用户名: 密码: 验证码:
实验性糖尿病性周围神经病发病机制及保护的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究的目的是深入阐明实验性糖尿病性周围神经病(DPN)的发病机制,从而为临床治疗提供更加准确的作用靶点。本研究的实验方法包括:1、采用一次性腹腔注射链脲佐菌素制备DPN大鼠模型;2、实验动物分为两组:正常对照组(NC组)和糖尿病组(DM组),DM组又随机分为5个亚组:DM4W组、DM8W组、DM12W组、干预1组(T1组)、干预2组(T2组);3、应用Meditronic keypoint-4 workstation肌电图仪测定各组大鼠坐骨神经运动及感觉神经传导速度(MNCV和SNCV)和CMAP及SNAP;4、应用激光多普勒血流测定仪(LDF)检测各组大鼠下肢微循环血流量;5、通过HE染色及电镜观察各组大鼠神经内膜毛细血管及坐骨神经的形态学改变;6、应用免疫组织化学的方法分析各组大鼠氧化应激相关因子(VEGF、TNF-α、IL-1、Il-6、NF-κB、p38MAPK、Caspase-3、Bax、Bcl-2)及ET/NO系统(ET-1、ETA受体、ETB受体、iNOS、eNOS、nNOS)的表达变化规律。7、分析各因素在DPN发生发展过程中的作用及相关性。本研究结果发现:1、各组大鼠体重及血糖变化:DM组大鼠较造模前和NC组大鼠体重明显减轻;血糖持续维持在较高水平(>16.7mmol/L),并且没有自发缓解的现象。2、各组大鼠坐骨神经电生理检查结果:与造模前和NC组相比,DM组大鼠从4W开始出现明显的MNCV和SNCV减慢及CMAP和SNAP减低,并且随病程延长而逐渐加重;前列地尔可以明显地改善DM组大鼠坐骨神经的MNCV、SNCV、CMAP、SNAP。3、各组大鼠下肢微循环血流量变化:与造模前和NC组相比,DM组大鼠从2W开始出现微循环血流量明显下降,且随病程进展逐渐加重,12W下降的幅度超过50%;前列地尔可以明显地提高DM组大鼠下肢的微循环血流量。4、各组大鼠坐骨神经形态学改变:①HE染色显示DM组大鼠从4W开始出现神经内膜毛细血管管壁逐渐增厚,管腔不规则,内皮细胞肿胀、变形,随病程延长而逐渐加重;同时也从4W开始出现坐骨神经有髓及无髓神经纤维排列松散,且随病程进展逐渐出现髓鞘变薄、分离、空泡形成,并伴有轴索萎。②电镜显示DM组大鼠从4W开始出现毛细血管内皮增厚,基底膜不清楚,周围有炎细胞浸润;同时有髓神经纤维髓鞘板层薄厚不一、分离或脱落,无髓神经纤维轴索内神经丝减少,线粒体肿胀,粗面内质网扩张,可见髓样小体,且随病程延长而逐渐加重;前列地尔可以明显改善DM组大鼠神经内膜毛细血管和坐骨神经的形态学表现,早期干预优于晚期干预。5、各组大鼠氧化应激相关因子的表达变化:与造模前和NC组相比,DM组大鼠坐骨神经中VEGF、TNF-α、IL-1、NF-κB、p38MAPK、Caspase-3、Bax表达增高,Il-6、Bcl-2表达减少,且随病程延长而逐渐加重;前列地尔可以改善DM组大鼠坐骨神经中VEGF、TNF-α、IL-1、IL-6、NF-κB、p38MAPK、Caspase-3、Bax的表达变化,但是不影响Bcl-2的表达,早期干预优于晚期干预。6、各组大鼠ET/NO系统相关因子的表达变化:NOS主要在轴索表达,与造模前和NC组相比,DM组大鼠坐骨神经中eNOS、iNOS、nNOS表达减少,且随病程延长而逐渐加重;ET-1及其受体生理状态下表达极少,但是病理状态下,在髓鞘的表达明显增多,与造模前和NC组相比,DM组大鼠坐骨神经中ET-1、ETA受体、ETB受体表达增加,且随病程延长而逐渐加重;前列地尔可以增加DM组大鼠坐骨神经中eNOS、iNOS、nNOS的表达,减少ET-1、ETA受体、ETB受体的表达,早期干预优于晚期干预。本研究得出如下结论:1、应用链脲佐菌素腹腔注射可成功建立实验性糖尿病性周围神经病的动物模型。2、DPN大鼠下肢微循环血流改变先于神经传导速度、神经内膜微血管和坐骨神经的形态学改变,微循环血流减低可能是DPN发生的始动因素,是DPN的重要发病机制之一。3、氧化应激相关因子(VEGF、TNF-α、IL-1、Il-6、NF-κB、p38MAPK、Caspase-3、Bax、Bcl-2)参与了DPN的病理生理过程。DPN大鼠下肢微循环血流改变先于氧化应激相关因子的改变,且氧化应激反应的激活又加重了微循环血流障碍。4、DPN大鼠下肢微循环血流改变先于ET/NO系统的变化,而DM时ET/NO系统的激活通过上调ET-1及其受体、下调NOS来影响微循环,参与DPN的发病。
Recently, the incidence of diabetes mellitus (DM) rises in the world. In the present, there are 170 million DM patients all over the world. It is estimated that it will be doubled in 2003 and the new patients mainly will come from the Asian developing countries, such as the People’s Republic of China and India. Diabetic peripheral neuropathy (DPN) is one of the most common microangiopathy complications of DM. The incidence of DPN is about 5%-50%. In American, DPN incidence is up to 32.7% among the DM patients aged over 40 and it will rise up with the advanced course. The pathogenesis of DPN is not very clear. Hence, the studies on the pathogenesis and treatment strategy of DPN have become a very important work of medical researchers.
     DPN is induced by multiple causes and complicated mechanisms, which are not clear so far. Presently, there are several theories of DPN’s pathogenesis: metabolism theory, microvascular dysfunction theory, nerve nutrition factors deficiency theory, immunity theory, and genetic theory. Recently, it is believed that microvascular and metabolic dysfunction play key roles in DPN development and new researches are mainly focused on them. However, the initial factor of DPN development and correlation among related factors are unknown. Hence, our study is designed to observe the simultaneous and consecutive changes on streptozocin-injection rats systematically and all-sidely, which includes electrophysiology, microcirculation blood flow in low extremities, pathological morphology, oxidative stress related factors (VEGF, TNF-α, IL-1, Il-6, NF-κB, p38MAPK, Caspase-3, Bax, Bcl-2), and ET/NO system (ET-1、ETA receptor, ETB receptor, iNOS, eNOS, nNOS). Prostaglandin E1 (PGE1) is used to observe its effects on the DPN rats. The effects and relationships between these factors and DPN and the protective effects of PGE1 are studied from multiple views and in many ways. The purpose of this study is to make further investigation of DPN’s pathogenesis and try to find more accurate target point of treatment for the clinical practice.
