用户名: 密码: 验证码:
β-1,4-半乳糖基转移酶Ⅰ和Ⅴ在两型星形胶质和施万细胞中的生物学作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察β-1,4-半乳糖基转移酶I、V(β1,4 galactosyltransferase I、V,β-1,4-GalT I、V)在生理病理状态下两型星型胶质细胞和体内外施万细胞中的表达情况,探讨β-1,4- GalT I、V在两型星形胶质细胞和体内外施万细胞中可能存在的生物学作用。
     方法:体外培养两型星形胶质细胞和施万细胞,从炎性细胞因子TNFα着手,不同浓度、不同时间用LPS刺激两型星形胶质细胞或施万细胞,用酶联免疫吸附实验(ELISA)检测上清中分泌的TNFα的表达量;RT- PCR检测细胞中TNFα、TNFR1及TNFR2 mRNA的表达;同时用免疫荧光细胞化学染色检测TNFR1和TNFR2的细胞定位,real-time PCR检测β-1,4-GalT I和β-1,4-GalT V mRNA的表达变化。制备大鼠坐骨神经夹伤和切断模型,利用足迹试验观察坐骨神经功能指数(sciatic functional index, SFI);应用腹腔注射LPS建立炎症模型。通过real-time PCR方法,分析β-1,4-GalT-I、V mRNA在损伤及炎症性大鼠坐骨神经中的表达。利用RT-PCR扩增β-1,4-GalT I、V基因,克隆至pGEM-T载体,经体外转录法合成地高辛标记的正、反义β-1,4-GalT I、V RNA探针。通过原位杂交及图像分析,观察β-1,4-GalT I、V mRNA在大鼠正常、损伤及炎症坐骨神经中的表达变化。采用原位杂交与免疫组化相结合的方法检测β-1,4-GalT I、V的具体细胞定位。利用RNAi和细胞转染等技术干扰β-1,4-GalT V在施万细胞中的表达,运用Lectin Blot检测施万细胞在生理和病理状态N寡糖链合成情况。分别采用丝裂原活化的蛋白激酶(mitogen-acitivated protein kinase, MAPK)的特异性抑制剂(U0126、SB202190和SP600125)预处理细胞后观察MAPK信号通路在炎症过程中对β-1,4-GalT I、V的影响。
     结果:(1)TNFα和LPS作用于2型星形胶质细胞后β-1,4-GalT I mRNA的表达发生变化,且这种变化与TNFα和LPS作用的时间和浓度有关,呈时间和剂量依赖性。RT-PCR检测发现TNFα和LPS作用后2型星形胶质细胞中TNFα及TNFR2表达水平均显著升高,TNFR1的水平也有所提高。ELISA检测发现LPS作用后TNFα的分泌水平增加,免疫荧光双标检测结果发现,在正常未处理的2型星形胶质细胞中TNFR1广泛分布于细胞核、细胞浆以及细胞突起中,信号较弱,而在10 ng/ml LPS处理后TNFR1的表达信号明显增强,且其在核中的表达减少,主要定位于细胞浆与细胞突起中,在正常未处理的2型星形胶质细胞中TNFR2主要分布于细胞核中,10 ng/ml LPS处理后TNFR1在核中的表达显著降低,几乎检测不到,主要定位于细胞膜与细胞突起中。TNFR1抗体或TNFR2抗体可抑制LPS诱导的β-1,4-GalT I mRNA表达水平的升高。
     (2) TNFα和LPS作用于1型星形胶质细胞后β-1,4-GalT I和β-1,4-GalT V mRNA的表达发生变化,且这种变化与TNFα和LPS作用的时间和浓度有关,呈时间和剂量依赖性。免疫细胞化学染色检测发现在正常的1型星形胶质细胞中,TNFR1有表达,主要定位于核周的细胞浆中,在LPS处理后TNFR1的表达强度增强,且广泛分布于胞浆中;在正常的1型星形胶质细胞中检测不到TNFR2的表达,而在LPS处理后可检测到TNFR2在1型星形胶质细胞中有表达,且信号强度较高,广泛分布于细胞浆中。TNFR抗体可逆转β-1,4-GalT I和V mRNAs因TNF-α作用后的表达下调及抑制因LPS作用后的表达上调。
     (3)β-1,4-GalT I和β-1,4-GalT V mRNA在坐骨神经夹伤后2 w与切断1 w时表达水平明显增高,与正常对照组及其他各组相比,差异有统计学意义(P<0.05),原位杂交结果显示β-1,4-GalT I和β-1,4-GalT V主要表达于S100阳性的施万细胞中。β-1,4-GalT I和β-1,4-GalT V mRNA的表达水平与体内炎症模型中LPS作用的浓度和作用时间有关,具有剂量和时间依赖性,同样体外细胞培养时β-1,4-GalT I、β-1,4-GalT V mRNA的表达水平及N糖链的合成也与LPS的作用时间和作用浓度有关。干扰β-1,4-GalT V的表达后可明显抑制N糖链的合成。使用MAPK信号通路的抑制剂,U0126,SB202190以及SP600125处理施万细胞后,通过real-time PCR检测发现3种抑制剂均可不同程度地抑制LPS诱导的β1, 4-GalT I和β1, 4-GalT V的表达水平。
     结论:(1)在2型星形胶质细胞中,TNFα是通过TNFR1和TNFR2由细胞核向细胞浆和细胞突起的转位来诱导β-1,4-GalT I表达的,除了外源性TNFα之外,2型星形胶质细胞还可通过自分泌方式产生TNFα对β-1,4-GalT I的表达产生影响,说明TNFα可以通过自分泌循环通路在炎症反应过程中发挥作用。
     (2)在炎性因子作用下1型星形胶质细胞可通过自分泌方式产生的TNFα影响β-1,4-GalT I和β-1,4-GalT V的表达。
     (3)对生理病理状态下的施万细胞,无论是在体内还是在体外β-1,4-GalT I和β-1,4-GalT V的表达均受到影响,提示β-1,4-GalT I和β-1,4-GalT V在施万细胞的生理病理过程均发挥重要的作用。干扰了施万细胞中β-1,4-GalT V表达后其N糖链的合成也显著减少,证实了β-1,4-GalT V与N糖链的合成密切相关。此外,β-1,4-GalT I和β-1,4-GalT V的表达是受ERK、P38以及SAPK/JNK这些MAPK信号通路来调节的。
Objective: To observe the expressions ofβ-1,4-GalT I and V in two types of astrocytes and Schwann cells during physiological and pathological conditions, and to explore biological role ofβ-1,4-GalT I and V in these cells.
