用户名: 密码: 验证码:
米糠多糖及其硫酸酯的结构、抗肿瘤活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
米糠是稻米加工业的主要副产品,是我国丰富而可再生的多糖资源。尽管我国米糠产量居世界之首,但由于我国米糠合理利用的基础理论研究尚处于较低水平,限制了我国米糠潜在价值的进一步精深利用。本论文在系统研究具有抗肿瘤活性米糠多糖RBPS2a提取、分离纯化、结构特征的基础上,通过硫酸酯化改性得到了抗肿瘤活性更显著的硫酸酯化米糠多糖SRBPS2a,并对其体内外抗肿瘤活性机理以及诱导肿瘤细胞凋亡的分子机制进行了较为深入的研究。具有抗肿瘤活性的硫酸酯化米糠多糖国内外还鲜有报道,酯化修饰米糠多糖抑制肿瘤的作用机理和诱导肿瘤细胞凋亡的分子机制国内外也尚属空白,本课题的研究,对于提高米糠多糖的生物利用率,丰富硫酸酯化修饰活性多糖基础理论,都具有非常重要的现实意义和学术价值。
     运用响应面(RSM)和神经网络(ANNs)分析方法,探讨了米糠多糖超声波提取优化工艺。利用响应面设计研究了超声波功率、超声时间、提取温度和料液比对米糠多糖得率的影响。结果表明,提取温度(X1)与超声功率(X2),二次项中提取温度(X1×X1)以及提取温度与超声功率的交互作用(X1×X2)对响应值米糠多糖的得率存在显著的相关性。首次采用RBF神经网络与QPSO优化算法结合的方法,模拟与优化米糠多糖的超声波提取过程,其最优工艺条件为:提取温度82.5℃、超声波功率335W、提取时间37.5min和料液比18:1。所建立的RBF-QPSO算法对具有多变量、时变性和非线性特征的米糠多糖超声波提取过程的模拟和优化结果优于RSM。
     以体外抑制肿瘤细胞增殖活性为筛选导向,采用Q-Sepharose big beads离子色谱和Sepharose CL-6B凝胶色谱,分离纯化得到一种具有抗肿瘤活性的多糖组分RBPS2a。高效凝胶色谱(HPGPC)法测得其呈单一峰,重均分子量9×105 Da。RBPS2a的单糖分析、部分酸水解、甲基化分析、红外、核磁共振等分析结果表明,单糖组成为阿拉伯糖、木糖、葡萄糖和半乳糖,摩尔比率4:2:1:4;具有一条以β→(1,3)位键合的吡喃半乳糖主链,有两个分支残基,分别是α-D-木糖-(1→4)-α-D-阿拉伯糖-(1→残基和α-D-葡萄糖-(1→4)-a-D-阿拉伯糖-(1→残基。
     以肿瘤体外增殖抑制为指标,采用氯磺酸-吡啶法,研究米糠多糖的硫酸酯化,优化得到米糠多糖硫酸酯化修饰的最佳条件为:氯磺酸和吡啶的比例1:4,反应温度70℃,反应时间2 h。采用该工艺得到了取代度1.29,分子量3.5×105 Da,具有显著体外抗肿瘤活性的米糠多糖硫酸酯化衍生物SRBPS2a。通过对比傅立叶红外光谱和13C核磁共振谱图,酯化前后结构的分析结果证明,米糠多糖RBPS2a经硫酸酯化修饰后,主链结构保持β-(1→3)-D-甘露糖不变,侧链被切除,硫酸基团的取代发生在C-2和C-4位上,C-6氧化形成糖醛酸甲酯。硫酸酯化米糠多糖较酯化前的米糠多糖显示出较高的体外抗肿瘤活性,与其酯化后结构的改变有密切关系。
     通过建立小鼠抑制乳腺癌EMT-6模型,研究了SRBPS2a的体内抗肿瘤作用机理。结果表明,SRBPS2a在高(75 mg/kg?d)、中(50 mg/kg?d)剂量下,均具有较为显著的抑瘤作用,其抑瘤率分别达到55.95%和44.05%。与阳性对照组5-FU相比较,SRBPS2a组小鼠的状态良好且脾指数和胸腺指数均有所提高。HE染色结果显示,SRBPS2a中剂量组和高剂量组均能使EMT-6肿瘤细胞成团索状实性排列或弥散状分布,并发生肿瘤细胞大片坏死,坏死区可见凋亡细胞;免疫组化技术进一步显示,SRBPS2a能诱导肿瘤组织中Bax基因蛋白表达,同时也能显著下调Bcl-2基因蛋白的表达。
     SRBPS2a体外对HepG-2肿瘤细胞凋亡机制的研究表明,SRBPS2a作用后其细胞形态有明显差异。光镜下,细胞贴壁形态异常,细胞数减少;电镜观察显示,随着SRBPS2a浓度的增加,细胞表面微绒毛逐渐消失,细胞膜皱缩,外凸形成小泡;荧光电镜观察发现,高浓度样品作用下细胞核变小、皱缩,可见致密强荧光。PI单染色流式细胞仪检测发现,SRBPS2a作用后的细胞被阻滞在G2/M期,细胞出现较大的凋亡峰(23.4%),说明SRBPS2a能有效地诱导肿瘤细胞凋亡。以荧光染料PI和Rh123双重染色样作用的细胞,PI (-)和Rh123(-)细胞显著增加,推测SRBPS2a可能在不影响细胞膜完整性的情况下,诱导HepG-2细胞线粒体膜?Ψm下降;采用流式细胞仪检测结果表明,SRBPS2a作用48 h后通过上调HepG-2细胞中促凋亡因子Bax、下调抑凋亡因子Bcl-2,以及上调线粒体依赖的Caspase-3,激活凋亡信号通路,诱导细胞凋亡,从而达到抗肿瘤的作用。
Rice bran is the important by-product of the rice milling industry, it was considered as the rich and reproducible resource. Although the yield of rice bran in our country was primacy in the world, the low-level of study on rice bran has limit the intensively utilization potential value of rice bran. In this paper, we studied the isolation, purification and structural feature of RBPS2a, the sulfated rice bran polysaccharide SRBPS2a showed the potent antitumor activities, therefore, the mechanism of antitumor activity on SRBPS2a both in vitro and in vivo and the the molecular mechanism on apoptosis of tumor cells were also investigated. There is limited reported on mechanism of antitumor activity and apoptosis of tumor cells of sulfated rice bran polysaccharide. The present study could improve the utilize value and enrich the basic theory of rice bran polysaccharide.