     Main study methods: 1. Experimental DPN model is made by streptozocin-injection rats. 2. Study groups: Experimental DPN rats are divided into two groups. One is normal control group (NC group) and another is diabetes mellitus group (DM group). DM group is divided into five subgroups: DM 4W group, DM8W group, DM 12W group, Treatment 1 group (T1 group), and Treatment 2 group (T2 group). 3. Motor nerve conduction velocity (MNCV), sensory nerve conduction (SNCV), and compound muscle action potential (CMAP), sensory nerve action potential (SNAP) of sciatic nerve are measured on experimental DPN rats by Meditronic keypoint-4 workstation electromyography. 4. Microcirculation blood flow in lower extremities is measured on experimental DPN rats by Laser Doppler flowmetry (LDF). 5. Morphological changes of nerve inner membrane capillary and sciatic nerve are observed by light microscope with HE dye and by electronmicroscope. 6. Expression of oxidative stress related factors (VEGF、TNF-α、IL-1、Il-6、NF-κB、p38MAPK、Caspase-3、Bax、Bcl-2) and ET/NO system related factors (ET-1、ETA receptor、ETB receptor、iNOS、eNOS、nNOS) are observed by immunohistochemistry methods.
     Main study results: 1. Body weight and blood glucose level changes of each group rats: Body weights of DM group rats obviously decrease compared to itself before streptozocin injection or to the NC group rats. Blood glucose level is kept on a high level (>16.7mmol/L) and without spontaneous relief phenomenon. 2. Electrophysiological changes of each group rats: Compared with itself before streptozocin injection or to the NC group rats, MNCV, SNCV and CMAP, SNAP of DM group rats’sciatic nerve begin to decrease markedly since 4W after streptozocin injection. They progress with the advanced DPN course. They can be distinctly improved by PGE1. 3. Microcirculation blood flow changes in low extremities of each group rats: Compared with itself before streptozocin injection or to the NC group rats, microcirculation blood flow of DM group rats starts to decrease sharply since 2W after streptozocin injection. It progresses with the advanced DPN course. Its decrease are up to over 50% when 12W. It is obviously improved by PGE1. 4. Morphological changes of each group rats’sciatic nerve: (1) Since 4W, the vessel walls of nerve inner membrane capillary in DM group rats begins to thick progressively by HE dye method. It also shows irregular and narrowed vessel lumen and swelling, out-of-shape endothelium cells. It progresses with the advanced DPN course. Simultaneously, myelinated and unmyelinated sciatic nerve fiber of DM group rats also start to line loosely. As the course advanced, they gradually show thinner and separated myelin sheath. Vacuolus formation and axon atrophy also can be seen. (2) Through electronmicroscope, it is found in DM groups rats’sciatic nerve with thick capillary endothelium, unclear basement membrane, inflammatory cells infiltration, unequal or separated or drop-off myelin sheath, decreased nerve filament inside axon, swollen mitochondria, expanded rough endoplasmic reticulum. It progresses with the advanced DPN course. All these manifestations can be obviously improved by PGE1 and early treatment is better than late. 5. Oxidative stress related factors expression changes: Compared with itself before streptozocin injection or to the NC group rats, expressions of VEGF、TNF-α、IL-1、NF-κB、p38MAPK、Caspase-3、Bax increase and expressions of Il-6、Bcl-2 decrease in DM group rats sciatic nerve. These expression changes progress with the advanced DPN course. Expression of VEGF、TNF-α、IL-1、IL-6、NF-κB、p38MAPK、Caspase-3、Bax can be distinctly improved by PGE1 and early treatment is better than late. But Bcl-2 expression is not effected by PGE1. 6. ET/NO system related factors expressions changes: NOS mainly expresses inside axon. Compared with itself before streptozocin injection or to the NC group rats, expressions of eNOS、iNOS、nNOS decrease in DM group rats’sciatic nerve. These expression changes progress with the advanced DPN course. Normally, ET-1 and its receptors express little in the rats’sciatic nerve. However, their expressions obviously increase under pathological status. Compared with itself before streptozocin injection or to the NC group rats, expressions of ET-1、ETA receptor、ETB receptor increase. These expression changes progress with the advanced DPN course. These changes can be improved by PGE1 and early treatment is better than late.
     Conclusion: 1. Experimental DPN rat model can be successfully established by streptozocin injection. 2. Microcirculation blood flow changes in the lower extremities are earlier than the NCV changes and morphological changes of nerve inner membrane capillary and sciatic nerve. So it is possible that microcirculation blood flow decrease may be the initial factor of DPN development. Mircrocirculation dysfunction is an important pathogenesis of DPN. 3. Oxidative stress related factors (VEGF、TNF-α、IL-1、Il-6、NF-κB、p38MAPK、Caspase-3、Bax、Bcl-2) take part in the pathophysiological changes of DPN. On the one hand, microcirculation blood flow changes in the lower extremities are earlier than the oxidative stress related factors changes. On the other hand, activations of oxidative stress related factors aggravate microcirculation dysfunction. 4. In DPN rats, microcirculation blood flow changes in the lower extremities are earlier than the ET/NO system related factors changes. In DM, through up-regulated ET-1 and its receptors expression and down-regulated NOS expression, ET/NO system is activated to effect microcirculation and to take part in the DPN development.
     Through the observations of effects and relationships of oxidative stress related factors, ET-1 and its receptors, and NOS during the DPN development and progress, our study makes further investigations of DPN’s pathogenesis. Our study makes it clear that microcirculation is the initial factor of DPN. Hence, our results provide more accurate target point of treatment in the clinical practice.
引文
[1] Candrilli SD, Davis KL, Kan HJ, et al. Prevalence and the associated burden of illness of symptoms of diabetic peripheral neuropathy and diabetic retinopathy [J]. J Diabetes Complications, 2007,21:306-314.
    [2] Zimmet P, Shaw J, Albertit KG. Preventing type 2 diabetes and the dysmetabolic syndrome in the real world: a realistic view [J]. Diabet Med, 2003,20(9):693.
    [3] Harati Y. Diabetic peripheral neuropathies [J]. Ann Intern Med, 1987,107(4):546-559.
    [4] Cefalu WT. Animal models of type 2 diabetes: clinical presentation and pathophys- iological relevance to the human condition [J]. ILAR-J, 2006,47(3):186-198.
    [5]冯丹,张新国.糖尿病的动物模型[J].武警医学. 2007,18(5):384-386.
    [6]黄松.糖尿病动物模型研究现状及进展[J].广西医学, 2002,24(1):46.
    [7]杜冠华,李学军,张永祥,等译.药理学实验指南%新药发现和药理学评价[M].北京:科学出版社, 2001:698-712.
    [8]谢宁,吴颂,王晓博,等.糖尿病动物模型研究进展[J].新乡医学院学报. 2007,24 (6):629-632.
    [9]孙敬方.动物实验方法学[M].北京:人民卫生出版社, 2002:477-479.
    [10]孙焕,陈广,陆付耳.介绍几种诱发性糖尿病动物模型[J].中国实验方剂学杂志, 2007,13(2):65-68.
    [11] Pettepher CC, Ledoux SP, Bohr VA, et al. Repair of alkali-labile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin [J]. J Biol Chem, 1991,v266:3113-3117.
    [12]陈道瑾,黄建华,孙维佳,等.狗全胰切除制作实验性糖尿病模型[J].中华实验外科杂志. 1992,9(1):30.
    [13] Mordes JP, et al. Animal Models of Diabetes [J]. AM J Med, 1981,70:353-341.
