10(4): 226-243.
    [81]闫华,林巨广,蔡树煌,等.汽车覆盖件逆向工程中的若干关键技术探讨[J].模具技术, 2001(2): 4-7.
    [82]季劲松.逆向工程中三坐标测量数据处理的研究及系统开发[D].杭州:浙江大学, 2002.
    [83] Tamas Varady, Ralph Martin, Jordan Cox.. Reverse engineering of geometric models-an introduction [J]. Computer Aided Design, 1997, 29: 253-254.
    [84]马淑梅,陈彬,张曙.基于逆向工程的快速模具制造[J].同济大学学报, 2001, 29(8): 996-999.
    [85] C. K. Au, M. M. F. Yuen. Feature-based reverse engineering of mannequin for garment design [J]. Computer-Aided Design, 1999, 31(12): 751-759.
    [86]张丽艳,缪文和,周儒荣.逆向工程的关键技术及其应用研究[J].数据采集与处理, 1999, 14(1): 33-66.
    [87]谢龙汉,单岩编著. CATIA V5逆向造型设计[M].北京:清华大学出版社, 2004.
    [88]盛选禹主编. CATIA曲线和曲面功能详解[M].北京:机械工业出版社, 2004.
    [89]谢龙汉,单岩等. CATIA V5零件设计[M].北京:清华大学出版社, 2005.
    [90]张萌. CATIA机械结构设计[M].北京:机械工业出版社, 2006.
    [91] Shyam sundarm N, Gadhb R. Collaborative virtual prototyping of product Assemblies over the Internet [J]. Computer-Aided Design, 2002, 34: 755-768.
    [92] Choi SH, Samavedam S. Modeling and optimization of rapid Prototyping [J]. Computers in Industry, 2002, 47: 39-53.
    [93] McConville, J.B, McGrath, J.F. Introduction to ADAMS Theory [M]. MDI, 1997.
    [94] Negrut, D, Harris, B. ADAMS Theory in a Nutshell [M]. MDI, 2001.
    [95]郑凯,胡仁喜,陈鹿民等编著. ADAMS 2005机械设计高级应用实例[M].北京:机械工业出版社, 2006.
    [96] K H Guo, Dang Lu, Ren. A unified non-steady non-linear tyre model under complex wheel motion inputs including extreme operating conditions [J]. JSAE REVIEW, 2001, 22(4): 396-402.
    [97] Joechen R. Virtual development of ride and handling characteristics for Advanced Passenger cars [J]. Vehicle System Dynamics, 2003, 40(3): 135-155.
    [98] Jesper Slattengren. Utilization of Adams to Predict Tracked Vehicle Performance [R]. SAE paper, 2000-01-0303.
    [99]许小侠,赵静斌,韩英淳.基于虚拟样机的轿车天窗运动机构的设计[J].机械工程学报, 2008, 44(9): 225-229.
    [100] Arun Kumar Chandrasekaran, Giorgio Rizzoni, ect. Design Optimization of Heavy Vehicles by Dynamic Simulations [R]. SAE paper, 2002-01-3061.
    [101] Divesh Mittal. Characterization of the Key Vehicle Parameters Affecting Dynamic Vehicle Rollover Propensity using ADAMS Simulation and 1/10th Scale Model Testing [R]. SAE paper, 2006-01-1951.
    [102]于海峰,于学兵.基于ADAMS的双横臂独立悬架优化仿真分析[J].机械设计与制造, 2007(10): 56-58.
    [103] Xiaoxia Xu, Yu Ning, Yingchun Han. Virtual Design and Simulation in New Produt Development of Automobile Sunroof [J]. 2008 IEEE 9th International Conference on Computer-Aided Industrial Design & Conceptual Design, 2008, 1: 354-358.
    [104] Brian Su-Ming Fan. Modeling and Simulation of A Hybrid Electric Vehicle Using MATLAB/Simulink and ADAMS [D]. University of Waterloo, 2007.
    [105]任超超,万小朋,赵美英.基于ADAMS的起落架仿真平台开发[J].科学技术与工程, 2008, 8(7): 1727-1731.
    [106]仝光.基于ADAMS月球车仿真平台的研究[D].吉林大学, 2007.
    [107]刘力宾,卢颖,范宇,李兴阳.基于ADAMS的某3-DOF飞行模拟器运动平台的研究[J].系统仿真技术, 2007, 3(2): 102-105.
    [108]晋平,聂宏.起落架着陆动态仿真模型及参数化设计[J].南京航空航天大学学报, 2003, 35(10): 498-502.
    [109]王秀山,杨建国,吴昊.基于Pro/E、ADAMS和ANSYS的齿轮减速器一体化开发平台[J].上海交通大学学报, 2007, 41(1): 1-4.
    [110]范文杰.挖掘装载机装载工作装置动力分析、动态应力仿真研究及动臂结构拓扑优化[D].吉林大学, 2006.