     Methods: Two types of astrocytes and Schwann cells were cultured in vitro, in view of TNFα, different concentration and different time of LPS were used to treat astrocytes and Schwann cells, ELISA was used to determine the expression of TNFαin supernatant. The expression levels of TNFα, TNFR1 and TNFR2 mRNAs were examined by using RT-PCR. Immunocytochemistry stainning were used to investigate the cellular localization ofβ-1,4-GalT I、V. The expression ofβ-1,4-GalT I、V mRNA were detected by real-time PCR. Preparing the sciatic nerve injury models, sciatic functional index of rat was investigated by feet trace test. Inflammatory model was made by intraperitoneal injection of LPS. The expression ofβ-1,4-GalT I、V mRNAs in rat injury and inflammatory sciatic nerves were detected by real-time PCR. The products of RT-PCR were used to label probes for in situ hybridization,and the expressions and changes ofβ-1,4-GalT I、V in normal, injured and inflammtory rat sciatic nerves were analyzed by in situ hybridization and image analysis. Combined in situ hybridization and immunohistochemistry were used to determine the cellular localization ofβ-1,4-GalT I、V. RNAi and cell transfection technique were used to interfere with the expression ofβ-1,4-GalT V in Schwann cells. Galβ1-4GlcNAc synthesis in physiological and pathological Schwann cells were detected by using Lectin Blot. MAPK special inhibitors: U0126 (ERK inhibitor), SB203580 (p38 inhibitor), or SP600125 (SAPK/JNK inhibitor) were used to pretreat Schwann cell to investigate the effect of MAPK signal pathways on the expression ofβ-1,4-GalT I、V.
     Results: (1) Real-time PCR showed that TNFαor LPS affectedβ-1, 4-GalT I mRNA expression in a time- and dose- dependent manner. RT-PCR analysis revealed that TNFR1 and TNFR2 were present in normal untreated type 2 astrocytes, and that TNFα, TNFR1 and TNFR2 increased in type 2 astrocytes after exposure to TNFαor LPS. Immunocytochemistry showed that TNFR1 was expressed in the cytoplasm, nucleus and processes of normal untreated type 2 astrocytes, and distributed mainly in the cytoplasm and processes after exposure to LPS. TNFR2 was mainly expressed in the nucleus of normal untreated type 2 astrocytes, and distributed mainly in the processes of type 2 astrocytes after exposure to LPS. Both anti-TNFR1 and anti-TNFR2 antibodies suppressedβ-1,4-GalT I mRNA expression induced by TNF-αor LPS.
     (2)β-1, 4-GalT I and V mRNAs are present in normal control type 1 astrocytes and affected by TNFαand LPS stimuli. Type 1 astrocytes express TNFαreceptor 1 (TNFR1), and increased slightly after exposure to LPS. TNFαand TNFR2 are not detected in control astrocytes, and upregulated significantly with LPS stimulation. And that activation of these receptors by TNFαaffects expressions ofβ-1, 4-GalT I and V mRNAs. In addition, we observed that not only exogenous TNF-αbut also TNFαproduced by astrocytes affectedβ-1, 4-GalT I and V mRNAs production in astrocytes.
     (3) Real-time PCR revealed that theβ-1, 4-GalT I andβ-1, 4-GalT V mRNAs reached peaks at 2w after sciatic nerve crush and 1w after sciatic nerve transection. Combined in situ hybridization forβ-1, 4-GalT I orβ-1, 4-GalT V mRNA and immunohistochemistry for S100 showed thatβ-1, 4-GalT I andβ-1, 4-GalT V mRNAs were mainly located in Schwann cells after sciatic nerve injury. In other pathology, such as inflammation, we found that LPS administration affectsβ-1, 4-GalT I andβ-1, 4-GalT V mRNAs expressions in sciatic nerve in a time- and dose-dependent manner, andβ-1, 4-GalT I andβ-1, 4-GalT V mRNA expressed mainly in Schwann cells. Similarly, we found that andβ-1, 4-GalT V in Schwann cells and the binding with RCA-I on the Schwann cell surface in vitro were affected in a time- and concentration dependent manner in response to LPS stimulation, and the trend of the binding with RCA-I on the cell surface was similar to the trend ofβ-1, 4-GalT V. In addition,β-1, 4-GalT V production and overall lectin binding were drastically suppressed by U0126 (ERK inhibitor), SB203580 (p38 inhibitor), or SP600125 (SAPK/JNK inhibitor).