     In order to maximize the yield of rice bran polysaccharide, response surface methodology (RSM) and RBF neural network were employed to optimize the ultrasound-assisted extraction condition. The RSM model showed that the yield of rice bran polysaccharide was related to temperature(X1), ultrasonic power(X2), interactions of temperature(X1×X1) and quadratic of temperature and ultrasonic power(X1×X2).According to the RBF- QPSO, the optimum extraction conditions were temperature of 82.5℃, ultrasonic power of 335 W, extraction time of 37.5 min and Water/solid ratio of 18:1. RBF-QPSO was better than RSM in ultrasonic-assisted extraction of rice bran polysaccharide.
     Based on the bioactivity-directed test, a novel heteropolysaccharide RBPS2a with anti-tumor activity was obtained from rice bran by hot water extraction, ethanol precipitation, and purified by Sepharose CL-6B gel chromatography after Q-Sepharose big beads chromatography. RBPS2a was eluted as a single symmetrical narrow peak on high-performance gel-permeation chromatography (HPGPC) and the average molecular weight was 9×105 Da. Gas chromatography of absolute acid hydrolysate of RBPS2a suggested that it was composed of arabinose, xylose, glucose and galactose with a molar ratio of 4:2:1:4. The Fourier-transform infrared spectra (FT-IR) and 1H, 13C NMR spectroscopy analysis revealed that RBPS2a had a backbone consisting ofβ- (1→3)- linked D- galacopyranosyl residues substitured at O-2 with glycosyl residues composed ofα- D- xylose–(1→4)-α- D- arabinose (1→andα- D- glucose–(1→4)-α- D-arabinose (1→linked residues.
     Sulfated rice bran polysaccharides (SRBPS), were prepared by chlorosulfonic acid-pyridine (CSA-Pyr) method, according to the antitumor activities test. The optimum modification conditions were reaction temperature of 70℃, the ratio of chlorosulfonic acid to pyridine of 1:4 and the reaction time of 2h. Under this condition, sulfated derivatives SRBPS2a exhibit relatively strong antitumor activity in vitro. The average molecular weight of SRBPS2a was 3.5×105 Da and the degree of sulfation (DS) was 1.29. The Fourier-transform infrared spectra (FT-IR) and 13C NMR spectroscopy analysis revealed that SRBPS2a was mainly consist ofβ- (1→3)- D- galacopyranosyl residues and the sulfate substitution site is on C-2 and C-4, the side chains were cut off during the sulfated reaction. Furthermore, SRBPS2a exhibited evident growth inhibition on Mouse mammary tumor EMT-6 cells both in vitro and in vivo.
     The antitumor activity and its mechanism of SRBPS2a were examined and evaluated with the mice transplanted EMT-6 tumor in vivo. At the dosage of 75 mg/kg.d and 50 mg/kg.d, SRBPS2a had strong antitumor activity with 55.95% and 44.05%. Compared with the 5-FU group, SRBPS2a could increase both the thymus index and the spleen index. The histopathology of tumors from the various groups indicated that the tumor cells of untreated mice grew vigorously, however the tumor cells from the different SRBPS2a treated groups had clear nucleus pycnosis and necrosis areas in different degree. The expression of tumor gene Bax and Bcl-2 in tumor tissues were also detected with immuno-histochemistry. After the expression between the experimental and control groups, there was obvious difference in the quantities of Bax and Bcl-2 genes expression between the experimental and control group, which indicated that SRBPS2a could control growth of tumor and accelerate the tumor cell apoptosis by influencing the expression related tumor genes.
     HepG-2 cell line was used to investigate the mechanism of SRBPS2a in vitro. Results showed that the tumor cells treated with SRBPS2a for 48 h showed significant morphological changes, such as cell shrinkage, membrane blebbing and volume reduction. Scanning electron microscope (SEM) photos showed that the villus of the HepG-2 cell was disappeared at higher concentration and the surface of membrane was smooth and shrinkage to form apoptotic bodies. Moreover, typical apoptotic morphological features (volume reduction, chromatin condensation, nuclear fragmentation) were also observed by fluorescent microscopy (Hoechst 33342). Flow cytometric analysis showed that the HepG-2 cell cycle was arrested in the G2/M phase, and the subdiploid peak of DNA characteristic of apoptotic was observed, and the apoptosis rate was about 23.4%. Further investigation results showed that the apoptotic machinery of HepG-2 induced by SRBPS2a was associated with a decrease in Bcl-2/Bax ratio, drop in mitochondrial trans-membrane potential, and upgrade the protein expression of caspase-3 by immunocytochemical staining.
引文
[1]余工.糖生物学研究的现状与展望[J].生物学教学, 2002, 27(10): 47-49.
    [2]史霖,宫长荣,毋丽丽等.植物多糖的提取分离及研究进展[J].农业基础科学, 2007, 23(9): 192-195.
    [3]韦巍,李雪华.多糖的研究进展[J].国外医学药学分册, 2005, 32(3): 179-184.
    [4]李小平.红枣多糖提取工艺研究及其生物功能初探[D].西安:陕西师范大学, 2004: 12-13.
    [5]徐任生.天然产物化学[D].北京,科学出版社, 1993, 12月,第一版, P469-475.
    [6] Mondal S K, Ray B, Thibault J F, et al. Cell-wall polysaccharides from the fruits of limonia acidissima: isolation, purification and chemical investigation[J]. Carbohydrate Polymers, 2002, 48: 209-212.
    [7] Wang H X, Ng T B, Ooi V E C. Studies on purification of a lectin from fruiting bodies of the edible shiitake mushroom Lentinus edodes[J]. The International Journal of Biochemistry & Cell Biology, 1999, 31: 595-599.
    [8] Reid S, Suns I M, Melton L D, et al. Characterisation of extracellular polysaccharides from suspension cultures of apple (Malus domestics) [J]. Carbohydrate Polymers, 1999, 39: 369-376.
    [9]甘景镐,甘纯矶,胡炳环.天然高分子化学[D].北京,高等教育出版社, 1993, 9月,第一版, P7-17.
    [10] Englyst H N, Quigley M E, Hudson G. J, Determination of dietary fibre as non-starch polysaccharides with gas-liquid chromatographic or spectrophotometric measurement of constituent sugars[J]. The Analyst, 1994, 119: 1497-1509.
    [11] Lu R, Yoshida T. Structure and molecular weight of Asian lacquer polysaccharides[J]. Carbohydrate Polymers, 2003, 54: 419-424.
    [12] Zvyagintseva T N, Shevchenko N M, Popivnich I B, et al. A new procedure for the separation of water-soluble polysaccharides from brown seaweeds[J]. Carbohydrate Research, 1999, 322: 32-39.
    [13] Albershein P, Nevins D J, English P D, et al. A method for the determination for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography[J]. Carbohydrate Research, 1967, 5,340-345.