    [14]高红莉,刘方永,夏作理.实验性糖尿病动物模型的理论研究与应用[J].中国临床康复. 2005,9(3):210-212.
    [15]彭芳,杨远华.实验性糖尿病动物模型制备及指标测定评价[J].大理学院学报, 2003,2(1):1-3.
    [16]廖蓉,谭毅,王鸿雏.糖尿病研究与动物模型[J].实验动物科学与管理,2001,18(2):36-38.
    [17] Takasu N, Komiya T, Asawa T, et al. Streprozocin and allxon-induced H2O2 generating and DNA fragmentation in pancreatic islets [J]. Diabetes. 1991,40:1141-1145.
    [18]黄松,洗苏.糖尿病动物模型研究现状及进展[J].广西医学, 2002,24(1):46-48.
    [19] EI-Missiry MA, Othman AI, Amer MA. L-Arginine ameliorates oxidative stress in alloxan-induced experimental diabetes mellitus [J]. J Appl Toxicol, 2004,24(2):93-97.
    [20]王开富,等. Alloxan剂量和家兔性别对制作糖尿病模型的影响[J].同济医科大学学报, 1994,23(3):223-225.
    [21]艾静,郭健,张永春,等.四氧嘧啶致大鼠高血糖模型的实验研究[J].哈尔滨医科大学学报, 2001,35(2):94.
    [22]叶燕丽,王辉云,王莲桂,等.四氧嘧啶制作大鼠糖尿病模型--剂量探讨与方法改进[J].实验动物科学与管理, 2001,18(2):54-55.
    [23]杨明华,柴可夫,杨苏蓓.四氧嘧啶致糖尿病大鼠模型血糖稳定性考察[J].中国比较医学杂志, 2006,8(16):482-484.
    [24]何学令,尹海林.四氧嘧啶剂量和给药途径对制作大鼠糖尿病模型的影响[J].四川动物, 2003,22(4):255-257.
    [25]周建平,刘洪艳. KM、ICR、NIH三品系小鼠四氧嘧啶法致糖尿病动物模型的比较[J].实验动物科学与管理, 2002,3:14-15.
    [26]贾雪梅,齐易祥,王惠珠,等.实验性糖尿病对小鼠肝脏酶组织化学和超微结构的影响[J].解剖学杂志, 1995,18(5):451.
    [27] Lynch JJ, Jarvis MF, Kowaluk EA, et al. An adenosine kinase inhibitor attenuates tactile allodynia in a rat model of diabetic neuropathic pain [J]. Eur J Pharmacol 1999,364(2-3):141.
    [28]李晶,张春元,张宝珍,等.四氧嘧啶诱发大白兔糖尿病模型的研究[J].中国校医, 1999,13(1):30.
    [29]杨竹林,伍汉文,周智广,等.完全弗氏佐剂预防NOD鼠胰岛炎和糖尿病的机理研究[J].中华内分泌代谢杂志, 1999,15(5):271.
    [30]徐叔云.药理学试验方法学[M].北京:人民卫生出版社, 1996:813-815.
    [31]潘竞锵,刘慧纯,刘广南,等.荔枝核降血糖、调血脂和抗氧化的实验研究[J].广东药学, 1999,9(1):47-50.
    [32]杨新波,黄正明,曹文斌,等.泽泻醇提取物对高血糖小鼠血液生化指标及胰岛素的影响[J].中国临床康复, 2004,8(6):1196-1197.
    [33]宁勇,邹欣.自制四氧嘧啶针剂制作家兔糖尿病模型观察[J].微循环学杂志, 2004,14(3):33-35.
    [34] Ahben B, Sundkvist G, Mulder H, et al. Blockade of muscarinic transmission increases the frenqucy of diabetes after low-dose Alloxan challenge in the mouse [J]. Diabetologia, 1996,39(4):383-390.
    [35]刘学政,萧鸿.链脲佐菌素致大鼠糖尿病模型的研究[J].锦州医学院学报, 2001,22 (4):11.
    [36] Rakieten. Studies on diabetogenic action of streptozotocin (NSC-37917) [J]. Cancer Chemotherapy Reports, 1963,29:91.
    [37]杨亦彬,张翥,苏克亮,等.链脲佐菌素诱导大鼠糖尿病肾病模型的方法学探讨[J].华西医学, 2005,20(2):299-300.
    [38] Rerup CC. Drugs producing diabetes through damage of the insulin secreting cell [J]. Pharmacol Rev, 1970,22(4):485.
    [39]郭啸华,刘志红,李恒,等.高糖高脂饮食诱导的2型糖尿病大鼠模型及其肾病特点[J].中国糖尿病杂志, 2002,10(5):290-294.
    [40]张静,吴靖芳,郑慧蛾.链脲佐菌素致大鼠糖尿病模型的实验研究[J].河北北方学院学报, 2006,4(23):628.
    [41]孙以方,白德成,张文慧.医学实验动物学教程[M].河南医科大学出版社, 1998:278-289.
    [42] Ree DA, Alcolado JC. Animal models of diabetes mellitus [J]. Diabetic Medicine. 2005,22:359-370.
    [43]郭啸华,刘志红.实验性Ⅱ型糖尿病大鼠模型的建立[J].肾脏病与透析肾移植杂志, 2000,4(9):351-354.
    [44]司晓晨,尚文斌,卞慧敏,等.链脲佐菌素加高脂膳食诱导2型糖尿病大鼠模型[J].安徽中医临床杂志, 2003,15(5):383.
    [45] Chen D, Wang MW. Development and application of rodent models for type 2 diabetes [J]. Diabetes Obes Metab, 2005,7(4):307-317.
    [46]于德民,吴锐,尹潍,等.实验性链脲佐菌素糖尿病动物模型的研究[J].中国糖尿病杂志, 1995,3(2):105.
    [47] Papaccio G, Frascatore S, Esposito V, et al. Early macrophage infiltration in mice treated with low-dose streptozotocin decreases islet superoxide dismutase levels: Prevention by silica pretreatment [J]. Acta Anat, 1991,142(2):141.
    [48] Hao L, Chan SM, Lafferty KJ, et al. Mycophenolate mofetil can prevent the development of diabetes in BB rats [J]. Ann N Y Acad Sci, 1993,969(6):328-332.
    [49] Saini KS, Thomp son C, Winterford CM, et al. Streptozotocin at low doses induces apoptosis and at high doses causes necrosis in a murine pancreatic beta cell line, INS-1 [J]. Biochem Mol Biol Int, 1996,39(6):1229-1236.
    [50] Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination [J]. Diabetes, 2000,49(5):677-683.
    [51] Proietto J, Filippis A, Nakhla C, et al. Nutrient-induced insulin resistance [J]. Mol Cell Endocrinol, 1999,151:143-149.
    [52]李强. IDDM胰岛β细胞损伤机制的研究进展[J].国外医学.临床生物化学与检验学分册, 1999,20(3):130.
    [53]徐建华,孙中华,颜燕,等.应用于保健食品功能学评价的糖尿病动物模型研究[J].中国卫生检验杂志, 2002,12(6):668-669.
    [54]王宝金,代解杰.糖尿病动物模型的研究进展[J].上海实验动物科学, 2003, 23(2):116-118.