    [111]刘静.挖掘机器人虚拟样机建模技术及其应用研究[D].浙江大学, 2005.
    [112]马星国,尤小梅,闻邦椿.基于虚拟样机技术的曲轴多体动力学仿真[J].振动与冲击, 2008, 27(9): 155-157.
    [113]林建生,王姗,张宝欢,张霖.内燃机多连杆机构的多体动力学分析[J].天津大学学报, 2007, 40(6): 640-643.
    [114] (美)MSC.Software著;李军,陶永忠译. MSC.ADAMS FSP基础培训教程[M].北京:清华大学出版社, 2004.
    [115]余国权.基于CATIA和ADAMS的减速器参数化设计及仿真[D].大连理工大学, 2007.
    [116]范卓立.基于虚拟样机技术的轴向柱塞泵运动及动力特性仿真分析[D].燕山大学, 2007.
    [117] Hao Zhang, Lew Kasper, Rich Kimpel. Development of a Virtual Prototype of Piston Pump for Hydrostatic Transmission [C]. Proceedings of the Sixth ICFP, 2005: 485-489.
    [118] ADAMS/View Documentation. Version2005. Mechanical Dynamics Inc., 2005.
    [119] (美)MSC.Software著;邢俊文,陶永忠译. MSC.ADAMS/View高级培训教程[M].北京:清华大学出版社, 2004.
    [120] Cicek Karaoghu, N Sefa Kuralay. Stress analysis of a truck chassis with riveted joints [J]. Finite Elements in Analysis and Design, 2002, 38(12): 1115-1130.
    [121] I. Kuti. Simulation of Vehicle Motions on the Basis of the Finite Element Method [J]. Vehicle System Dynamics, 2001, 36(6): 445-469.
    [122] C.W. Mousseau, T.A. Laursen, M. Lidberg, R.L. Taylor. Vehicle dynamics simulationswith coupled multi-body and finite element models [J]. Finite Elements in Analysis and Design, 1999, 31: 295-315.
    [123] Jingshu Wu, Ray Ruichong Zhang, Steve Radons, Xiaole Long, Karl K.Stevens. Vibration analysis of medical devices with a calibrated FEA model [J]. Computers and Structures, 2002, 80: 1081-1086.
    [124] Palani G S, Rajasankar J, Iyer N R et al. Reliable finite element analysis of ship structural components [J]. Engineering for the Maritime Environment, 2003, 217(3): 159-171.
    [125] Ramezanali Mahdavinejad. Finite element analysis of machine and workpiece instability in turning [J]. International Journal of Machine Tools & Manufacture, 2005, 45: 753-760.
    [126]邹国辉,宋德朝.基于ANSYS的装载机工作装置动臂应力分析[J].机电产品开发与创新, 2008, 21(6): 105-106.
    [127]范文杰,张子达,文广.挖掘装载机装载工作装置有限元分析[J].筑路机械与施工机械化, 2005, 22(2): 45-47.
    [128]郭立新,王守春,郑春歧,等.液压反铲挖掘机工作装置有限元动态分析[J].中国机械工程, 2000, 11(12): 1338-1340.
    [129]刘德作.单臂架起重机臂架结构动力学研究[D].武汉理工大学, 2007.
    [130]李兵,何正嘉,陈雪峰编著. ANSYS Workbench设计、仿真与优化[M].北京:清华大学出版社, 2008.
    [131]黄国权主编.有限元法基础及ANSYS应用[M].北京:机械工业出版社, 2004.
    [132]张朝晖主编. ANSYS11.0结构分析工程应用实例解析[M].北京:机械工业出版社, 2008.
    [133]李雪丽,田广才,田报. ANSYS与其它软件接口的研究与开发[J].精密制造与自动化, 2007(2): 48-50.
    [134]仪登利,曾红,王新丰.铝合金轮毂UG建模ANSYS分析时的模型导入问题[J].辽宁工业大学学报, 2008, 28(1): 36-38.
    [135] ANSYS, Inc. ANSYS Structural Analysis Guide Release 8.0
    [136] PAUL KUROWSLI. Test your foundation finite elements [J]. MACHINE DESIGN, 2001.
    [137] F. D. Queiroz, P. C. G. S. Vellasco, D. A. Nethercot. Finite element modeling of composite beams with full and partial shear connection [J]. Journal of Constructional Steel Research, 2007, 63: 505-521.
    [138]王助成,邵敏.有限元单元法基本原理和数值方法[M].北京:清华大学出版社, 2001.
    [139]王瑞,陈海霞,王广峰. ANSYS有限元网格剖分浅析[J].天津工业大学学报, 2002, 21(8): 8-11.
    [140]刘相新,孟宪颐. ANSYS基础与应用教程[M].北京:科学出版社, 2006.
    [141] Saeed Moaveni著,欧阳宇,王菘译. Finite Element Analysis: Theory and Application With ANSYS [M].北京:电子工业出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700