    [14] Chaplin M F, Kennedy J F. Hydrazinosis of N-glycosidic linkages[M], Carbohydrate Analysis, 1986, P151, IRL Press, Oxiford, Washington DC.
    [15] Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronicacids[J]. Analytical Biochemistry, 1973, 54: 484-489.
    [16]刘翠平,董群,方积年.一种判定多糖中有无糖醛酸残基的简易方法[J].中草药, 2001, 32: 404-408
    [17] Ghebregzabher M, Rufini S, Monaldi B. Thin-layer chromatography of carbohydrates[J]. Journal of Chromatography, 1976, 127: 133-162.
    [18]杜予民,王小燕,柳卫莉,等.高效液相色谱法分析生漆多糖中的单糖组成[J].色谱, 1998, 16: 173-175.
    [19] McGinnis C D. Preparation of aldonoitrile acetates using N-methylimidazole as catalyst and solvent[J]. Carbohydrate Research, 1982, 108: 284-292.
    [20] Englyst H N, Quigley M E, Hudson C J. Determination of dietary fibre as non-starch polysaccharides with gas-liquid chromatographic, high-performation liquid chromatographic or spectrophotometric measurement of constituent sugars[J]. Analyst, 1994, 119: 1497-1509.
    [21] Hakomori S. Rapid permethylation of glycolipids and polysaccharides catalyzed by methylsulfinyl carbonion in dimethyl sulfoxide[J]. Journal of Biochemistry, 1964, 55: 205-208.
    [22] Ciuanu I, Kerek F. Canalysis of the linkage positions in D-fructofiuanosyl residues by the reductive- cleavage method[J]. Carbohydrate Research, 1984, 131: 209-217.
    [23] Harris P J, Henry R J, Stone R A. A simple and rapid method for the permethylation of carbohydrates[J]. Carbohydrate Research, 1984, 127: 59-73.
    [24] Mukerjea R, Kim D, Robyt J F. Simplified and improved methylation of saccharides, using a modified procedure and thin-layer chromatography[J]. Carbohydrate Research, 1996, 292: 11-20.
    [25] Yamazaki K, Inukai K, Suzaki M, et al. Structure studies on a sulfated polysaccharide from an Arthrobacter sp. By NMR spectroscopy and methylation analysis[J]. Carbohydrate Research, 1997, 305: 253-260.
    [26] Alban S, Franz G. Gas-liquid chromatography-mass spectrometry analysis of anticoagulant active curdlan sulfates[J]. Semin Thromb Hemost, 1994, 20: 152-158
    [27] Gray G. R. The reductive cleavage method for polysaccharide[J]. Carbohydrate Polymers, 1998, 34: 429-437
    [28 ] Bruneteau M, Fabre I, Perret J, et al. Antitumor activep-D-glucans from phytophthora parasitica[J]. Carbohydrate Research, 1988, 175: 137-143
    [29]田庚元,王晨,构祀子糖蛋白一条高分子量糖链的结构测定[J].生物化学与生物物理学报, 1995, 27: 493-498
    [30] Vaishnav V V, Bacon B E, Cherniak R. Structural characterization of the galactoxylomannan of Cryptococcus neoformans Cap 67[J]. Carbohydrate Research, 1997, 306: 315-330.
    [31]张剑波,田庚元.寡糖分离和结构分析进展[J].生物化学与生物物理进展. 1998, 25: 114-119.
    [32] Wilson R H, Goodfellow B J, Belton P S. Fourier transform infrared spectroscopy for the study of food biopolymers[J]. Food Hydrocolloids, 1988, 2: 169-178.
    [33] Mathlouthi M, Koenig J L. Vibrational spectra of carbohydrates[J]. Advances in Carbohydrate Chemistry & Biochemistry, 1986, 44: 77-89. Carbohydrate Research,
    [34] Gerwig G. J, Kamerling J P, Vliegenthart J F G. Determination of the D and L configuration of neutral monosaccharides by high-resolution capillary G. L. C[J]. Carbohydrate Research, 1978, 62: 349-357
    [35] Usui T, Yokoyama M, Yamoka N. Proton magnetic resonance spectra of D-gluco-oligosaccharides and D-glucans[J]. Carbohydrate Research, 1974, 33: 105-116.
    [36] Ensley H E, Tobias B, Pretus H A, et al. NMR spectral analysis of water-insoluble (1→3)-β-D-glucans isolated from Saccharomyces cerevisiae[J]. Carbohydrate Research, 1994, 258: 307-311.
    [37] Kogan G, Alflǒldi J, Masler L. 13C-NMR spectroscopic investigation of two yeast cell wallβ-D- glucans[J]. Biopolymers, 1988, 27: 1055-1063.
    [38] Burrows L L, Pidgeon K E, Lam J S. Pseudomonas aeruginosa B-band lipopolysaccharide genes wbpA and wbpL and their Escherichia coil homologues wec C and wecB are not functionally interchan -geable[J]. FEBS Microbiol. Lett., 2000, 189: 135-141.
    [39] Kondakova A N, Perepelov A V, Bartodziejska B, et al. Structure of the acidic O-specific polysaccha- ride from Proteus vulgaris 039 containing 517-diacetamido-3,5,7,9-tetradeoxy-l- glycero- 1-anno- non- 2-ulosonic acid[J]. Carbohydrate Research, 2001, 333: 241-249.
    [40] Coxon B. Two-dimensional POMMIE carbon-proton chemical shift correlated 13C-NMR spectrum editing[J]. Canadian Journal of Chemistry, 1990, 68: 1145-1150.
    [41] Summers M F, Marzill L G, Bax A. Complete 1H and 13C assignment of coenzyme B12through the use of new two-dimensional NMR experiments[J]. Journal of American Chemical Society, 1986,108: 4285-4294.
    [42] Bax A, Summers M F. 1H and 13C assignments from sensitivity-enhanced detection of heteronuclearmultiple-bond connectivity by 2D multiple quantum NMR[J]. Journal of American Chemical Society, 1986,108: 2093-2094.
    [43]鞠建华,周亮,杨峻山.二维核磁共振波谱在阐明一种三萜多糖皂昔结构中的应用[J].波谱学杂志, 2001, 18: 329-341.
    [44]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学, 2000, 28: 240-247.
    [45]纪耀华,张明叔,徐力,等.黄芪多糖的研究进展[J].长春中医学院学报, 1999, 15(3): 62-63.
    [46]贾绍华,张秀娟,张大雷等.芦荟多糖对S180小鼠免疫调节因子活性的影响[J].哈尔滨商业大学学报, 2004, 4: 135-137.