     Conclusions: (1) TNFαsignaling via both TNFR1 and TNFR2 translocated from nucleus to cytoplasm or processes is sufficient to induceβ-1, 4-GalT I mRNA. Not only exogenous TNFαbut also TNFαproduced by type 2 astrocytes affectedβ-1, 4-GalT I mRNA production in type 2 astrocytes. These results suggest that an autocrine loop involving TNFαcontributes to the production ofβ-1, 4-GalT I mRNA in response to inflammation.
     (2) An autocrine loop involving TNFαcontributes to the production ofβ-1, 4-GalT I and V mRNAs in response to inflammation.
     (3)β-1, 4-GalT V and Galβ1-4GlcNAc containing glycan structure plays an important role in inflammation. Schwann cells regulated expression ofβ-1, 4-GalT V and galactosylation of membrane glycoproteins after LPS stimulation were via ERK, SAPK/JNK, and P38MAP kinase signal pathway.
引文
1. Kleane R, Berger EC. The molecular and cell biology of glycosyltransferase. Biochim Biophys Acta, 1993, 1154: 283-325.
    2. Shaper JH, Shaper NL. Enzyme associated with glycoylation. Curr Opin Struct Biol, 1992, 2: 701-709.
    3. Shaper NL, Shper JH, Meuth JL, et al. Boving galactosyltransferase: Indentification of a clone by direct immunological Screening of a cDNA expression library. Proc Natl Acad Sci USA, 1986, 83: 1573-1577.
    4. Almeida R, Amado M, David L, et al. A family of human beta- galactosyltransferase. Cloning and expression of two novel UDP-galactose: beta-N-acetylglucosamine beta1,4- galactosyltransferases beta4Gal-T2 and beta4-T3. J Biol Chem, 1997, 272: 31979-31991.
    5. Lo NW, Shaper JH, Pevsner J. The expanding beta 4- galactosyltransferase gene family: messages from the databanks. Glycobiology, 1998, 8: 517-526.
    6. Schwientek T, Almeida R, Levery SB, et al. Cloning of a novel member of the UDP- galactose: beta-N- acetylglucosamine beta 1,4- galactosyltransferase family, beta Gal-T4, involved in glycosphingolipid biosynthesis. J Biol Chem, 1998, 273: 29331-23340.
    7. Almeida R, Levery SB, Mandel U, et al. Cloning and expression of a proteoglycan UDP-galactose: beta-xylose-beta1,4-galactosyltransferase I family, A seventh member of the beta4 galactosyltransferase gene family. J Biol Chem, 1999, 274: 26165-26171.
    8. Ertl C, Wrobel KH. Disstribution of sugar residues in the bovine testis during postnatal ontogenesis demonstrated with lectin-horeradish peroxidase conjugates. Histochemistry, 1992, 97, 161-171.
    9. Evans SC, Lopez LC, Shur BD. Dominant negative mutation in cell surfaceβ-1,4-galactosyltransferase inhibits cell-cell and cell-matrix interactions. J Cell Biol, 1993, 120, 1045-1057.
    10. Miller DJ, Macck MB, Shur BD. Complementarity between sperm surface beta-1,4-galactosyltransferase and egg-coat ZP3 mediates sperm-egg binding. Nature,1992, 357, 589-593.
    11. Shur BD. Glycosyltransferase as cell adhesion molecules. Curr Opin Cell Biol, 1993, 5: 854-863.
    12. Shur BD. Expression and function of cell surface galactosyltransferase. Biachim Biophy. Acta,. 1989, 988:389-409.
    13. Shaper NL, Wright WW, Shaper JH. Murine beta 1,4- galactosyltransferase: both the amounts and structure of the mRNA are regulated during spermatogenesis. Proc Natl Acad Sci U S A. 1990, 87(2), 791-795.
    14. Furukawa K, Sato T.β-1,4-Galactosylation of N-glycans is a complex process, Biochim. Biophys. Acta, 1999, 1473: 54-66.
    15. Hall H, Vorherr T, Schachner M. Characterization of a 21 amino acid peptide sequence of the laminin G2 domain that is involved in HNK-1 carbohydrate binding and cell adhesion. Glycobiology, 1995, 5(4): 435-441.
    16. Hoffman S, Hatten ME. Kinetices of homophilic binding dy embryonic and adult forms of the neural cell adhesion molecule. Proc Natl Acad Sci USA, 1983, 91:728-732.
    17. Riopelle RJ, Dow KE. Neurite formation on laminin: effects of a galactosyltransferase on primary sensory neurons. Brain Res, 1991, 541: 265-272.
    18. Begovac PC, Shur BD. Cell surface galactosyltransferase mediates the initiation of neurite outgrowth from PC12 cells on laminin. J. Cell Biol, 1990, 110: 461-470.
    19. Huang QL, Shur BD, Begovac PC. Overexpresioning cell surfaceβ1,4-galactosyltransferase in PC12 cells increase neurite outgrowth on laminin. J. Cell Sci, 1995, 108: 839-847.
    20. Begovac PC, Hall DE, Shur BD. Laminin fragment E8 mediates PC12 cell neurite outgrowth binding to cell surface ?1,4 galactosyltransferase. J. Cell Biol, 1991, 113: 637-644.
    21. Evans SC, Lopez LC, Shur BD. Dominant negative mutation in cell surfaceβ-1,4-galactosyltransferase inhibits cell-cell and cell-matrix interactions. J Cell Biol, 1993, 120: 1045-1057.
    22. Livingston BD, De Robertis EM, Paulson JC. Expression ofβ- galactosideα-2,6-sialyltransferase blocks systhesis of polysialic in Xenopus embryos. Glycobiology, 1990, 1: 39-44.
