用户名: 密码: 验证码:
肝素钠和低分子肝素钠的黏膜离子电渗给药研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择肝素钠(Unfractionated Heparin,UFH)和低分子肝素钠(Low Molecular Weight Heparin,LMWH)为模型药物,探讨通过黏膜给药途径在离子电渗和促渗剂的作用下增加大分子药物生物利用度的可能。两种模型药物多用于预防或治疗深部静脉血栓和肺栓塞等疾病,通常经注射给药,以钠盐形式存在,在水性介质中呈离子化状态。其中,UFH是一类糖胺聚糖,分子量为14000左右(范围3000~30000),由糖醛酸和葡萄糖胺以1, 4键连接的重复二糖单位组成的多糖链混合物,LMWH由UFH经降解或解聚获得,分子量为5000左右(范围3000~8000)。
     本研究以活化部分凝血活酶时间(Activated Partial Thromboplastin Time,APTT)法测定黏膜透过液和动物血浆中的LMWH和UFH,方法学研究表明,标准曲线的相关系数分别为0.9951和0.9967。回收率考察发现,在试验条件下,水溶液、黏膜匀浆液和电场作用均不干扰APTT测定。
     LMWH和UFH对不同黏膜的渗透系数为鸡嗉囊膜>犬舌下黏膜>大鼠肠黏膜。研究结果表明,聚乙二醇辛酸/癸酸甘油酯(Labrasol)有明显促吸收作用,其促渗效果随用量的增加而增加。
     考察不同电流对LMWH和UFH透过大鼠直肠黏膜的影响发现,药物在正极和负极下,电场对其均有促渗作用。电流密度相同时,负极下的促渗效果优于正极下,脉冲方波电流优于恒直流电流。药物的黏膜渗透系数随直流和脉冲电流电流强度的增加而增大。其中占空比1?1、60次/分钟的脉冲电流促渗效果最好,对2000 IU/ml LMWH溶液和4000 IU/ml UFH溶液透大鼠直肠黏膜的增渗比分别可达37.45和38.66。
     采用生物黏附材料卡波普(Carbopol)和海藻酸钠(Alginate Sodium)制备了LMWH和UFH的口腔给药膜剂;采用高分子材料聚氧乙烯(PEO)制备了二者的直肠给药胶液。
     研究发现,在0.33mA/cm2、4.5V直流电流作用下,LMWH的PEO胶液家兔直肠给药的生物利用度为皮下注射的25%,与不加电场直肠给药相比可提高8倍。大鼠口服LMWH溶液生物利用度为皮下注射的7%左右,而UFH不到1%;加入吸收促进剂Labrasol后,LMWH口服生物利用度提高到约14%,而UFH依然在1%以下;在离子电渗(0.45mA/cm2)方波电流作用下,大鼠口腔给予LMWH和UFH膜剂,生物利用度分别提高到20%和6%左右,大鼠直肠给予PEO的胶液的生物利用度则分别提高到约35%(LMWH)和16%(UFH),电场对药物透过黏膜吸收进入体循环有明显促进作用。用低压直流电(4.5V)也有显著促进作用,该结果提示将来可制备简单的、低成本的离子电渗药器组合产品。
In order to improve the bioavailability of macromolecule drugs such as peptide and protein through mucosa, the iontophoresis and penetration enhancer were used with LMWH and UFH as model drugs. Sodium heparin(UFH as well as LMWH) can ionize in water, and has to be administered by injection. The molecular weight of UFH is about 14000 daltons (range 3000~30000 daltons),and the LMWH?s is about 5000 daltons (range 3000~8000 daltons).
     The Activated Partial Thromboplastin Time(APTT) method was used to determinate LMWH and UFH in various solution through various mucosa and in the animal plasma after administration. The coefficients correlation of the standard curve were 0.9951 and 0.9967 for LMWH and UFH, and the pH of the solution, mucosa homogenate and electrical field had no interference for the method.
     The order of permeability coefficient of LMWH and UFH for different mucosa was chicken crop>dogs? oral cavity>rats? intestine. The enhancer(5% Labrasol) increased the penetration of LMWH and UFH through mucosa both in vitro and in vivo.