    [47]董建英.紫草多糖对小鼠机能的调节作用[J].中国实验临床免疫学杂志, 1995, 7(5): 42-44.
    [48]陈群,刘永昌.人参多糖,黄芪多糖,枸杞多糖的研究进展[J].淮南师范学院学报, 2001, 3(10) :39-40.
    [49]徐国华,韩志红,吴永方,等.南瓜多糖的抑癌作用及对红细胞免疫功能的影响[J].武汉市职工医学院学报, 2000, (4):8-11.
    [50]彭红,欧阳友生,黄小茉,等.南瓜多糖的生物活性及其开发前景[J].中草药, 2002, 33(7): 5-7.
    [51]清水岑夫.探讨茶叶降血糖作用以从茶叶中制取糖尿病的药物[J].国外农学-茶叶, l990, (3): 38-40.
    [52]刘成梅,付佳明,涂宗财,等.百合多糖降血糖功能研究[J].食品科学, 2002, 23(6): 113-114.
    [53]徐庆,滕俊英.植物多糖的降血糖作用与机理[J].中国食物与营养, 2004, 8: 21-22.
    [54]于瑞蓉,周建华,李培秋,等.海藻多糖降脂食品添科降脂作用临床疗效观察[J].海洋药物, 1987, (4): 28-29.
    [55]孔庆胜,王彦英,蒋滢.南瓜多糖的分离,纯化及其降血脂作用[J].中国生化药物杂志, 2000, 21(3): 130-132.
    [56]王岳五,张海波,史玉荣,等.甘草多糖GPS对病毒的抑制作用[J].南开大学学报, 2001, 34(2): 126-128.
    [57]袁红霞,陈艳春.黄芪的现代药理研究及其临床应用[J].山东中医药大学学报, 2000, 24(5): 397- 400.
    [58]林升清,林健,黄宏南,等.芦荟的功效成份与保健作用的研究[J].海峡预防医学杂志, 2000, 6(4): 38-39.
    [59]赫洹,李钟刚,张金叶,等.黄芪多糖防衰老及抗辐射损伤作用的研究[J].卫生毒理学杂志, 1994, 8(3): 186-187.
    [60] Tabata K, Ito W, Kojima T. Ulrtosonic degradation of schizophyllan.an anatitmuor polysaccharidePorduced by schizophyllan commune fries[J]. Carbohydrate Research, 1981, 89(l): 121-135.
    [61]向道斌,李晓玉.硫酸化多糖:一类治疗ADIS的新药,国外医学一药学分册[J]. 1992, 19(l): 1-5.
    [62] Jagodzinski P P, Wiaderkiewicz R, Kurzawski G, et al. Mechanism of the inhibitory effect of curdlan sulfate on HIV-1 infection in vitro[J]. Virology, 1994, 202(2): 73-74.
    [63]陈春英,蒋岩.答叶多糖及其衍生物对小鼠艾滋病作用的研究[J].中国药理学通报, 1999, 15(4): 336-340.
    [64]张素,王明霞.植物药中抗艾滋病病毒活性成分研究[J].中医药信息, 1994, 4: 30-33.
    [65]邓成华,杨祥良,王雁,等.硫酸酯化虎奶菇多糖的制备及其抗氧化作用[J].中国生化药物杂志,2001, 22 (1): 1-4.
    [66]田庚元,李寿桐,宋麦丽,等.牛膝多糖硫酸酯的合成及其抗病毒活性[J].药学学报, 1995, 30 (2): 107-111.
    [67]张丽萍,汉丽萍,王月秋,等.硫酸化高山红景天多糖的制备及鉴定[J].分子科学学报,1999, 15(4): 205-209.
    [68]张海容,郭祀远,李琳,等.螺旋藻多糖及其硫酸酯清除羟自由基的活性[J].华南理工大学学报(自然科学版), 2003, (6): 76-79.
    [69] Hoshino T, Hayashi T, Hayashi K, et al. An antivirally activesulfated polysaccharide from Argarssum horneri (TURNER) C. AGARDH[J]. Biological & Pharmaceutical Bulletin, 1998, 21(7): 730-734.
    [70] Lee J B, Havasbi K, Hayasbi T, et al. Antiviral activiy against HSV 1, HCMV, and HIV-1 of rhamnan sulfate from Monostroma Latissimum[J]. Planta Med, 1999, 65(5): 439-441.
    [71] Amomrit C, Toida T, Imanari T, et al. A new sulfated betagalactan from clam with anti-HIV activity[J] Carbohydrate Research, 1999, 321(1-2): 121-127.
    [72] Haslin C, Lahaye M, Pellegrini M, et al. In viro anti-HIV sulfated cell-wall polysaccharides from Gametic, carposporic and tetrasporic stages of the Mediterranean red alga Asparagopsis annata[J]. Planta Med, 2001, 67(4): 301-305.
    [73]赵吉福,么雅娟,陈英杰,等.磺酞化新获等多糖的制备及抗肿瘤作用[J]. 1996, 13(2 ): 125-128.
    [74]邓成华,杨祥良,王雁,等.取代度对硫酸酯化虎奶菇多糖抗氧化活性的影响[J].华中理工大学学报, 2000, 28 (5 ): 104-107.
    [75] Alban S, Franz G. Characterization of the anticoagulant actions of a semisynthetic curdlan sulfate[J]. Thrombosis Research, 2000, 99(4): 377-378.
    [76] Rider C C, Coombe D R, Harrop H A, et al. Anti-HIV 1 activiy of chemically modified heparins: cor- relation between binding to the V3 loop of gp120 and inhibition of cellular HIV 1 infection in vitro[J].Biochemistry, 1994, 33(22): 6974-6980.
    [77] Yapani M, Polysaccharides-Syntheses Modifications and structure property relations[M]. Elsevier Amsterdam, 1988, 444-452.
    [78]吴立根,毛文君.衍生化多糖的生物活性研究进展[J].海洋科学, 2002, 26(5): 23-25.
    [79] Yoshida O, Nakashima H, Yoshida T, et al.Sulfation of the immunomodulating polysaccharide lentinan: A novel strategy for antivirals to human innnunodeficiency virs (HIV) [J]. Biochemical Pharmacology, 1998, 37 (7): 2887-2889.
    [80] Kojima T, Tabata K, Hirata A, et al. Biological activiy of sulfated schizophyllan[J]. Agricultural and Biological Chemistry, 1986, 50 (6): 1635-1636.
    [81]冯仁田,王福清.低分子量肝素的作用机制及其临床研究进展[J].中国生化药物杂志, 1998, 19(5): 217-219.
    [82]赵锐,张源朝,李华.硫酸软骨素的研究近况[J],药物生物技术, 1998, 5(2): 116-120.