    [55]杜丽坤,赵莹,杜立杰,等.实验性糖尿病动物模型的建立[J].现代中西医结合杂志, 2004,13(5):581.
    [56]苗明三.实验动物和动物的实验技术[M].北京:中国中医药出版社, 1997:240-241.
    [57]宋立江,刘长青,郭金铭,等.链脲佐菌素致小鼠糖尿病模型影响条件的实验研究[J].实用预防医学, 2008,15(5):1592-1593.
    [58] Van Zwieten Pa, et al. Hypertensive diabetic rats inpharmacological studies [J]. Pharmacol Res, 1996,32(2):95-105.
    [59]施红,杨奇红,张捷平,等.石斛合剂对高脂高糖加链脲佐菌素造模大鼠的作用及机制[J].中国临床康复. 2004,8(6):1102-1104.
    [60]冷三华,陆付耳,屠庆年,等.黄连解毒汤对2型糖尿病大鼠血糖和血脂代谢的影响[J].中国临床康复, 2004,8(21):4388-4389.
    [61]谢明智,刘海帆,张凌方,等.实验性肥胖及糖尿病大鼠模型[J].药学学报, 1985,20(11):801.
    [62]周敏.实验性糖尿病动物模型研究及其进展[J].浙江中医学院学报, 2001,25(5):79.
    [63] Simionescu M, Popov D, Sima A, et al. Pathobiochemistry of combined diabetes and atheroseclerosis studied on a novel animal model: Hyperlipemic-hyperglycemic hamster [J]. Am J Pahtol, 1996,148(3):997-1014.
    [64] Masillo P, Broca C, Gross R, et al. Experimental NIDDM: development of a new model of adult rats administrated streptozotocin and nicotinamide [J]. Diabetes, 1998,47(2):224-229.
    [65]刘晟,王维,罗贤明,等.药物诱导狗1型糖尿病的研究[J].湖南医科大学学报, 2000,25(2):125-128.
    [66] Gordon EJ, Mardees TG, Phillips NF, et al. Prolonged survival of rat islet and skin xenografts [J]. 47(8):1199-2208.
    [67]郑里翔. STZ和Alloxan联合使用复制实验性大鼠模型.中国病理生理杂志[J]. 1999,15(8):758-759.
    [68]胡绍文,郭瑞林编.实用糖尿病学[M].北京:人民军医出版社, 1998:135-136.
    [69]邓华菲.糖尿病动物模型的建立[J].郴州医学高等专科学校学报, 2002,4(1):27-28.
    [70] Sbraccia P, Giaccari A,D”Adamo A, et al. Expression of the two insulin receptor isoforms is not altered in the skeletal muscle and liver of diabetic rats [J]. Metabolism, 1998,47(2):129-136.
    [71]魏泓.医学实验动物学[M].成都:四川科学技术出版社, 1998:347.
    [72]董叫云,陈志龙,青春,等.糖尿病动物模型制作及进展[J].中华国际医学杂志, 2001,7:148-150.
    [73] Kagi D, Odermatt B, Ohashi PS, et al. Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity [J]. J Exp Med, 1996,183:214-223.
    [74]孙子林,葛祖恺,等.糖尿病动物模型及其进展[J].中国糖尿病杂志, 1999,7(4): 227-231.
    [75]谭正怀,莫正纪,陈岷,等.西布曲明对金硫葡萄糖诱导肥胖动物模型的影响[J].中国药理学通报, 2003,10(19):1152-1155.
    [76] Nagata M, Suzuki W, lizuka A et al. Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate [J]. Exp-Anim, 2006,55(2):109.
    [77] Huang BW, Chiang MT, Yao HT, et al. Effects of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats [J]. Diabetes Obes Metab, 2004,6(2):120-126.
    [78]席守民,王宗保,张秋菊,等.饮食诱发II型糖尿病动物模型的研究[J].中国实验动物学报, 2003,11(2):126.
    [79]李瑞峰,魏树珍,李莉,等.大鼠2型糖尿病模型的建立[J].山东大学学报医学版, 2002,40(4):1132.
    [80]关子安,孙茂欣,关大顺,等.现代糖尿病学[M].天津:天津科学技术出版社, 2001: 63-68 & 56-59.
    [81]施新猷.现代医学实验动物学[M].北京:人民军医出版社, 2000:482-484.
    [82]黄红兰,易世红,李凡.柯萨奇B4病毒诱导的实验性糖尿病小鼠血清一氧化氮浓度的变化[J].中国病理生理杂志, 2004,20(5):855-857.
    [83]王宝金,代解杰.糖尿病动物模型的研究进展[J].上海实验动物科学, 2003,23(2):116-118.
    [84]郭欲晓,罗谋伦,林志彬.静注卡介苗建立免疫性胰岛素抵抗模型[J].药学学报, 2002,37(5):321.
    [85]张均田.现代药理学实验方法[M].北京:北京医科大学中国协和医科大学联合出版社, 1998:981-988.
    [86]张新国,杨学军.手术治疗2型糖尿病的突破性进展[J].武警医学, 2004,15(12):883.
    [87]查彦红,谷卫.糖尿病动物模型的研究进展[J].浙江医学, 2007, 29(12):1342-1346.
    [88] Mathews CE. Utility of murine models for the study of spontaneous autoimmune type 1 diabetes [J]. Pediatr Diabetes, 2005,6(3):165-177.
    [89] Eisenbarth GS. Type 1 diabetes mellitus: a chronic autoimmune disease [J]. N Engl J Med, 1986,314:360.
    [90] Mendez JD, Ramos H G. Animal models in diabetes research [J]. Archives of medical research, 1994,4:367-375.
    [91] Nakhooda AF, et al. Metabolic and Morphologic Observations on the Biobreeding Spontaneously Diabetic Rat [J]. Clin Res, 1975,23:638-646.
    [92] Makina S, Kunimoto K, Muraoka Y, et al. Breeding of a non-obese, diabetic strain of mice [J]. Jikken-Dobutsu, 1980,29(1):1.
    [93] Yoshida K, Kikutani H. Genetic and immunological basis of autoimmune diabetes in the NOD mouse [J]. Rev-Immunogenet, 2000,2(1):140.
    [94] Bach J F. Immunotherapy of type 1 diabetes: lessons for other autoimmune diseases [J]. Arthritis Res, 2002,Suppl 3:S1-S15.
    [95] Mathews C E. Utility of murine models for the study of spontaneous autoimmune type 1 diabetes [J]. Pediatr Diabetes, 2005,6(3):165-177.
    [96] Meier, Hi Yerganian G. Spontaneous diabetes mellitus in the Chinese hamsterc (ricetulus grisens): Findings in the offspring of diabetic parents [J]. Diabetes, 1961,10:12.
    [97] Gerritsen GC. The Chinese hamster as a model for the study of diabetes mellitus [J]. Diabetes, 1982,31(2):14.
    [98]王济,等.山西医学院群体中国地鼠自发的遗传糖尿病模型[J].中国病理生理杂志, 1988,4(5):262-266.
    [99] Guenifi A, Abdel-Halim SM, Hoog A, et al. Preserved beta–cell density in the endocrine pancreas of young spontaneously diabetic Goto-Kakizaki (GK) rats [J]. Pancreas, 1995,10(2):148.