    23. Loffe E, Stanley P. Mice lacing N-acetylglucosaminyltransferase I activity die at mid-gestation,revealing an essential role for complex or hybid N-linked carbohydrates. Proc Natl Acad Sci,USA,1994, 91:728-732.
    24. Zhou D, Chen C, Jiang S, et al. Expression of beta1,4-galactosyltransferase in the development of mouse brain. Biochim. Biophys. Acta, 1998, 1425, 204-208.
    25. Nakamura N, Yamakawa N, Sato T, et al. Differential gene expression of beta-1,4-galactosyltransferases I, II, and V during mouse brain development. J Neurochem, 2001, 76: 29-38.
    26. Bunge RP. The role of the Schwann cell in trophic support and regeneration. J Neurol, 1994, 242(1 Supp 1), s19-s21.
    27. Benarroch EE. Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc, 2005, 80(10):1326-1338.
    28. Haydon PG, Carmignoto G. Astrocyte Control of Synaptic Transmission and Neurovascular Coupling. Physiol Rev, 2006, 86(3): 1009-1031.
    29. Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature, 1983, 303 (5916): 390-396.
    30.孙燕,夏春林,孙茂民,等.新生大鼠大脑O-2A细胞系的分离纯化和双向分化培养,苏州大学学报(医学版), 2003,23(3): 307-310.
    31.何江虹,张晔,夏春林,等.轴突成束和延伸蛋白ζ-1基因在1型和2型星形胶质细胞中的表达.解剖学报, 2008, 39(5):636-639.
    32.严美娟,陆志方,夏春林,等.胰甘油三酯脂酶在大鼠两型星形胶质细胞中的表达.解剖学报, 2008, 39(2): 193-196.
    33.李春鹏,张晔,夏春林,等.巢蛋白和阶段特异性胚胎抗原-1在大鼠2型星形胶质细胞中的表达.解剖学报, 2007, 38(2): 153-156.
    1. Russo RN, Shaper NL, Shaper JH. Bovine ?1,4-galactosyltransferase: two sets of mRNA transcripts encode two forms of the protein with different amino-terminal domains. J Biol Chem, 1990, 265: 3324-3331.
    2. Lopez LC, Youakim A, Carroll SM, et al. Evidence for a molecular distinction between Golgi and cell sell surface forms surfaceβ1,4-galactosyltransferase. J Biol Chem, 1991, 266: 15984-15991.
    3. Mecham RP. Recptors for laminin on mammalian cells. FASEB J, 1991, 5: 2538-2546.
    4. Begovac PC, Shur BD. Cells surface galactosyltransferase medicates the initiation of neurite outgrowth from PC12 cells on laminin. J Cell Biol, 1990, 110: 461-470.
    5. Huang Q, Shur BD. Overexpressing cell surface beta1,4- galactosyltransferase in PC12 cells increase neurite outgrowth on laminin. J Cell Sci, 1995, 108(pt 2): 839-847.
    6. Evas SC, Lopez LC, Shur BD. Dominant negative mutation in cell surface beta 1,4-galactosyltransferase inhibits cell-cell and cell-matrix interactions. J Cell Biol, 1993, 120:1045-1057.
    7. Appeddu PA, Shur BD. Molecular analysis of cell surface beta-1,4-galactosyltransferase function during cell migration. Proc Natl Acad Sci U S A,1994, 91(6):2095-2099.
    8. Eckstein DJ, Shur BD. Cell surface beta-1,4- galactosyltransferase is associated with the detergent-insoluble cytokeleton on migrating mesenchymal cells. Exp Cell Res, 1992, 201: 83-90.
    9. Runyan RB, Versalovic J, Shur BD. Functionally distinct laminin receptors mediate cell adhesion and spreading. J Cell Biol, 1988, 107: 1863-1871.
    10. Zhou D, Chen C, Jiang S, et al. Expression of beta1,4-galactosyltransferase in the development of mouse brain. Biochim Biophys Acta, 1998, 1425: 204-208.
    11. Hathaway HJ, Shur BD, Begovac PC. Cell surface beta1,4-galactosyltransferase functions during neural crest cell migration and neurulation in vivo. J Cell Biol, 1992, 117: 369-382.
    12. Garcia-Vallejo JJ, van Dijk W, van Die I, et al. Tumor necrosis factor-alpha up-regulates the expression of beta1,4-galactosyltransferase I in primary human endothelial cells by mRNA stabilization. J Biol Chem, 2005, 280(13): 12676-12682.
    13. Wang H, Czura CJ, Tracey KJ. Tumor necrosis factor. In: Thomson AW, Lotze MT (eds) From the cytokine handbook, vol 2, 4th ed. Academic Press, Amsterdam, 2003: 837–860.
    14. Asano MS, Nakae S, Kotani N, et al. Impaired selectin-ligand biosynthesis and reduced inflammatory responses in beta-1,4-galactosyltransferase-I-deficient mice. Blood, 2003, 102(5): 1678-1685.
    15. Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature, 1983, 303 (5916): 390-396.
    16. Belliveau DJ, Naus CC. Cortical type 2 astrocytes are not dye coupled nor do they express the major gap junction genes found in the central nervous system. Glia, 1994, 12 (1): 24-34.
    17. Dong Y, Benveniste EN. Immune function of astrocytes. Glia, 2001, 36 (2): 180-190.
    18. Nagy JI, Rash JE. Connexins and gap junctions of astrocytes and oligodendrocytes in CNS. Brain Res Rev, 2000, 32 (1): 29-44.
    19. Song HJ, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature, 2002, 417 (6884): 39-44.
    20. K?rner H, Riminton DS, Stickland DH, et al. Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting. J Exp Med, 1997, 186(9):1585–1590.