    [83] Zhuang C, Ito H, Mizuno T, et al. Antitumor active fucoidan from the brown seaweed. umitoranoo (Sargassum thunbergii) [J]. Bioscience Biotechnology and Biochemistry, 1995, 59(4): 563-567.
    [84] Riou D, Colliec-Jouault S, Pinczon du Sel D, et al. Antitumor and antiproliferative effects of a fucan eitracted from ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line[J]. Anticancer Research, 1996, 16(3A): 1213-1218.
    [85]杨晓林,孙菊云,许汉年,等.褐藻糖胶的免疫调节作用[J].中国海洋药物, 1995, (3): 9-13.
    [86] Coombe D R, Parish C R, Ramshaw I A, et al. Analysis of the inhibition of tumour metastasis by sulphated polysaccharides [J]. International Journal of Cancer, 1987, 39(1): 82-88.
    [87] Guo D Z, Yao P Z, Fan X C, et al. Preliminary observation on carboxyl-methyl Poria cocos polysaccharide (CMPCP) in treating chronic viral hepatitis[J]. Journal of Traditional Chinese Medicine, 1984, 4(4): 282.
    [88]王雁,杨祥良,邓华成,等.梭甲基化虎奶菇多糖的制备及其抗氧化性研究[[J].生物化学与生物物理进展, 2000, 27(4): 411-415.
    [89] Samaranayake G, Glasser W G. Cellulose derivatives with low DS.I. A novel acylation system[J]. Carbohydrate Polymers, 1993, 22(1):1-7.
    [90] Jamas S, Easson D D, Ostroff G R, et al. PGG-glucans.A novel class of macrophage activiy Innnunomodulators[J]. ACS Symposium Series. 1991, 469(1): 44-51.
    [91] Yoshizawa Y, Tsunehiro J, Nomura K, et al. In vivo macrophage-stimulation activiy of the enzyme- degraded water-soluble polysaccharide fraction from a marine alga (Gracilaria verrucosa)[J].Bioscience Biotechnology and Biochemistry, 1996, 60(10): 1667-1671.
    [92] Tabata K, Ito W, Kojima T, et al. Ultrasonic degradation of schizopbyllan. an antitumor polysaccharide produced by Schizophyllum commune Fries[J]. Carbohydrate Research, 1981, 89(1): 121-135.
    [93] Stahmann K P, Monschau N, Sahm H, et al. Structure properties of native and sonicated cinerean, aβ(1→3)(1→6)-D-glucan produced by Botrvtis cinerecr[J]. Carbohydrate Research, 1995, 226(1):115-128.
    [94] Tanigami Y. Partial Degradation and biological activities of an anti-tumor polysaccharide from rice bran[J]. Chemical & Pharmaceutical Bulletin, 1991, 39(7): 1 782-1787.
    [95]赵国华.米糠保健功能因子[J].粮食与油脂, 1999(2): 39- 41.
    [96] Newman R K. Barley as a food grain[J]. Cereal Food World, 1991, 36(9): 806-813
    [97] Wasserman B P. Hull less barley bran: a potential new product form and old grain[J].Cereal food world, 1995, 40(11): 819-825
    [98] Takeo S, et al. Studies on an antitumor polysaccharide RBS derived from rice bran. Preparati on and general p r operties of RON.an active fraction of RBS[J]. Chemical & Pharmaceutical Bulletin, 1988, 36(9): 3609-3613.
    [99]陈军,等.稻米皮层糠多糖的保健作用[J].食品科学, 1999,(9) : 57-59.
    [100]汪艳,等.米糠多糖抗肿瘤作用及其作用的部分机制[J].中国药理学通报, 1999, 50: 70-72.
    [101] Takeshita M, et a1. Antitumor efect of RBS on ENNG-induced carcinogenesis[J]. Biotherapy, 1992, 4 (2): 139-145.
    [102] Fan H et al. Inducti on of apoptosis and growth inhibition of cultured human endometrial adenocarcinoma cells by an antitumor lipoprotein fraction of rice bran[J]. Gynecol Oncol, 2000, 76(2) : 170-175.
    [103]伊藤悦男.米糠由来抗肿瘤性多糖RBS关系研究[J].药学杂志, 1985, 105(20): 188-193.
    [104]汪艳,吴曙光,徐继红.米糠多糖与环磷酰胺联合抗肿瘤作用的免疫药理学机制研究[J] .解放军药学学报, 2001, 17( 6) :291-294.
    [105]丘玉昌,等.米糠多糖的提取及免疫调节作用[J].中国生化药物杂志, 1999, 20(2): 91-95.
    [106] Takeda Y, et al. Augmentation of host defense against bacterial infection p retreated intraperit oneally with RBS in rice[J]. Immunopharmacology and Immunotoxicology, 1990, 12 (3) : 457- 477.
    [107]蔡敬民.米糠对人体血脂肪之影响[J].中国农业化学会志, l992, 30 (4): 484-495.
    [108]胡国华,等.米糠半纤维素B对胆酸钠吸附作用的研究[J].中国食品添加剂, 2001, (2): 1-3.
    [109]胡国华,等.米糠半纤维素B对NO2 -吸附研究[J].粮食与油脂, 2001, (12): 7-9.
    [110]胡国华.米糠保健功能因子[J].粮食与油脂, 1999, (2): 39-41.
    [111]友田正司.生药中的生物活性多糖[J].国外医学中国中药分册, 1990, 280 (5): 23-25.
    [112] Tanigam i Y. Partial Degradation and biological activities of an antitumor polysaccharide from ricebran[J]. Chemical & Pharmaceutical Bulletin, 1991, 39 (7): 1782-1787.
    [113] Spears J K, Grieshop C M, Fahey G C J. Evaluation of stabilized rice bran as an ingredient in dry extruded dog food[J]. Journal of Animal Science, 2004, 82: 1122-1135.
    [114]姜元荣,姚惠源,陈正行.米糠多糖的生物活性研究进展[J].食品科技, 2002, 10: 66-68.
    [115] Wang G Z, He C H. Modeling for extraction of isoflavones from stem of Pueraria lobata (Willd) Ohwi using n-butanol/water two-phase solvent system [J]. Separation and Purification Technology, 2008, 62: 590-595.
    [116] Wang G Z, He C H. Separation and purification of puerarin by liquid-liquid extraction[J].Separation and Purification Technology, 2007, 56: 397-400.
    [1]吴广枫,张拥军,汤坚.超声波用于芦荟多糖提取的研究[J].食品科技, 2001, (6): 23-24.
    [2]曾里,夏之宁.超声波和微波对中药提取的促进和影响[J].化学研究与应用, 2002, 14(3): 245-249.