    [100] Giroix MH, Vesco Li, Portha B. Functional and metbolic perturbations in isolatedpancreatic islets from the GK rat, a genetic model of noninsulin - dependent diabetes [J]. Endocrinology, 1993,132(2):815.
    [101] Picarel BF, Berthelier C, Builbe D, et al. Imparied insulin secretion and exdessive hepatic glucose production are both early events in the diabetic GK rat [J]. Am J Physiol, 1996,271:E755-E762.
    [102] Movassat J, Saulnier C, Portha B. Beta-cell mass depletion precedes the onset of hyperglycaemia in the GK rat, a genetic model of non-insulin-dependent diabetes mellitus [J]. Diabete-Metab, 1995,21(5):365.
    [103] Ktorza A, Bernard C, Parent V, et al. Are animal models of diabetes relerant to the study of the genetics of non-insulin dependent diabetes in humans [J]? Diabetes-Metab, 1997, 23 (Suppl 2): 38.
    [104] Koyama M, Wada R, Sakuraba H, et al. Accelerated loss of istet beta cells in sucrose -fed Goto-Kakizaki rats, a genetic model of non -insulin - dependent diabetes mellitus [J]. Am J Pathol, 1998,153(2):537.
    [105]施新猷,等.医学实验动物学[M],第一版,西安:陕西科学技术出版社, 1996,997.
    [106] Matsuura T, Yamagishi S, Kodama Y et al. Otsuka Long–Evans Tokushima fatty (OLETF) rat is not a suitable animal model for the study of angiopaghic diabetic retinopathy [J]. Int J Tissue React, 2005,27(2):59.
    [107]张亚非.Ⅱ型糖尿病实验模型[J].国外医学卫生学分册, 2000,27(6):328.
    [108] Kyoko M, Shigeki N, Minoru O, et al. Disturbance of response to acute thermal pain in naturally occurring cholecystokinin -- a receptor gene knockout Otsuka Long-Evans Toku- shima Fatty(OLETF) rats [J]. J Pharmacol Sci, 2006,101:280-285.
    [109]刘彦君.自发的2型糖尿病动物模型-OLETF大鼠[J].国外医学内分泌学分册, 1999,1(1):90.
    [110] Ruth Kava, Greenwood MRC, et al.糖尿病动物模型研究进展(二) [J].北京实验动物科学, 1992,9(2):41.
    [111] Sylvin A, Me Cune, Peter B, et al. SHHF/Mcc2cp大鼠[J].北京实验动物科学, 1992,9 (2):44.
    [112] Ueda H, Ikegami H, Yamato E, et al. The NSY mouse: a new animal model of spontaneous NIDDM with moderate obesity [J]. Diabetlogia, 1995,38(5):503-508.
    [113] Duhault J, Boulanger M, Espinal J, et al. Latent autoimmune diabetes mellitus in adult humans with non-insulin-dipendent diabetes: is psammomys obesus a suitable animal model [J]? Acta Diabtol, 1995,32:92.
    [114] Lizuka S, Suzuki W, Tabuchi M, et al. Diabetic complications in a new animal model (TSOD mouse) of spontaneous NIDDM with obesity [J]. Exp-Anim, 2005,54(1):71.
    [115] Wolf G. Insulin resistance associated with leptin deficiency in mice: a possible model for noninsulin-dependent diabetes mellitus [J]. Nutr Rev, 2001,59(6):177-179.
    [116] Rahimian R, Masih- Khan E, Lo M, et al. Hepatic over-expression of peroxisome proliferators activated receptor gamma 2 in the ob/ob mouse model of non-insulin dependent diabetes mellitus [J]. Mol Cell Biochem, 2001, 33(12):721-726.
    [117] Ito T, Tanimoto M, Yamada K, et al. Glomerular changes in the KKAy/Ta mouse: a possible model for human type 2 diabetic nephropathy [J]. Nephrology (Carlton), 2006,11 (1):29-35.
    [118]方厚华,仇志华.糖尿病动物模型的研究进展[J].实验动物科学与管理, 2001,18 (2):39.
    [119] Ree DA, Alcolado JC. Animal models of diabetes mellitus [J]. Diabetic Medicine, 2005,22:359-370.
    [120] Andre l, Gonzalez A, Wang B, et al. Checkpoints in the progression of autoimmune disease; lessons from diabetes models [J]. Proc Natl Acad Sci USA, 1996;93:2260.
    [121] Moller DE. Perspective in diabetes transgenic approaches to the pathogenesis of NIDDM [J]. Diabetes, 1994;43:1394.
    [122] Dali D, Svetlanov A, Lee HW, et al. Animal model for maturity onset diabetes of the young generated by disruption of the mouse glucokinase gene [J]. J Biol Chem, 1995;270:21464.
    [123]新的糖尿病模型:小鼠胰岛细胞过度表达ICER的研究(ADA2001年会, 452OR) [J].国外医学内分泌学分册, 2002,22(1):58.
    [124]周丽斌,陈名道.基因敲除技术在2型糖尿病研究中的应用[J].国外医学内分泌学分册, 2002,5(3):177-180.
    [125] Baudry A, Leroux L, Rajiv L, et al. Genetic manipulation of insulin signaling, action and secretion in mice [J]. EMBO Reports, 2002,3(4):323-328.
    [126] Takashi K. Insights into insulin resistance and type 2 diabetes from knockout mouse models [J]. J Clin Invest, 2000,106(4):459-465.
    [127] Bruning JC, Winnay J, Bonner-Weir S, et al. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS–1 null alleles [J]. Cell, 1997,88:561.
    [128] Bali D, Svetlanov A, Lee HW et al. Animal model for maturity onset diabetes of the young generated by disruption of the mouse glucokinase gene [J]. J Biol Chem, 1995,270:21464.
    [129] Jarvis FM, Kahn CR. Understanding the pathogenesis and treatment of insulin resistance and type 2 diabetes mellitus: What can we learn from transgenic and knockout mice [J]. Diabetes Metab, 2000,26:433-448.
    [130] Terauchi Y, Iwamoto K, Tamemoto H, et al. Development of noninsulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 andβcell glucokinase genes [J]. J Clin Invest, 1997,99:861-866.
    [131] Hagenfeldt-Johansson KA, Herrera PL, Wang H, et al. Beta-celltageted expression of a dominant-negative hepatocyte nuclear factor-1 alpha induces a maturity-onset diabetes of the young (MODY) -like phenotype in transgenic mice [J]. Endocrinology, 2001,142(12):5311-5320.
    [132] Baudry A, Leroux L, Rajiv L, et al. Genetic manipulation of insulin signaling, action and secretion in mice [J]. EMBO Reports, 2002,3(4):323-328.
    [133] Terauchi Y, Iwamoto K, Tamemoto H, et al. Development of noninsulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 andβcell glucokinase genes [J]. J Clin Invest, 1997,99:861-866.
    [134] Yamashita H, Shao JH, Qiao LP, et al. Effect of spontaneous gestational diabetes on fetal and postnatal hepatic insulin resistance in Lep r (db/+) mice [J]. Pediatr Res, 2003,53(3): 411-418.