    21. Shur BD, Evans S, Lu Q, et al. Cell surface galactosyltransferase: current issues. Glycoconj J, 1998, 15(6): 537-548.
    22. Raff MC, Abney ER, Cohen J, et al. Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J Neurosci, 1983, 3(6): 1289-1300.
    23. McFarlane SM, Pashmi G, Connell MC, et al. Differential activation of nuclear factor-kappaB by tumour necrosis factor receptor subtypes. TNFR1 predominates whereas TNFR2 activates transcription poorly. FEBS Lett, 2002, 515(1-3): 119-126.
    24. Kuno RY, Yoshida Y, Nitta A, et al. The role of TNF-alpha and its receptors in the production of NGF and GDNF by astrocytes. Brain Res, 2006, 1116(1): 12-18.
    25. Lung HL, Leung KN, Stadlin A, et al. Induction of tumor necrosis factor receptor type 2 gene expression by tumor necrosis factor-alpha in rat primary astrocytes. Life Sci, 2001, 68(18): 2081-2091.
    1. Russo RN, Shaper NL, Shaper JH. Bovineβ1,4-galactosyltransferase:two sets of mRNA transcripts encode two forms of the protein with different amino-terminal domains. J Biol Chem, 1990, 265: 3324-3331.
    2. Lopez LC, Youakim A, Carroll SM, et al. Evidence for a molecular distinction between Golgi and cell sell surface forms surface ?1,4-galactosyltransferase. J Biol Chem, 1991, 266: 15984-15991.
    3. Mecham RP. Recptors for laminin on mammalian cells. FASEB J, 1991, 5: 2538-2546.
    4. Begovac PC, Shur BD. Cells surface galactosyltransferase medicates the initiation of neurite outgrowth from PC12 cells on laminin. J Cell Biol, 1990, 110: 461-470.
    5. Huang Q, Shur BD. Overexpressing cell surface beta1,4- galactosyltransferase in PC12 cells increase neurite outgrowth on laminin. J Cell Sci, 1995, 108(pt 2): 839-847.
    6. Evas SC, Lopez LC, Shur BD. Dominant negative mutation in cell surface beta1,4-galactosyltransferase inhibits cell-cell and cell-matrix interactions. J Cell Biol, 1993, 120:1045-1057.
    7. Appeddu PA, Shur BD. Molecular analysis of cell surface beta-1,4-galactosyltransferase function during cell migration. Proc Natl Acad Sci U S A, 1994, 91(6):2095-2099.
    8. Eckstein DJ, Shur BD. Cell surface beta-1,4- galactosyltransferase is associated with the detergent-insoluble cytokeleton on migrating mesenchymal cells. Exp Cell Res, 1992, 201: 83-90.
    9. Runyan RB, Versalovic J, Shur BD. Functionally distinct laminin receptors mediate cell adhesion and spreading. J Cell Biol, 1988, 107: 1863-1871.
    10. Zhou D, Chen C, Jiang S, et al. Expression of beta1,4-galactosyltransferase in the development of mouse brain. Biochim Biophys Acta, 1998, 1425: 204-208.
    11. Hathaway HJ, Shur BD, Begovac PC. Cell surface beta1,4-galactosyltransferase functions during neural crest cell migration and neurulation in vivo. J Cell Biol, 1992, 117: 369-382.
    12. Garcia-Vallejo JJ, van Dijk W, van Die I, et al. Tumor necrosis factor-alpha up-regulates the expression of beta1,4-galactosyltransferase I in primary human endothelial cells by mRNA stabilization. J Biol Chem, 2005, 280(13): 12676-12682.
    13. Wang H, Czura CJ, Tracey KJ. Tumor necrosis factor. In: Thomson AW, Lotze MT (eds) From the cytokine handbook, vol 2, 4th edn. Academic Press, Amsterdam, 2003: 837–860
    14. Asano, M., S. Nakae, et al. Impaired selectin-ligand biosynthesis and reduced inflammatory responses in beta-1,4-galactosyltransferase-I-deficient mice. Blood, 2003, 102(5): 1678-1685.
    15. Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature, 1983, 303 (5916): 390-396.
    16. Belliveau DJ, Naus CC. Cortical type 2 astrocytes are not dye coupled nor do they express the major gap junction genes found in the central nervous system. Glia, 1994, 12 (1): 24-34.
    17. Dong Y, Benveniste EN. Immune function of astrocytes. Glia, 2001, 36 (2): 180-190.
    18. Nagy JI, Rash JE. Connexins and gap junctions of astrocytes and oligodendrocytes in CNS. Brain Res Rev, 2000, 32 (1): 29-44.
    19. Song HJ, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature, 2002, 417 (6884): 39-44.
    20. Lowe JB. Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol , 2003, 15(5): 531-538.
    21. Aschner M. Astrocytes as mediators of immune and inflammatory responses in the CNS. Neurotoxicology, 1998,19(2): 269-281.
    22. Korner H, Riminton DS, Stickland DH, et al. Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting. J Exp Med, 1997, 186(9):1585–1590.
    23. Shur BD, Evans S, Lu Q, et al. Cell surface galactosyltransferase: current issues. Glycoconj J, 1998, 15(6): 537-548.
    24. McFarlane SM, Pashmi G, Connell MC, et al. Differential activation of nuclear factor-kappaB by tumour necrosis factor receptor subtypes. TNFR1 predominates whereas TNFR2 activates transcription poorly. FEBS Lett, 2002, 515(1-3): 119-126.