    [3]季大洪,苏瑞强,王颖.高新工程技术在中药提取分离中应用[J].时针国医国药, 2000, 11(4): 369-370.
    [4] US Environmental Protection Agency ( EPA), in Test Methods for the Analysis of Solid Wasters (SW-846 Method No. 3550), EPA Office Waste(OWS), Washington, DC, 1986
    [5] Giovinni M. Response surface methodology and product optimization[J]. Food Technology, 1999, 37 : 41-45.
    [6] Patnaik PR. Synthesizing cellular intelligence and artificial intelligence for bioprocesses[J]. Biotechnology Advantage, 2006, 24: 129-133.
    [7] Wilson DH, Irwin GW, Lightbody G. RBF principal manifolds for process monitoring[J]. IEEE Trans Neural Netw, 1999, 10: 1424-1434.
    [8] Basri M, Rahman RN, Ebrahimpour A, Salleh A B, Gunawan ER, Rahman MB. Comparison of estimation capabilities of response surface methodology (RSM) with artificial neural network (ANN) in lipase-catalyzed synthesis of palm-based wax ester[J]. BMC Biotechnol, 2007, 7: 53-60.
    [9] Guo WQ, Qiu QS, Tang H, Zhang WR. Performance of RBF neural networks for array processing in impulsive noise environment[J]. Digit Signal Process, 2008, 18: 168-178.
    [10] Aguirre LA, Alves GB, Correa MV. Steady-state performance constraints for dynamical models based on RBF networks[J]. Eng Appl Artif Intel, 2007, 20: 924-935.
    [11] Sanner RM, Slotine JJE. Gaussian networks for direct adaptive control[J]. IEEE Trans Neural Netw, 1992, 3: 837-863.
    [12]张惟杰.糖复合物生化研究技术[M].杭州:浙江工业大学出版社, 1999.
    [13] Box G P, Behnken D W. Some new three level design for the study of quantitative variables[J]. Technometrics, 1960, 2: 456-475.
    [14] Sun J, Feng B, Xu WB. Particle swarm optimization with particles having quantum behavior. Proceedings 2004 Congress on Evolutionary Computation, Piscataway, NJ, 2004, 325-331.
    [15] Sun J, Xu WB, Feng B. A Global search strategy of quantum-behaved particle swarm optimization. Proceedings of 2004 IEEE Conference on Cybernetics and Intelligent Systems. Singapore, 2004, 111-116.
    [16] Sun J, Xu WB, Feng B. Adaptive Parameter control for quantum-behaved particle swarm optimizationon individual level. Proceedings of 2005 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ, 2005, 3049-3054.
    [17] Sun J, Liu J, Xu WB. Using quantum-behaved particle swarm optimization algorithm to solve non-linear programming problems [J]. Int J Comput Math, 2007, 84: 261-272.
    [1] Beeley JG. Glycoprotein and proteoglycan technique, as laberatory technique in biochemistry and molecular biology[M]. Elsequier Amsterdam, New York: Oxford, 1985.
    [2]方积年.用HPLC测定多糖的纯度及分子量的研究[J].药学学报, 1990, 24: 532-537.
    [3] Ackers G K. The Protein, 3rd ed, New York: Academic Press, 1975.
    [4] Waniska R D, Kinsella J E. Comparision of methods for separating oligosaccharide: ultrafiltration, gel permeation and adsorption chromatography[J]. Journal of Food Science, 1980, 45: 1259-1261.
    [5] Alsop P M. Determination of the molecular weight of clinical dextran by gel permeation chromatography on TSK PW type colums[J]. Journal of Chromatography, 1982, 246:227-231.
    [6]朱淮武.有机分子结构波谱解析[M].北京:化学工业出版社, 2005.
    [7]张翼伸,李润秋,王玉万,等.人参多糖的研究.东北师范大学学报(自然科学版), 1982, 2: 97-104
    [8] Dubois M, Gilles K A, Hamilton J K, Pebers, P A and Smith F. Colorimetric method for determination of sugar and relayed substances[J]. Analytical Chemistry, 1956, 28: 350-356.
    [9] Ghoneum M and Gollapudi S. Modified arabinoxylan rice bran (MGN-3 /Biobran) sensitizes human T cell leukemia cells to death receptor (CD95)-induced apoptosis[J]. Cancer Letters, 2003, 201: 41-49.
    [10]程宝鸾.动物细胞培养技术[M].广州:华南理工大学出版社, 2000.
    [11]张惟杰.糖复合物生化研究技术[M].杭州:浙江工业大学出版社, 1999.
    [12] Blumenkrantz N, Asboe H G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry, 1973, 54: 484-489.
    [13] Miyazaki T, Toshio S, Oikannm and Naoko N. Studies on fungal polysaccharide water-soluble polysaccharide of criford umbellate (Fr) pilat[J]. Chem Pharm Bull, 1973, 21: 2545-2548.
    [14]方积年.多糖的甲基化分析[J].国外医学(医学分册), 1986, 4: 222-226.
    [15] Kumar CG, Joo H.S, Chio JW, Koo YM., and Chang CS. Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450[J]. Enzyme and Microbial Technology, 2004, 34: 673-681.
    [16] Santhiya D, Subramanian S and Natarajan KAJ. Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa[J]. Journal of Colloid and Interface Science, 2002, 256: 237-248.
    [17] Gi YK, Hyung SP, Byong HN, Sang JL and Jae DL. Purification and characterization of acidic proteo-heteroglycan from the fruiting body of Phellinus linteus (Berk.& M.A. Curtis) Teng[J].Bioresource Technology, 2003, 89: 81-87.
    [18] Tatsunori Y, Kazuo M and Toshiyuki W. Isolation and partial characterization of Proteoglycans from rice bran[J]. Carbohydrate Research, 1975, 43: 321-333.
    [19] Mondal S, Chakraborty I, Parmanil M et al. Structure studies of water-soluble polysaccharide of an edible mushroom Termmitomyces eurhizus. A reinvestigation[J]. Carbohydrate Reserach, 2004, 339: 1135-1140.
    [20] Mondal S, Chakraborty I, Parmanil M et al. Structural investigation of a polysaccharide (Fr.Ⅱ) isolated from the aqueous extract of an edible mushroom[J]. Carbohydrate Reserach, 2005, 340: 629-636.
    [21] Suarez ER, Kralovee JA, Pramanik M et al. Isolatin, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa[J]. Carbohydrate Research, 2005, 340: 1489-1498.
    [22] Takenaka, S. Hemicellulose in rice bran fiber reduces thymus atrophy in rats treated with bis(tri-n-butyn)oxide[J]. Chemosphere, 1992, 25: 327-334.