    [135] Shao JH, Yamashita H, Qiao LP, et al. Phosphatidylinositol 3-kinase redistribution isassociated with skeletal muscle insulin resistance in gestational diabetes mellitus [J]. Diabetes, 2002,51(1):19-29.
    [136] Silva J P, Kohler M, Graff C, et al. Impaired insulin secretion and beta- cell loss in tissue-specific knockout mice with mitochondrial diabetes [J]. Nat Genet, 2000,26(3): 336-340.
    [137] Ree DA, Alcolado JC. Animal models of diabetes mellitus [J]. Diabetic Medicine. 2005,22:359-370.
    [138]王毅,骆惠均,王芳,等. PC21转基因小鼠的建立及其与2型糖尿病发病关系[J].中华内分泌代谢杂志, 2005,12(6):554-556.
    [139]杨玉芳,丁彦青.转基因小鼠技术在肿瘤研究中应用与发展[J].医学综述. 2004, 10(1):122.
    [140]沈薇,董继宏,汪昕.糖尿病周围神经病的发病机制及治疗展望[J].中国临床神经科学. 2008,16(2):204-207.
    [141]张国华,廖晓凌,林杰,等.糖尿病神经病变发病机制研究进展[J].临床荟萃, 2003,18(21):1247-1248.
    [142]胡绍文,郭瑞林.实用糖尿病学[M].北京:人民军医出版社, 1998:227-228.
    [143]王宇石,程门雪,饶明俐.糖尿病大鼠周围神经NGF的动态表达及巴曲酶对其的影响[J].中风与神经疾病杂志, 2007,24(3):303-305.
    [144] Cameron NE, Eaton SE, Cotter MA, et al. Vascular factors and metabolic interact- tions in the pathogenesis of diabetic neuropathy [J]. Diabetologia, 2001,44(11):1973.
    [145] Apfel SC. Neurotrophic factors in peripheral neuropathies: therapeutic implications [J]. Brain Pathol, 1999,9(2):393-413.
    [146]徐春,李江源.转基因糖尿病小鼠的周围神经病变[J].国外医学内分泌学分册, 1999,19(6):280-281.
    [147] Hellweg H, Hartung HD. Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabeticneuropathy [J]. Journal of Neuroscience Research, 1990,26:258.
    [148] Faradji V, Sotelo J. Lower serum levels of nerve growth factor in diabetic neuropathy [J]. Acta-Neurol Scand, 1990,81:402.
    [149] Jakobsen J, Brimijoin S, Skau K, et al. Retrograde axonal transport of transmitter enzymes, fucoses-labeled protein and nerve growth factor in streptozotocin diabetic rats [J]. Diabetes, 1981,30:797.
    [150] Rask C A. Biological actions of nerve growths factors in thperipheral nervous system [J]. Eur neurol, 1999,41(Supple 1):14.
    [151] Apfel SC, Kessler JA, Adornato BT, et al. Recombinant human nerve growth factor in treatment of diabetic polyneuropathy, NCF Study group [J]. Neurology, 1998,51(3):695.
    [152] Apfel SC. Neurotrophic factors in the therapy of diabetic neuropathy [J]. Am J Med, 1999,107(2B):34S-42S.
    [153] Anand P, Terenghi G, Warner G, et al. The role of endogenous nerve growth factor in human diabetic neuropathy [J]. Nat Med, 1996,2:703-707.
    [154] Vinik AL, Pittenger GL, Milicevic Z, et al. Autoimmune mechanisms in the pathogenesis of diabetic neuropathy [M]. In: Eisenbath G, ed. Molecular Mechanisms of Endocrine and Organ Specific Autoimmunity. Austin, TX: R. G. Landes Company, 1998: 217-251.
    [155] Milicevic Z, Liuzzi FJ, Pittenger GL, et al. Morphometric and immuno-pathologic characteristics of sural nerve from patients with distalsym metric diabetic polyneuropathy (DSPN) [J]. Diabetes, 1998,47(Suppl 1):43.
    [156] Vinik AL, Leichter SB, Pittenger GL, et al. Phospholipid and glutamicacid decarboxylase antibodies in diabetic neuropathy [J]. Diabetes Care, 1995,18:1225- 1232.
    [157] Heesom AE, Millward A, Demamine AG. Susceptibility to diabetic neuropathy in patients with insulin dependent diabetes mellitus is assotiated with a polymorphism at the 5’end of the aldose reductase gene [J]. Neurol Neurosurg Psychiatry, 1998,64(2):213-216.
    [158]方圻.现代内科学[M].北京:人民军医出版社, 1996:2733.
    [159]俞丽云.糖尿病的神经系统表现[J].中国实用内科杂志, 1997,17(5):262.
    [160] Sasaki H, Schmelzer JD, Zollman PJ, et al. Neuropathology and blood flow of nerve,spinal roots and dorsal root ganglia in longstanding diabetic rats [J]. Acta Neuropathol, 1997, 93:118-128.
    [161] van Dam PS, van Asbeck BS, Bravenboer B, et al. Nerve function and oxidative stress in diabetic and vitamin E-deficient rats [J]. Free Radic Biol Med, 1998,24:18-26.
    [162] Schmeichel AM, Schmelzer JD, Low PA. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy [J]. Diabetes, 2003,52: 165-171.
    [163] Fernyhough P, Huang TJ, Verkhratsky A. Mechanism of mitochondrial dysfunction in diabetic sensory neuropathy [J]. J Peripher Nerv Syst, 2003,8:227-235.
    [164] Brownlee M. Biochemistry and molecular cell biology of diabetic complications [J]. Nature, 2001,414:813-820.
    [165]张均田,主编.现代药理学实验方法[M].北京:北京医科大学中国协和医科大学联合出版社, 1998.981-988.
    [166] Gabbay KH. Aldose reductase inhibition in the treatment of diabetic neuropathy: where are we in 2004 [J]? Curr Diab Rep, 2004,4(6):405-8.
    [167] Deuther-Conrad W, Loske C, Schinzel R, et al. Advanced glycation end products change glutathione redos status in SH-SY5Y human neuroblastoma cells by a hydrogen peroxide dependent mechanism [J]. Neurosci Lett, 2001,312:29-32.
    [168]王宇石,吕萍.糖尿病周围神经病发病机制探讨[J].中风与神经疾病杂志, 2005,22(05):474-476.
    [169] Sima AA, Sugimoto K. Experimental diabetic neuropathy: an update [J]. Diabetologia, 1999,42(7):773.
    [170]屈传颈,王慧,郭洪志.糖尿病周围神经病变发病机制的新进展[J].脑与神经疾病杂志, 2002,12(6):374-375.
    [171] Asano T, Saito Y, Kawakami M, et al.Fidarenstat (SNK-860), a potent aldose reductase inhibitor, normalizes the elevated sorbitol accumulation in erythrocytes of diabetic patients [J]. J Diabetes Complications, 2002,16:133-138.
    [172] Kinoshita JH. A thirty year journey in polyol pathway [J]. Exp Eye Res, 1990,50:567.
    [173] Cameron NE, Cotter MA, Hohman TC, et al. Interactions between essential fatty acid,prostanoid, polyol pathway and nitric oxide mechanisms in the neurovascular deficit of diabetic rats [J]. Diabetologia, 1996,39:172-182.