    25. Kuno RY, Yoshida Y, Nitta A, et al. The role of TNF-alpha and its receptors in the production of NGF and GDNF by astrocytes. Brain Res, 2006, 1116(1): 12-18.
    26. Lung HL, Leung KN, Stadlin A, et al. Induction of tumor necrosis factor receptor type 2 gene expression by tumor necrosis factor-alpha in rat primary astrocytes. Life Sci, 2001, 68(18): 2081-2091.
    1. Kido M, Asano M, Iwakura Y, et al. Presence of polysialic acid and HNK-1 carbohydrate on brain glycoproteins from beta-1,4-galactosyltransferase-knockout mice. Biochem Biophys Res Commun, 1998, 245(3): 860-864.
    2. Martin JW, Sinom RS, Elizabeth MM, et al. A Glial cell line-derived factor-secreting clone of the Schwann cell line SCTM41 enhances survial and fiber outgrowth from embryonic nigral neurons grafted to the striatum and to the lesioned substantia nigra. J Neurosci, 1999, 19(5): 2301-2312.
    3. Lo NW, Shaper JH, Pevsner J, et al. The expanding beta 4- galactosyltransferase gene family: messages from the databanks.Glycobiology, 1998, 8(5):517-526.
    4. Furukawa K, Sato T.β-1,4-Galactosylation of N-glycans is a complex process, Biochim Biophys Acta, 1999, 1473 : 54-66.
    5. Shaper NL, Shaper JH, Meuth JL, et al. Bovine galactosyltransferase: identification of a clone by direct immunological screening of a cDNA expression library. Proc Natl Acad Sci USA , 1986, 83: 1573-1577.
    6. Grothe C, Meisinger C, Hertenstein A, et al. Expression of fibroblast growth factor-2 and fibroblast growth factor receptor 1 messenger RNAs in spinal ganglia and sciatic nerve: regulation after peripheral nerve lesion. Neuroscience, 1997, 76(1):123-135.
    7. Neuberger TJ, Kalimi O, Regelson W, et al. Glucocorticoids enhance the potency of Schwann cell mitogens. J Neurosci Res, 1994, 3: 300-313.
    8. Xian CJ, Zhou XF. Neuronal-glial differential expression of TGF-a and its receptor inthe dorsal root ganglia in response to sciatic nerve lesion. Exp Neurol, 1999, 157: 317-329.
    9. Diks SH, Richel DJ. LPS signal transduction: the picture is becoming more complex. Curr Top Med Chem, 2004, 4(11): 1115-1126.
    10. Hinton DA, Evans SC, Shur BD. Altering the expression of cell surface beta 1,4-galactosyltransferase modulates cell growth. Exp Cell Res, 1995, 219: 640-649.
    11. Johnson FM, Shur BD. The level of cell surface beta1,4-galactosyltransferase I influences the invasive potential of murine melanoma cells. J Cell Sci, 1999, 112 (Pt 16): 2785-2795.
    12. Nixon B, Lu Q, Wassler MJ, et al. Galactosyltransferase function during mammalian fertilization. Cells Tissues Organs, 2001, 168: 46-57.
    13. Sato T, Furukawa K, Greenwalt DE, et al. Most bovine milk fat globule membrane glycoproteins contain asparagine-linked sugar chains with GalNAc beta 1-->4GlcNAc groups. J Biochem, 1993, 114: 890-900.
    14. Liedtke S, Geyer H, Wuhrer M, et al. Characterization of N-glycans from mouse brain neural cell adhesion molecule. Glycobiology, 2001, 11: 373-384.
    15. Nakamura N, Yamakawa N, Sato T, et al. Differential gene expression of beta-1,4-galactosyltransferases I, II and V during mouse brain development. J Neurochem, 2001, 76: 29-38.
    16. Ide C, Tohyama K, Yokota R, et al. Schwann cell basal lamina and nerve regeneration. Brain Res, 1983, 288, 61-75.
    17. Brown MC, Hardman VJ. A reassessment of the accuracy of reinnervation by motoneurons following crushing or freezing of the sciatic or lumbar spinal nerves of rats. Brain, 1987, 110 (Pt 3): 695-705.
    18. Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol, 1997, 14: 67-116.
    19. Bunge RP. Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiol, 1993, 3: 805-809.
    20. Gupta SK, Poduslo JF, Dunn R, et al. Myelin-associated glycoprotein gene expression in the presence and absence of Schwann cell-axonal contact. Dev Neurosci, 1990, 12: 22-33.
    21. LeBlanc AC, Poduslo JF. Axonal modulation of myelin gene expression in the peripheral nerve. J Neurosci Res, 1990, 26: 317-326.
    22. Mecham RP. Recptors for laminin on mammalian cells. FASEB J, 1991, 5: 2538-2546.
    23.陈中伟,张键.周围神经损伤后修复再生的实验研究.见:陈中伟,主编.周围神经损伤基础与临床研究.山东:山东科学技术出版社, 1998: 314-346.
    24. Asano M, Nakae S, Kotani N, et al. Impaired selectin-ligand biosynthesis and reduced inflammatory resposes in beta-1,4-galactosyltransferase-I-deficient mice. Blood, 2003, 102:1678–1685.
    25. Mori R, Kondo T, Nishie T, et al. Impairment of skin wound healing inβ-1,4-Galactosyltransferase-defficient mice with reduced leukocyte recruitment. Am J Pathol, 2004, 164:1303-1314.
    26. Lemaire S, Derappe C, Pasqualetto V. T lymphocyte activation results in an increased expression of beta-1,4-galactosyltransferase: phorbol ester induces a similar enhancement in the absence of mitosis. J Glycoconj, 1998, 15:161-168.