     We proved that the iontophoresis can significantly improve the permeability of LMWH and UFH using not only the DC but also the PC in the same electrical intensity. The pulsed current with [on/off] ratio 1:1 and cycle of 60 times per minute is better than other electricity pattern in iontophoretic mucosal permeation. The ER of 2000 IU/ml LMWH solution and 4000 IU/ml UFH solution permeated rats? rectal mucosa were 37.45 and 38.66 respectively.
     The LMWH and UFH films prepared with Carbopol and Alginate Sodium were for oral cavity delivery, the polyoxyethylene (PEO) gum-solution was prepared for rectal administration. It was found that the bioavailability of LMWH PEO gum-solution administered in rabbits? rectum using iontophoresis(0.33mA/cm2 DC) was 25% of the sc administration, which was 8 times higher than without iontophoresis.
     The oral bioavailability of LMWH and UFH solution administered in rats were 7% and below 1% respectively. If the solution contained 5% Labrasol, the bioavailability of LMWH was increased to 14%, but that of UFH was still below 1%.
     With 0.45mA/cm2 PC iontophoresis, the bioavailabilities of LMWH and UFH films iontophoresis administered in rats? oral cavity were approximately 20% and 6% respectively compared with sc.
     Under the same electricity, the bioavaibilities of LMWH and UFH PEO gum-solution administered from rat rectum was 35% and 16% respectively.
     It suggested that the rectal iontophoretic delivery system is a useful vehicle to improve the absorption of macromolecuar drugs, and we believe it would be developed as combination products in the near future.
引文
[1] Kompella UB, Lee VH. Delivery systems for penetration enhancement of peptide and protein drugs: Design considerations[J]. Ad Drug Delivery Rev, 2001, 46(1-3): 211-245.
    [2]李丁,王健,侯惠民.口腔黏膜给药系统研究进展[J].中国医药工业杂志, 2009, 40(4): 303-307.
    [3] Rawat S, Vengurlekar S, Rakesh B, et al. Transdermal delivery by iontophoresis [J]. Indian J Pharm Sci, 2008, 70(1): 5-10.
    [4] Jette J. Buccal iontophoretic delivery of atenolol·HCl employing a new in vitro three-chamber permeation cell[J]. J Control Release, 2001, 70(1-2): 83-95.
    [5] [5] Giannola LI, Caro VD, Giandalia G, et al. Diffusion of naltrexone across reconstituted human oral epithelium and histomorphological features[J]. Eur J Pharm Biopharm, 2007, 65(2): 238-246.
    [6]裴军,王君龙,王洪军.药物离子经直肠导入法治疗慢性前列腺炎[J].中华男科学, 2000, 6(1): 51-52.
    [7]朱海峰,孟庆法,朱巍.中药离子导入治疗慢性前列腺炎36例临床观察[J].时珍国医国药, 2003, 14(6): 357-358.
    [8]刘建红,梁大华,梅芬娥等.不同剂量肝素经肺给药的血药浓度变化[J].中国临床药学杂志, 2000, 6(9): 347-349.
    [9] Oberle RL, Moore TJ, Krummel, et al. Evaluation of mucosal damage of surfactants in rat jejunum and rectum. J Pharmacol Toxicol Methods, 1995, 33(2): 75-81.
    [10]国家药典委员会.中华人民共和国药典(二部)[M].北京:化学工业出版社, 2005,附录ⅦD: 102-103.
    [11] Kim SK, Lee DY, Lee E, et al. Absorption study of deoxycholic acid-heparin conjugate as a new form of oral anti-coagulant[J]. J Control Release, 2007, 120(1-2): 4-10.
    [12] Carl P, Dietrich, Jose F, et al. Structural features and anticoagulant activities of a novel natural low molecular weight heparin from the shrimp Penaeus brasiliensis[J]. Biochim Biophys Acta, 1999, 1428(2-3): 273-283.