    [174]刘磊.糖尿病周围神经病变发病机制研究进展[J].南通医学院学报, 2004,24(1):115-118.
    [175] Feldman EL, Stevens MJ, Green DA. Pathogenesis of diabetic neuropathy [J]. Clin Neurosci, 1997,4(6):365-370.
    [176] Herman WH, Sinnock P, Brenner E, et al. An epidemiologic model for diabetes mellitus: incidence, prevalence, and mortality [J]. Diabetes Care, 1984,7:367-371.
    [177] Obrosova IG, Van Huysen C, Fathallah L, et al. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense [J]. FASEB J, 2002,16(1):123.
    [178]肖谦,汪恕萍.多元醇通路与糖尿病慢性并发症的关系研究进展[J].国外医学内分泌学分册, 2001,21(3):128-130.
    [179] Sima AA, Sugimoto K. Experimental diabetic neuropathy: an update [J]. Diabetologia, 1999,42(7):773.
    [180] Oates PJ. Polyol pathway and diabetic peripheral neuropathy [J]. Int Rev Neurobiol, 2002,50:325.
    [181] Greene DA, Arezzo JC, Brown MB.Effect of aldose reductase inhibition on nerve conduction and morphome in diabetic neuropathy [J]. Zenarestat Study Group. Neurology, 1999,53(3):580.
    [182] Price SA, Agthong S, Middlemas AB, et al. Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase [J]. Diabetes, 2004,53(7):1851-1856.
    [183] Raccah D, Coste T, Cameron NE, et al. Effect of the aldose reductase inhibitor Tolrestat on nerve conduction velocity, Na/K ATPase activity, and polyols in red blood cells, sciatic nerve, kidney cortex, and kidney medulla of diabetic rats [J]. J Diab Comp, 1998, 12(3):154-162.
    [184] Verrotti A, Giuva P T, Morgese G, et al. New trends in thetipathogenesis of diabetic peripheral neuropathy [J]. J Chil Neurol, 2001, 16(6):389-394.
    [185] Wada R, NishizawaY, Yagihashi N, et al. Effects of OPB-9195, anti-glycation agent, experimental diabetic neuropathy [J]. Eur J Inbest, 2001,31:513-520.
    [186] Thomas MC, Baynes JW, Thorpe SR, et al. The role of AGEs and AGE inhibitors in diabetic cardiovascular disease [J]. Curr Drug Targets, 2005,6:453-474.
    [187] Kishikawa H, Mine S, Kawahara C, et al. Glycated albumin and cross-linking of CD44 induce scavenger receptor expression and uptake of oxidized LDL in human monocytes [J]. Biochem Biophys Res Commun, 2006,339:846-851.
    [188] Yeh CH, Sturgis L, Haidacher J, et al. Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappa B transcriptional activation and cytokine secretion [J]. Diabetes, 2001,50:1495-1504.
    [189] Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress [J]. Free Radic Biol Med, 2000,28:1349-1361.
    [190] Ishii H, Koya D, King GL. Protein kinase C activation and its role in the develop- pment of vascular complications in diabetes mellitus [J]. J Mol Med, 1998,76(1):21-31.
    [191] Nakamura J, Kato K, Hamada Y, et al. A protein kinase C-beta-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats [J]. Diabetes, 1999,48 (10):2090-2095.
    [192] Cameron NE, Cotter MA. Effects of protein kinase C-βinhibition on neurovascular dysfunction in diabetic rats: interaction with oxidative stress and essential fatty acid dysmetabolism [J]. Diabetes Metab Res Rev, 2002,18:315-323.
    [193] Srivastava AK. High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: a potential role in the pathogenesis of vascular dysfunction in diabetes (review) [J]. Int J Mol Med, 2002,9:85-89.
    [194] Casellini CM, Barlow PM, Rice AL, et al. A 6-month, randomized, double-masked, placebo-controlled study evaluating the effects of the protein kinase C-beta inhibitor ruboxistaurin on skin microvascular blood flow and other measures of diabetic peripheral neuropathy [J]. Diabetes Care, 2007,30:896-902.
    [195] Wells L, Hart G. O-GlcNAc turns twenty: functional implications for posttransl-ational modification of nuclear and cytosolic protein with a sugar [J]. FEBS Lett, 2003,546: 154-158.
    [196] Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation [J]. Proc Natl Acad Sci USA, 2000,97:12222-12226.
    [197] Polydefkis M, Griffin JW, McArthur J. New insights into diabetic polyneuropathy [J]. JAMA, 2003,290:1371-1376.
    [198] Ziegler D, Nowak H, Kempler P, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant-- a lipoic acid: a metaanalysis [J]. Diabetic Med, 2004,21:114-121.
    [199]刘欣,康德萱.糖尿病神经病变发生机制研究的若干进展[J].国外医学神经病学神经外科学分册, 2001,28(3):201-204.
    [200] Barzilay JI, Abraham L, Heekbert SR, et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study [J]. Diabetes, 2001,50:2384-2389.
    [201]李秀均,邬云红.糖尿病是一种炎症性疾病[J]中华内分泌代谢杂志, 2005,19:251-253.
    [202]吴伟华,张巾超,刘国良. C-反应蛋白与2型糖尿病及合并大血管病变的相关性研究[J].中国糖尿病杂志, 2003,11:247-249.
    [203] Reape TJ, Groot PH. Chemokines and atherosclerosis [J].Atherosclerosis, 1999,147: 213-225.
    [204]郭蔚莹,刘艳,朱丹. 2型糖尿病合并周围神经病变内皮素及一氧化氮水平监测[J].中国实验诊断学, 2005,6(9):413-414.
    [205]林立平,王钧,匡霞. 2型糖尿病患者血管并发症与ET、NO、CRP的关系及贝那普利的治疗效果[J].医学临床研究, 2008,25(11):2018-2020.
    [206] Veves A, Akbari CM, Primauexa J, et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease and foot ulceration [J]. Diabetes, 1998,47(3):457.
    [207] Takahashi K, Ghatei MA, Lan HC, et al. Elvated plasma endothelin in patients with diabetes mellitus [J]. Diabetologia, 1990,33(2):306-309.
    [208] Hodgson WC, King RG. Effents of glucose, insulin or aldose reductase inhibition on reponse to endothelin-1 of aortic rings from streptozocin-induced diabetic rats [J]. Br J Pharmacol, 1992,106(3):644.
    [209]殷松楼,张宝慧.运动对大鼠胸主动脉损伤后内皮素和一氧化氮合酶的影响[J].中国心血管康复医学杂志, 1997,6(1):14-16.
    [210] Kawano H, Motoyama T, Hirashima O, et al. Hyperglycemia rapidly suppresses flow mediated endothelium dependent vasodilation of brachial artery [J]. J Am Coll Cardiol, 1999,34:146.
    [211]林红,蔡英所.一氧化氮合酶进展[J].生物学通报, 1997,32:10.
    [212] Veres A, Akbari CM, Primavera J, et al. Endothelial dysfuncion and the expression of endothelial nitric oxide synthase in diabetic neuropathy, vascular disease, and foot ulceration[J]. Diabetes, 1998,47:457.
    [213] Yanagisawa M, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells [J]. Nature, 1988,332:411.
    [214] Hirata S, et al. Pharmacol Rev, 1991,43:109.