    27. Lemaire S, Derappe C, Michalski JC. Expression of beta-1-6-branched N-linked oligosaccharides is associated with activation in human T4 and T8 cell poluation. J Biol Chem, 1996, 269:8069-8074.
    28. Garcia-Vallejo JJ, van Dijk W, van Die I, et al. Tumor necrosis factor-αup-regulates the expression ofβ-1,4-Galactosyltransferase-I in primary human endothelial cells by mRNA stabilization. J Biol Chem, 2005, 280:12676-12682.
    29. Bernardino L, Xapelli S, Silva AP, et al. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci, 2005, 25: 6734-6744.
    30. Garcia-Vallejo JJ, van Dijk W, van Die I, et al. Tumor necrosis factor-alpha up-regulates the expression of beta1,4-galactosyltransferase I in primary human endothelial cells by mRNA stabilization. J Biol Chem, 2005, 280: 12676-12682.
    1. Armstrong RC, Dorn HH, Kufta CV, et al. Pre-oligodendrocytes from adult human CNS. J Neurosci, 1992,12:1538-1547.
    2. Raff MC. Glial cell diversification in the rat optic nerve. Science, 1989,243:1450-1455.
    3. Raff MC, Lillien LE, Richardson WD, et al. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature, 1988,333:562-565.
    4. Butt AM, Hornby MF, Kirvell S, et al. Platelet-derived growth factor delays oligodendrocyte differentiation and axonal myelination in vivo in the anterior medullary velum of the developing rat. J Neurosci Res, 1997,48:588-596.
    5. Calver AR, Hall AC, Yu WP, et al. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron, 1998,20:869-882.
    6. van Heyningen P, Calver AR, Richardson WD. Control of progenitor cell number by mitogen supply and demand. Curr Biol, 2001,11:232-241.
    7. Tang XM, Strocchi P, Cambi F. Changes in the activity of cdk2 and cdk5 accompany differentiation of rat primary oligodendrocytes. J Cell Biochem, 1998,68:128-137.
    8. Tang DG, Tokumoto YM, Apperly JA, et al. Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science, 2001,291:868-871.
    9. Barres BA, Lazar MA, Raff MC. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development, 1994,120:1097-1108.
    10. Gao FB, Durand B, Raff M. Oligodendrocyte precursor cells count time but not cell divisions before differentiation. Curr Biol, 1997,7:152-155.
    11. Dussault JH, Ruel J. Thyroid hormones and brain development. Annu Rev Physiol, 1987,49:321-334.
    12. Tokumoto YM, Tang DG, Raff MC. Two molecularly distinct intracellular pathways to oligodendrocyte differentiation: role of a p53 family protein. Embo J,2001,20:5261-5268.
    13. Levrero M, De Laurenzi V, Costanzo A, et al. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci, 2000,113 (Pt 10):1661-1670.
    14. Yang A, McKeon F. P63 and P73: P53 mimics, menaces and more. Nat Rev Mol Cell Biol, 2000,1:199-207.
    15. McKinnon RD, Matsui T, Dubois-Dalcq M, et al. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron, 1990,5:603-614.
    16. Barres BA, Raff MC. Axonal control of oligodendrocyte development. J Cell Biol, 1999,147:1123-1128.
    17. Gard AL, Pfeiffer SE. Glial cell mitogens bFGF and PDGF differentially regulate development of O4+GalC- oligodendrocyte progenitors. Dev Biol, 1993,159:618-630.
    18. Barres BA, Schmid R, Sendnter M, et al. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development, 1993,118:283-295.
    19. Yasuda T, Grinspan J, Stern J, et al. Apoptosis occurs in the oligodendroglial lineage, and is prevented by basic fibroblast growth factor. J Neurosci Res, 1995,40:306-317.
    20. Tang DG, Tokumoto YM, Raff MC. Long-term culture of purified postnatal oligodendrocyte precursor cells. Evidence for an intrinsic maturation program that plays out over months. J Cell Biol, 2000,148:971-984.
    21. Bansal R. Fibroblast growth factors and their receptors in oligodendrocyte development: implications for demyelination and remyelination. Dev Neurosci, 2002,24:35-46.
    22. Bansal R, Kumar M, Murray K, et al. Regulation of FGF receptors in the oligodendrocyte lineage. Mol Cell Neurosci, 1996,7:263-275.
    23. Oh LY, Denninger A, Colvin JS, et al. Fibroblast growth factor receptor 3 signaling regulates the onset of oligodendrocyte terminal differentiation. J Neurosci, 2003,23:883-894.
    24. Choi DY, Toledo-Aral JJ, Lin HY, et al. Fibroblast growth factor receptor 3 induces gene expression primarily through Ras-independent signal transduction pathways. J Biol Chem, 2001,276:5116-5122.
    25. Rozenblatt-Rosen O, Mosonego-Ornan E, Sadot E, et al. Induction of chondrocyte growth arrest by FGF: transcriptional and cytoskeletal alterations. J Cell Sci, 2002,115:553-562.
    26. Chin YE, Kitagawa M, Su WC, et al. Cell growth arrest and induction ofcyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science, 1996,272:719-722.
    27. Zezula J, Casaccia-Bonnefil P, Ezhevsky SA, et al. p21cip1 is required for the differentiation of oligodendrocytes independently of cell cycle withdrawal. EMBO Rep, 2001,2:27-34.
    28. Sheng HZ, Turnley A, Murphy M, et al. Epidermal growth factor inhibits the expression of myelin basic protein in oligodendrocytes. J Neurosci Res, 1989,23:425-432.