    [13] ChangZheng Lin, HuaShi Guan, Hai-Hua Li, et al. The influence of molecular mass of sulfated propylene glycol ester of low-molecular-weight alginate on anticoagulant activities[J]. Eur Polym J, 2007, 43(7): 3009-3015.
    [14] Betz G, Nowbakht P, Imboden R, et al. Heparin penetration into and permeation through human skin from aqueous and liposomal formulations in vitro[J]. Int J Pharm, 2001, 228(1-2): 147-159
    [15] Klein B, Faridi A, Von T, et al. A whole blood flow cytometric determination of platelet activation by unfractionated and low molecular weight heparin in vitro[J]. Thromb Res, 2002, 108(5-6): 291-296.
    [16] Rama P, Takashi M, Yukako Y. In situ intestinal absorption studies on low molecular weight heparin in rats using Labrasol as absorption enhancer[J]. Int J Pharm, 2004, 71 (1-2): 225–232.
    [17]徐红,刘绍璞,罗红群.甲基紫分光光度法测微量肝素[J].贵阳医学院学报, 2003, 28(1): 25-27.
    [18] Ayca Y, Alper O, Gül B, et al. Nasal administration of heparin-loaded microspheres based on poly(lactic acid) [J]. Farmaco, 2005, 60(11-12): 919-924.
    [19] Lee DY, Lee J, Lee S, et al. Liphophilic complexation of heparin based on bile acid for oral delivery[J]. J Control Release, 2007, 123(1): 39–45.
    [20] Yang TZ, Alamdar H Bai SH, et al. Positively charged polyethylenimines enhance nasal absorption of the negatively charged drug, low molecular weight heparin[J]. J Control Release, 2005, 115(3): 289–297.
    [21] Kim SK, Lee EH, Vaishali B, et al. Tricaprylin microemulsion for oral delivery of low molecular weight heparin conjugates[J]. J Control Release, 2005, 105(1-2): 32-42.
    [22] Song YK, Kim CK. Topical delivery of low-molecular-weight heparin with surface-charged flexible liposomes[J]. Biomaterials, 2006, 27(2): 271-280.
    [23] Bai SH, Thomos C, Ahsan F. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin[J]. J Pharm Sci, 2007, 96(8): 2090-2016.
    [24]沈腾,徐惠南,翁伟宇等.低分子肝素肠道吸收促进剂的研究[J].中国药学杂志, 2006, 41(3): 206-210.
    [25]李俊领,苏德森.低分子肝素在水溶液中的水解动力学[J].沈阳药科大学学报, 2001, 18(1): 9-11.
    [26]徐红,刘绍璞,罗红群.硫堇褪色光度法测定微量肝素[J].理化检验-化学分册, 2006, 42(10): 829-831.
    [27]徐红,席晓岚.派罗宁B褪色光度法测微量肝素[J].化学与生物工程, 2006, 23(2): 57-59.
    [28] Kitchen S, Jennings I. Wide variability in the sensitivity of APTT reagents for monitoring of heparin dosage[J]. J Chin Pathol, 1996, 49(1): 10-14.
    [29] Wujastyk J, Triplett DA. Selecting Instrumentation and Reagents for the coagulation laboratory[J]. Pathologist, 1983, 37(6): 398-403.
    [30] Ray M, Carrol P, Smith I, et al. An attempt to standardise activated partial thromboplastin time reagents used to monitor heparin therapy[J]. Blood Coagul Fibrinolysis, 1992, 3(6): 743-748.
    [31] Craig S, Steveson KJ, Taberner DA. Activated partial thromboplastin time for automated techniques: acomparison of two commonly used reagents[J]. Br J Biomed Sci, 1994, 51(4): 321-327.
    [32]程骥,钱之玉,何书英.口服类肝素理化性质和药理活性的研究[J].中国药科大学学报, 2003, 34(2): 163-166.
    [33]曹苹,张麟生.低分子肝素的抗凝与抗血栓作用[J].中国医院药学杂志, 2001, 21(5): 289-291.
    [34]李晓祥,李耐三.低分子量肝素对体内、体外血栓的溶解作用[J].中国药理学通报, 1997, 13(1): 60-62.