    [23] Takenaka S, Itoyama Y, Rice bran hemicellulose increases the peripheral blood lymphocytes in rats[J] Life Science, 1993, 52: 9-12.
    [24] Takeshita M, Nakamura S, Makita F, Ohwada S, Miyamoto Y, and Morishita Y. Antitumor effects of RBS (rice bran saccharide) on ENNG-induced[J] Carcinogenesis. Biotherapy, 1992, 4: 139-145.
    [25] Ghoneum M. Anti-HIV activity in vitro of MGN-3, an activated arobinxylane from rice bran[J]. Biochemistry and Biophysical Research Communications, 1998, 243: 25-29.
    [26] NaotoS, and Tetsuya I. Structural features of rice bran hemicellulose[J]. Phytochemistry, 1985, 24: 285-289.
    [1]徐文清.硫酸酷化多糖研究的新进展[J].天津药学, 2002, 14(6): 1-4.
    [2] Yalpani M. Chemistry of polysaccharide modification and degradation, In: Finch P.editor, Carbohydrate: structure, synthesis and dynamics[M]. Dordrecht/Boston/London: Klwver Academic Publishers, 1999. 294.
    [3] Ueno Y, Okamoto Y, Yamauchi R. An Antitumor activiy of the alkali-soluble polysaccharide and its derivatives obtained from the Scleratia of Grifora umbellata[J]. Carbohvdrate Research, 1982, 101: 101-160.
    [4] Adachi Y, Ohno N, Ohsawa M, et al. Physicochemical properties and antitumor activities of chemically modified derivatives antitumor glucan "Grifolan LE" from Grifola frondosa[J]. Chemical & Pharmaceutical Bulletin, 1989, 37(7):1838-1843.
    [5] Gibert E E. Sulfonation and related reactions. In: Olah GA. editor.Interscience monographs on Chemistry[M]. New York: Wiley-Interscience, 1965.
    [6] Wu S J, Chun M W, Shin K H, et al. Chemical sulfonation and anticoagulant activiy of acharan sulfate[J]. Thrombosis Research, 1998, 92: 273-281.
    [7] Nishino T, Nagumo T. Anticoagulant and antithrombin activities of oversulfated fucans[J]. Carbohv -drate Research, 1992, 229: 355-362.
    [8] Soeda S, Kozako T, Iwata K, et al. Oversulfated fucoidan inhibits the basic fibroblast growth factor- induced tube formation by human umbilioal vein endothelial cells: Its possible mechanism of action[J]. Biochimica et Biophysica Acta, 2000, 1497: 127-134.
    [9] Alban S, Schauerte A, Franz G. Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure- activiy relationships of new pullulan sulfates[J]. Carbohydrate Polymers, 2002, 47: 267-276.
    [10] Dodgson K S, Price R G. A note on the determination of the ester sulphate content of sulphated polysaccharides[J]. Biochemistry Journal, 1962, 84( 1): 106-110.
    [11] Yang J H, Du Y M, Wen Y, et al. Sulfation of Chinese lacquer polysaccharides in different solvents[J]. Carbohydrate Polymers, 2003, 52(3): 397-403.
    [12] Gollapudi S, Ghoneum M. MGN-3/Biobran, modified arabinoxylan from rice bran, sensitizes human brest cancer cells to chemotherapeutic agent, daunorubicin[J]. Cancer Detection and Prevention, 2008, 32(1): 1-6.
    [13] Mahner C, Lechner M D, Nordmeier E. Synthesis and characterisation of dextran and pullulansulphate[J]. Carbohydrate Research, 2001, 331(2): 203-208.
    [14] Maciel J S, Chaves L S, Souza B W S, et al. Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae[J]. Carbohydrate Polymers, 2008, 71(4): 559-565.
    [15] Amornrut C, Hidenao T, Eun W R, et al. Effects of (1→3)- and (1→4)- linkages of fully sulfated polysaccharides on their anticoagulant activity[J]. Carbohydrate Research, 2002, 337(10): 925-933.
    [16] Talarico L B, Pujol C A, Zibetti R G M., Faría P C S, Noseda M D,. Duarte M E R, and Damonte E B, The antiviral activity of sulfated polysaccharides against dengue virus is dependent on cirus serotype and host cell Antiviral Research[J], 2005, 66,(2): 103-110.
    [17] Y. Z. Tao, L. N. Zhang, and P. C. K. Cheung, Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides[J], Carbohydrate Research, 2006, 341(13): 2261-2269.
    [18] G. G. Liu, G. Borjihan, H. Baigude, H. Nakashima, and T. Uryu, Synthesis and anti-HIV activity of sulfated astralus polysaccharide[J] Polymers Advanced Technologies, 2003, 14 (7): 471-476.
    [19] M. M. Hussein, W. A. Helmy, and H. M. Salem, Biological activities of some galactomannans and their sulfated derivatives[J], Phytochemistry, 1998, 48(3): 479-484.
    [20]田庚元,等.牛膝多糖硫酸酯的合成及其抗病毒活性[J].药学学报,1995 ,30 (2) :107-111
    [21]杨铁虹,等.当归多糖硫酸酯的合成及其对脾细胞增殖的作用[J].第四军医大学学报,2001,22 (5) :432~434
    [22] Ueno Y,et al. An antitumor activity of the Sclertia of Grifora umbellate (Fr) PILAT[J]. Carbohydr Research, 1982, 101 :106-107。
    [23] Adachi Y,et al. Physicochemical properties and antitumor activities of chemical modified derivatives antitumor glucan“Grifora L E”from grifola frondasa[J]. Chem PharmBull ,1989 ,37 :1838~1843
    [24]王顺春,方积年.香菇多糖硫酸化衍生物的制备及其结构分析[J],生物化学与生物物理学报.1999, 31 (5) :594-597.
    [1]黄才欢,王秀芬,李炎,等.茯苓多糖硫酸酯化的制备及其抗肿瘤作用[J].广州食品工业科技, 2001,17(3):13-15.
    [2]邓成华,杨祥良,王雁,等.硫酸酯化虎奶多糖的制备及其抗氧化作用研究[J].中国生化药物杂志,2001, 22 (1): 1-4.
    [3] Yoshida Y, Yasuda T, Mimura T, et al. Synthesis of curdlan sulfates having inhibitory effects in vitro against AIDS viruses HIV-1 and HIV-2[J]. Biochemical Pharmacology, 1998, 37(7): 887-898.
    [4] Mizuno T, Yeohlui P, Kinoshita T, et al. Antitumor ActiviW and Chemical Modification of Polysaccharides from Niohshimeji Mushroom.Tricholma gigantemn[J]. Bioscience Biotechnology & Biochemistry, 1997, 60(1): 30-33.