    29. Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol, 1990,6:597-641.
    30. McKinnon RD, Piras G, Ida JA, et al. A role for TGF-beta in oligodendrocyte differentiation. J Cell Biol, 1993,121:1397-1407.
    31. Carson MJ, Behringer RR, Brinster RL, et al. Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron, 1993,10:729-740.
    32. Mewar R, McMorris FA. Expression of insulin-like growth factor-binding protein messenger RNAs in developing rat oligodendrocytes and astrocytes. J Neurosci Res, 1997,50:721-728.
    33. Kuhl NM, De Keyser J, De Vries H, et al. Insulin-like growth factor binding proteins-1 and -2 differentially inhibit rat oligodendrocyte precursor cell survival and differentiation in vitro. J Neurosci Res, 2002,69:207-216.
    34. Kuhl NM, Hoekstra D, De Vries H, et al. Insulin-like growth factor-binding protein 6 inhibits survival and differentiation of rat oligodendrocyte precursor cells. Glia, 2003,44:91-101.
    35. Canoll PD, Musacchio JM, Hardy R, et al. GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron, 1996,17:229-243.
    36. Canoll PD, Kraemer R, Teng KK, et al. GGF/neuregulin induces a phenotypic reversion of oligodendrocytes. Mol Cell Neurosci, 1999,13:79-94.
    37. Cohen RI, Marmur R, Norton WT, et al. Nerve growth factor and neurotrophin-3 differentially regulate the proliferation and survival of developing rat brain oligodendrocytes. J Neurosci, 1996,16:6433-6442.
    38. Gard AL, Williams WC, 2nd, Burrell MR. Oligodendroblasts distinguished fromO-2A glial progenitors by surface phenotype (O4+GalC-) and response to cytokines using signal transducer LIFR beta. Dev Biol, 1995,167:596-608.
    39. Ibarrola N, Mayer-Proschel M, Rodriguez-Pena A, et al. Evidence for the existence of at least two timing mechanisms that contribute to oligodendrocyte generation in vitro. Dev Biol, 1996,180:1-21.
    40. Marmur R, Kessler JA, Zhu G, et al. Differentiation of oligodendroglial progenitors derived from cortical multipotent cells requires extrinsic signals including activation of gp130/LIFbeta receptors. J Neurosci, 1998,18:9800-9811.
    41. Zhong Z, Wen Z, Darnell JE. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science, 1994,264:95-98.
    42. Vela JM, Molina-Holgado E, Arevalo-Martin A, et al. Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Mol Cell Neurosci, 2002,20:489-502.
    43. Saneto RP, Altman A, Knobler RL, et al. Interleukin 2 mediates the inhibition of oligodendrocyte progenitor cell proliferation in vitro. Proc Natl Acad Sci U S A, 1986,83:9221-9225.
    44. Calza L, Fernandez M, Giuliani A, et al. Thyroid hormone activates oligodendrocyte precursors and increases a myelin-forming protein and NGF content in the spinal cord during experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A, 2002,99:3258-3263.
    45. Austin CP, Feldman DE, Ida JA, et al. Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development, 1995,121:3637-3650.
    46. Wang S, Sdrulla AD, diSibio G, et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron, 1998,21:63-75.
    47. Baron W, de Jonge JC, de Vries H, et al. Regulation of oligodendrocyte differentiation: protein kinase C activation prevents differentiation of O2A progenitor cells toward oligodendrocytes. Glia, 1998,22:121-129.
    48. Lu QR, Yuk D, Alberta JA, et al. Sonic hedgehog--regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron, 2000,25:317-329.
    49. Britsch S, Goerich DE, Riethmacher D, et al. The transcription factor Sox10 is a keyregulator of peripheral glial development. Genes Dev, 2001,15:66-78.
    50. Ader M, Meng J, Schachner M, et al. Formation of myelin after transplantation of neural precursor cells into the retina of young postnatal mice. Glia , 2000,30:301-310.
    51. Stolt CC, Rehberg S, Ader M, et al. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev, 2002,16:165-170.
    52. Marin-Husstege M, Muggironi M, Liu A, et al. Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci, 2002,22:10333-10345.
    53. Shen S, Li J, Casaccia-Bonnefil P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol, 2005,169:577-589.
    54. Burne JF, Raff MC. Retinal ganglion cell axons drive the proliferation of astrocytes in the developing rodent optic nerve. Neuron, 1997,18:223-230.
    55. David S, Miller RH, Patel R, et al. Effects of neonatal transection on glial cell development in the rat optic nerve: evidence that the oligodendrocyte-type 2 astrocyte cell lineage depends on axons for its survival. J Neurocytol, 1984,13:961-974.
    56. Ueda H, Levine JM, Miller RH, et al. Rat optic nerve oligodendrocytes develop in the absence of viable retinal ganglion cell axons. J Cell Biol, 1999,146:1365-1374.
    57. Barres BA, Hart IK, Coles HS, et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell, 1992,70:31-46.
    58. Espinosa D, Monteros A, Zhang M, et al. O2A progenitor cells transplanted into the neonatal rat brain develop into oligodendrocytes but not astrocytes. Proc Natl Acad Sci U S A, 1993,90:50-54.
    59. Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature, 1983,303:390-396.
    60. Gensert JM, Goldman JE. Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter. J Neurobiol, 2001,48:75-86.
    61. Kondo T, Raff M. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev, 2004,18:2963-2972.
    62. Gaughwin PM, Caldwell MA, Anderson JM, et al. Astrocytes promote neurogenesis from oligodendrocyte precursor cells. Eur J Neurosci, 2006,23:945-956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700