    [35] Jonathan D, Marmur MD, Sunil X, et al. The activated clotting time can be used to monitor the low molecular weight heparin dalteparin after intravenous administration[J]. J Am Coll Cardiol, 2003, 41(3): 394-402.
    [36] Andrea LB, Duncan RP, Bruce V, et al. Acylated non-alpha-amino acids as novel agents for the oral delivery of heparin sodium[J]. J Control Release, 1998, 50(1-3): 41-49.
    [37] Jiao YY, Ubrich N, Hoffart V, et al. Anticoagulant activity of heparin follwing oral administration of heparin-loaded microparticles in rabbits[J]. J Pharm Sci, 2002, 91(3): 760-768.
    [38] [38] Jiao YY, Ubrich N, Monique MA, et al. In Vitro and In Vivo Evaluation of Oral Heparin–Loaded Polymeric Nanoparticles in Rabbits[J]. Circulation, 2002, 105(2): 230-235.
    [39] Andrassy K, Eschenfelder V, Oderisch JK, et al. Pharmacokinetics of clivarin a new low molecular weight heparin in healthy volunteers[J]. Thromb Res, 1994, 73(2): 95-108.
    [40] Betz G, Nowbakht P, Imboden R, et al. Heparin penetration into and permeation through human skin from aqueous and liposomal formulations in vitro[J]. Int J Pharm, 2001, 228(1-2): 147-159.
    [41] Jiao YY, Nathalie U, Valerie H, et al. Anticoagulant activity of heparin follwing oral administration of heparin-loaded microparticles in rabbits[J]. J Pharm Sci, 2002, 91(3): 760-768.
    [42] [42] Alf L, Nathalie U, Philippe M. Oral low molecular weight heparin delivery by microparticles from complex coacervation[J]. Eur J Pharm Biopharm, 2007, 67(3): 632-638.
    [43]臧恒昌,翟光喜.低分子肝素纳米脂质体的制备及家兔鼻腔吸收的研究[J].中国药学杂志, 2003, 3(38): 196-198.
    [44] Yu SY, Zhao Y, Wu FL, et al. Nasal insulin delivery in the chitosan solution: in vitro and in vivo studies[J]. Int J Pharm, 2004, 281(1-2): 11–23.
    [45] Veuillez F, Kalia YN, Jacques Y, et al. Factors and strategies for improving buccal absorption of peptides[J]. Eur J Pharm Biopharm, 2001, 51(2): 93-109.
    [46] Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and itsderivatives[J]. Adv. Drug Delivery Rev, 2001, 52(2): 117–126.
    [47] Ebert CD, Heiber SJ, Dave SC, et al. Mucosal delivery of macromolecules[J]. J Control Release, 1994, 28(1-3): 37-44.
    [48] Yong-kyu Lee, Sang Kyoon Kim, Dong Yun Lee, et al. Efficacy of orally active chemical conjugate of low molecular weight heparin and deoxycholic acid in rats, mice and monkeys[J]. J Control Release, 2006, 111(3): 290–298.
    [49] Yukako I, Tomohiro K, Prasad R, Preparation and evaluation of oral solid heparin using emulsifier and adsorbent for in vitro and in vivo studies[J]. Int J Pharm, 2006, 317 (2): 114–119.
    [50] Koga K, Kawashima S, Murakami M. In vitro and in situ evidence for the contribution of Labrasol and Gelucire 44/14 on transport of cephalexin and cefoperazone by rat intestine[J]. Int J Pharm, 2002, 54(3): 311–318.
    [51] Glen L, Xiong, Quan DY, Howard I Maibach. Effects of penetration enhancers on in vitro percutaneous absorption of low molecular weight heparin through human skin[J]. J Control Release, 1996, 42(3): 289-296.
    [52] Bonina FP, Monternegro L. Penetration enhancer effects on in vitro percutaneous absorption of heparin sodium salt[J]. Int J Pharm, 1992, 82(3): 171-177.