    [5]史宝军.灰树花多糖的分离纯化、化学改性及其抗肿瘤活性的研究[M].无锡:江南大学博士学位论文,2003.
    [6]王春顺,方积年.香菇多糖硫酸化衍生物的制备及其结构分析[J].生物化学与生物物理学报, 1999, 31(5): 594-597.
    [7] Zhan g L, Zhang M, Zhou Q, et al. Solution Properties of Antihunor Sulfated Derivative of a-(1.3)-D- Glucan from Gcrnodermcr lucidum[J]. Chinese Journal of Polymer Science, 2001, 19(3): 283-289.
    [8] Bao X F, Yun Z H, Li R, et al. Purification, Characterization, and Modification of T Lymphocyte - Stimulating Polysaccharide from Spores of Ganoderma lucidum[J]. Chemical and Pharmaceutical Bulletin,2002,50(5): 623-629.
    [9] Zhou G F, Sun Y P, Xin Y P, et al. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus[J]. Pharmacol Research, 2004, 50(1): 47-53.
    [10] Hale A J, Smith C A, Suthefiand L C, et al. Apoptosis: molecular regulation of cell death[J]. European Journal of Biochemistry, 1996, 236: 1-26.
    [11] Lindsten T, Ross A J, King A, et al. The combined functions of proapoptic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues[J]. Molecular Cell, 2000, 6: 1389-1399.
    [1] Kerr J, Winterfold C M, Harmon B N. Apoptosis: its significance in cancer and cancer therapy[J]. Cancer, 1994, 73: 2013-2026.
    [2]杨吉成,宋礼华,周建华,等.细胞凋亡技术[M].医用细胞工程, 2000, 114-123.
    [3] Lee S J, Oh P S, Ko J H, et al. A 150-KDa glycoprotein isolated from Solanum nigrumL.has cytotoxic and apoptotic effects by inhibiting the effects of protein kinase C alpha, nuclear factor-kappa B and inducible nitric oxide in HCT-116 cells[J]. Cancer Chemother & Pharmacology, 2004, 54: 562-572.
    [4] Lavi I, Friesem D, Geresh S, et al. An aqueous polysaccharide extract from the edible mushroom Pleurotus ostreatus induces anti-proliferative and pro-apoptotic effects on HT-29 colon cancer cells[J]. Cancer Letters, 2006, 35: 1354-1361.
    [5] Zhang C X, Huang K X. Apoptosis induction on HL-60 cells of a novel polysaccharide from the mucus of the loach, Misgurnus anguillicaudatus[J]. Journal of Ethnopharmacology, 2005, 99: 385-390.
    [6] Zhang C X, Huang K X. Mechanism of apoptosis induced by a polysaccharide, from the loach Misgurnus anguillicaudatus (MAP) in human hepatocellular carcinoma cells[J]. Toxicology and Applied Pharmacology, 2006, 210: 236-245.
    [7] Huang Z W, Bcl-2 family proteins as targets for anticancer drug design[J]. Oncogene, 2000, 19(56): 6627-6631.
    [8] Shieh S Y, Ikeda M, Taya Y,et al. DNA damageinduced phosphorylation of p53 alleviates inhibition by MDM2[J]. Cell, 1997, 91: 325-334.
    [9] Asherq L J, Sachs L, Shaul Y. p53-dependent apoptosis and NAD(P)H: Quinone Oxidoreductase[J]. Methods in Enzymology, 2004, 382: 278-293.
    [10] Koyama S, Tanaka S, Haniu H, et al. YoshixolTR inhibits B16 melanoma cell growth in vivo and induces apoptosis-like (quantum thermodynamic) cell death[J]. General Pharmacology, 1999, 33: 161-172.
    [11] Ikeda K, Nagase H. Magnolo has the ability to induce apoptosis in tumor cells[J]. Biological & Pharmaceutical Bulletin, 2002, 25(12): 1546-1549.
    [12]程宝鸾.动物细胞培养技术[M],广州,华南理工大学出版社, 2000.
    [13] Ogata A, Mitsui S, Yanagie H, et al. A novel anti-tumor agent, polyoxomolybdate induces apoptotic cell death in AsPC-1 human pancreatic cancer cells[J]. Biomed Pharmacother, 2005, 59: 240-244.
    [14]Iwamoto Y, Matsumoto Y, Ueoka R. Induction of apoptosis of human ling carcinoma cells by hybrid liposomes containing polyoxyethyenedodecyl ether[J]. International Journal of Pharmaceutics, 2005, 292: 231-239.
    [15] Lin X, Cai Y, Li Z X, et al. Structure determination, apoptosis induction, and telomerase inhibition of CFP-2, a novel lichenin from cladonia furcata[J]. Biochimica et Biophysica Acta, 2003, 1622: 90-108.
    [16] Sun H X, Zheng Q F, Tu J. Induction of apoptosis in Hela cells by 3β-hydroxy-12 oleanen-27-oic acid from the rhizomes of Astilbe chinensis[J]. Bioorganic & Medicinal Chemistry, 2006, 14(4): 1189-1198.
    [17] Brussel J P, Van Steenbrugge G J, Romijn J C, et al. Chemosensitivity of prostate cancer cell lines and expression of multidrug resistance-related proteins[J]. European Journal of Cancer, 1999, 35: 664-671.
    [18]张哲文,魏虎来,苏海翔,等.硒酸酯多糖诱导白血病多药耐药细胞凋亡的作用机制[J].中国临床药理学与治疗学, 2005, 10(5): 505-508.
    [19] Darzynkiewicz Z, Bruno S, Del B G. Features of apoptotic cells measured by flow cytometry[J]. Cytometry, 1992, 13(8): 795-808.
    [20] Afanasyev V N, Korol B A, Matylevich N P. The use of flow cytometry for the investigation of cell death[J]. Cytometry, 1993, 14 (6): 603-609.
    [21] Huschtscha L I, Jeitner T M, Anderson C E, et al. Identification of apoptotic and necrotic human leukemic cells by flow cytometry[J]. Experimental Cell Research, 1994, 212(1): 161-165.
    [22] Sawa H, Kobayashi T, Mukai K. et al. Bax over-expression enhances cytochrome C release from mitochondria and sensitizes KATO III gastric cancer cells to chemotherapeutic agent induced apoptosis[J]. International Journal of Oncology, 2000, 16(4): 745-749.
    [23] Yang S A, Paek S H, Kozukue N, et al.α-Chaconine, a potato glycoalkaloid, induces apoptosis of HT-29 human colon cancer cells through caspase-3 activation and inhibition of ERK 1/2 phosphorylation[J]. Food and Chemical Toxicology, 2006, 44(6): 839-846.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700