    [53] Joseph AN, Barry LR, Barrie C, et al. Modification of buccal drug delivery following pretreatment with skin penetration enhancers[J]. J Pharm Sci, 2004, 93(8): 2054-2063.
    [54] Lee TW, Kim JC, Hwang SJ. Gum-solution patches containing Triclosan for acne treatment[J]. Eur J Pharm Biopharm, 2003, 56(3): 407–412.
    [55] Julian EH, Adam CW, Darren MG. The relative effect of azone and transcutol on permeant diffusivity and solubility in human stratum corneum[J]. Pharm Res, 1996, 13(4): 542-546.
    [56] Win L, Chiou, Abhijit B. Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats[J]. Pharm Res, 1998, 15(11): 1792-1795.
    [57] Hans L, Nylander S, Ungell AL. Jejunal Permeability: A Comparison Between the Ussing Chamber Technique and the Single-Pass Perfusion in Humans[J]. Pharm Res, 1997, 14(5): 667-671.
    [58] Urban F, Monica J, Hans L. Comparison between permeability coefficients in rat and human jejunum[J]. Pharm Res, 1998, 13(9): 1336-1342.
    [59] Zhao YH, Michael H, Abraham, et al. Evaluation of rat intestinal absorption data and correlation with human intestinal absorption. Eur J Med Chem, 2003, 38(3): 233-243.
    [60] Benjamin PR, Istvan T. Gastrointestinal Absorption of Heparin by Lipidization or Coadministration withPenetration Enhancers[J]. Curr Drug Deliv, 2005, 2: 277-287.
    [61] Saori M, Akihiro M, Yarasani Venkata R, et al. Studies on the intestinal absorption of low molecular weight heparin using saturated fatty acids and their derivatives as an absorption enhancer in rats[J]. Biol Pharm Bull, 2004, 27(3): 418-421.
    [62] Hwang KK, Yerino P. Using rat jejunal mucosa diffusion cell model to select an elastase inhibitor with optimal GI permeability from a series of analogs[J]. Pharmaceut. Res, 1996, 13(9): 237.
    [63] Hwang KK, Jiang L, Ren Y, et al. Site-specific absorption of M100240 and MDL100,173 in rats evaluated using Sweetana-Grass diffusion chamber technology[J]. JPT, 2002, 48(2): 97-101.
    [64] Oberle RL, Moore TJ, Krummel, et al. Evaluation of mucosal damage of surfactants in rat jejunum and rectum[J]. J Pharmacol Toxicol. Methods , 1995, 33(2): 75-81.
    [65] Eirheim HU, Bundgaard C, Nielsen HM, et al. Evaluation of different toxicity assays applied to proliferating cells and to stratified epithelium in relation to permeability enhancement with glycocholate[J]. Toxicol in Vitro , 2004, 18(5): 649-657.
    [66] Sorderholm JD, Oman H. Reversible increase in tight junction permeability to macro- molecules in rat ileal mucosa in vitro by sodium saprate, a constituent of milk fat[J]. Dig Dis Sci, 1998, 43(7): 1547-1552.
    [67] Batheja P, Thakur R, Michniak B. Transdermal iontophoresis[J]. Expert Opin Drug Delie, 2006, 3(1): 127-138.
    [68] Fischer GA. Iontophoretic drug delivery using the IOMED Phoresor system[J]. Expert Opin Drug Delie, 2005, 2(2): 391-403.
    [69]王浩,侯惠民.透皮给药系统中的离子电渗技术[J].中国医药工业杂志, 1995, 26(6): 271-277.
    [70] Richard HG, Yogeshvar NK, Charro BD, et al. Iontophoresis: electrorepulsion and electroosmosis[J]. J Control Release, 2000, 64(1-3): 129-132.
    [71] Philip G. Iontophoretic delivery of peptide drugs[J]. J Control Release, 1996, 41(1-2): 33-48.
    [72] Louk P, William A, Russell OP. The influence of an electric field on ion and water accessibility to stratum corneum lipid lamellae[J]. Pharm Res, 1996, 3(8): 1168-1173.
    [73] Michael JP. The role of electroosmotic flow in transdermal iontophoresis[J]. Adv. Drug Delivery Rev, 2001, 46(1-3): 281–305.
    [74] Pikal MJ. Transport mechanisms in iontophoresis. I. A theoretical model for the effect of electroosmotic flow on flux enhancement in transdermal iontophoresis[J]. Pharm Res, 1990, 7(2): 118-126.
    [75] Diego M, Yogeshvar NK, Charro BD, et al. Contributions of electromigration and electroosmosis to iontophoretic drug delivery[J]. Pharm Res, 2001, 18(12): 1701-1708.
    [76] Kim A, Philip G, Girsh R, et al. Convective solvent flow across the skin during iontophoresis[J]. Pharm Res, 1993, 10(9): 1315-1320.
    [77] Fang JY, Lin HH, Chen HI, et al. Development and evaluation on transdermal delivery of enoxacin via chemical enhancers and physical iontophoresis[J]. J Control Release, 1998, 54(3): 293-304.
    [78] Chien YW, Siddiqui O, Shi WM, et al. Direct current iontophoretic transdermal delivery of peptide and protein drugs[J]. J Pharm Sci, 1989, 78(5): 376-383.
    [79]王浩,侯惠民. LHRH离子电渗透皮给药系统的研究Ⅰ[J]. LHRH的离子电渗透皮吸收.中国医药工业杂志, 2003, 31(1), 3-7.
    [80] Makoto K, Toshio I, Kozo T, et al. Evaluation of Skin Barrier Function Using Direct Current II: Effects of Duty Cycle, Waveform, Frequency and Mode[J]. Biol Pharm Bull, 2002, 25(12): 1623-1628.
    [81] Johanna R, Maija K, Katri H, et al. Delivery and stability of LHRH and Nafarelin in human skin- the effect of constant-pulsed iontophoresis[J]. Eur J Pharm Sci, 2004, 21(2-3): 371-377.
    [82] Monti D, Saccomani L, Chetoni P, et al. Effect of iontophoresis on transcorneal permeation ?in vitro? of twoβ-blocking agents, and on corneal hydration[J]. Int J Pharm, 2003, 250(2): 423-429.
    [83]侯惠民,吴志明,贺芬等.口腔粘贴膜剂的研究[J].中国医药工业杂志, 1989, 20(7): 319-324.
    [84] Yamamoto A, Uchiyama T, Nishikawa R, et al. Effectiveness and toxicity screening of various absorption enhancers in the rat small intestine: Effects of absorption enhancers on the intestinal absorption of phenol red and the release of protein and phospholipids from the intestinal membrane[J]. J Pharm Pharmacol, 1996, 48(12): 1285-1289.
    [85] Merkus FW, Schippera NG, Hermensa WA, et al. Absorption enhancers in nasal drug delivery: efficacy and safety[J]. J Control Release, 1993, 24(1-3): 201-208.
    [86] Zaki NM, Mortada ND, Awad GA, et al. Rapid-onset intranasal delivery of metoclopramide hydrochloride Part II: Safety of various absorption enhancers and pharmacokinetic evaluation[J]. Int J Pharm, 2006, 327(1-2): 97–103.
    [87] Burczak K, Fujisato T, Hatada M, et al. Protein permeation through poly(vinyl alcohol) gum-solution membranes[J]. Biomaterials, 1994, 15(5): 231~238.
    [88] Liu W, Hua ML, Liu WS, et al. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate[J]. Int J Pharm, 2008, 364(1): 135-141.
    [89] Esther EB, Frederik R, Joseph FP, et al. Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded gum-solution[J]. J Control Release, 2005, 106(3): 386-390.
    [90] Huang JF, Sung KC, Oliver YP, et al. The effects of electrically assisted methods on transdermal delivery of nalbuphine benzoate and sebacoyl dinalbuphine ester from solutions and gum-solutions[J]. Int J Pharm, 2005, 297(1-2): 162-171.
    [91] Rai K, Gupta Y, Jain A, et al. Transfersomes: Self-optimizing carriers for bioactives[J]. PDA J Pharm, 2008, 62(5): 362-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700