    [215] Pieper GM, Peltier BA. Amelioration by L2arginine of a dysfunctional argininal nitric oxide pathway in diabetic endothelium [J]. J Cardio Pharmaco, 1995,25:39.
    [216]熊华联.前列腺素E1联合甲钴胺对糖尿病周围神经病变疗效观察[J].实用医学杂志, 2008,24(13):2310-2311.
    [217]孙向东.前列地尔治疗糖尿病神经病变[J].蚌埠医学院学报,2001,26(6): 499-500.
    [1] Zimmet P, Shaw Jlbertit KG. Preventing type 2 diabetes and the dysmetabolic syndrome in the real world: a realistic view [J]. Diabet Med, 2003,20(9):693.
    [2] Harati Y. Diabetic peripheral neuropathies [J]. Ann Intern Med, 1987,107(4):546- 559.
    [3] Johnsen B, Fuglsang-Frederiksen A. Electrodiagnosis of polyneuropathy [J]. Neurophysiol Clin. 2000,30(6):339-351.
    [4] Wu PB, Gussner CG, Date ES. Correlation of EMG, CMAP and SNAP amplitude decrease in mononeuropathies with axonal loss [J]. Electromyography Cli Neurophysiol. 1996,36(7):405-409.
    [5]毛向群,朱丽萍. 2型糖尿病防治进展[J].江西医药, 2005,40(2):107.
    [6]张宁梅,吴先萍,杨小妍,等.Ⅰ型糖尿病危险因素的流行病学研究进展[J].现代预防医学杂志, 2003,30(1):63.
    [7] Cefalu WT. Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition [J]. ILAR-J, 2006,47(3):186- 198.
    [8]冯丹,张新国.糖尿病的动物模型[J].武警医学. 2007,18(5):384-386.
    [9]黄松.糖尿病动物模型研究现状及进展[J].广西医学, 2002,24(1):46.
    [10]杜冠华,李学军,张永祥,等译.药理学实验指南:新药发现和药理学评价[M].北京:科学出版社, 2001:698-712.
    [11]谢宁,吴颂,王晓博,等.糖尿病动物模型研究进展[J].新乡医学院学报. 2007,24(6):629-632.
    [12]孙敬方.动物实验方法学[M].北京:人民卫生出版社, 2002:477-479.
    [13]孙焕,陈广,陆付耳.介绍几种诱发性糖尿病动物模型[J].中国实验方剂学杂志, 2007,13(2):65-68.
    [14] Pettpher CC, Ledoux SP,V A ,et al. Repair of Alkali labile sites within the mitochondrial DNA of RINr38 cells after exposure to the nitrosourea streptozotocin[J]. J Bio Chem, 1991,266:3113.
    [15]覃雯,唐爱华.糖尿病实验性动物模型研究概况[J].时珍国医国药, 2007,18(6):1511-1512.
    [16]王艳静,叶华虎,邵军石.猕猴自发性糖尿病动物模型的初步探讨[J].中国比较医学杂志, 2004,14(1):13.
    [17]席守民,王宗保,张秋菊,等.饮食诱发II型糖尿病动物模型的研究[J].中国实验动物学报, 2003,11(2):126.
    [18]廖蓉,谭毅,王鸿雏.糖尿病研究和动物模型[J].实验动物科学与管理, 2001,18(2):36.
    [19]刘军须,等.建立小型猪IDDM模型的方法[J].实验动物科学与管理, 1998,15(2):11-14.
    [20]汪治.果蝇可作为研究人类糖尿病的模型[J].生物技术通报, 2003,2:44.
    [21]黄松,冼苏.糖尿病动物模型研究现状及进展[J].广西医学, 2002,24(1):46-48.
    [22]高红莉,刘方永,夏作理.实验性糖尿病动物模型的理论研究与应用.中国临床康复[J].2008,9(3):210-212.
    [23]胡克恒,张国军.实验性糖尿病[M].实用儿科杂志, 1992,7(4):174.
    [24] Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitic: new model of diabetes mellitus [J]. Science, 1976,193:415.
    [25]刘学政,萧鸿.链脲佐菌素致大鼠糖尿病模型的研究[J].锦州医学院学报, 2001,22(4):11.
    [26] Thulesen J, Orskov C, Holst JJ, et al . Short-term insulin treatment prevents the diabetogenic action of streptozotocin in rats [J]. Endocrinology, 1997,138(1):62.
    [27] Mordes J P. Willy MS. Influence of age and sex on inseptibity to STZ diabetes [J]. Diabetes, 1980,29(suppl 2):132.
    [28] Masiello C, Depaol A, Bergamini E. Age dependent changes in the sensitivity of the rat to a diabetogenic agent (STZ) [J]. Endocrinology, 1975,96:787.
    [29] Reynold A E. Possible animal models for diabetes mellitus: syndromes involving toxic of immune etiology [M]. The Diabetes Annual I editors: Alberti KGMM & KrallIP Elsevier Science Publishers BV, 1983:492-508.
    [30]贾军宏,马学毅,田东华,等.神经生长因子对糖尿病大鼠背根神经节坐骨神经P物质变化的影响[J].解放军医学杂志, 1998,23(6):420-422.
    [31]付晓,李敬林,卞镝,等.糖克煎剂对糖尿病大鼠肾脏病理组织结构的影响[J].中医药学刊, 2006,24(4):657-658.
    [32]吴启端,熊曼琪,方永奇,等.一次性腹腔注射链佐霉素制备大鼠糖尿病模型[J].中药新药与临床药理, 1998,9(1):37-38.
    [33]张新兰,张兰.体重因素对链脲佐菌素所致糖尿病大鼠模型的影响[J].辽宁中医药大学学报, 2008,10(5):179.
    [34] Jorns A, Klempnauer J, Tiedge M, et al. Recovery of pancreatic beta cells in response to long-term normoglycemia after pancreas or islet transplantation in severely streptozotocin diabetic adult rats [J]. Pancreas, 2001,23(2):186-196.
    [35]孙敬方.动物实验方法学[M].北京:人民卫生出版社, 2002:477-479.
    [36] Lynch JJ, Jarvis MF, Kowaluk EA. An adenosine kinase inhibitor attenuates tactile allodynia in a rat model of diabetic neuropathic pain [J]. Eur JPharmacol, 1999,364(2/3):141-146.
    [37]黄松,冼苏.糖尿病动物模型研究现状及进展[J].广西医学, 2002,24(1):46-48.
    [38]刘霆,张桂珍,卜丽莎,等. STZ小剂量多次注射诱导大鼠胰岛素依赖性糖尿病动物模型探讨[J].白求恩医科大学学报, 2001,27(6):578.
    [39]黄波,刘学政,庞东渤.不同途径注射链脲佐菌素致大鼠糖尿病模型的研究[J].锦州医学院学报, 2003,24(1):19-21.
    [40]杨金晶,杨秋萍.链脲佐菌素诱导糖尿病动物模型的体会[J].昆明医学院学报, 2008,2(B):164-166.
    [41]邓华菲.糖尿病动物模型的建立[J].郴州医学高等专科学校学报, 2002,4(1):27-28.
    [42]贾雪梅,齐易祥,王惠珠,等.实验性糖尿病对小鼠肝脏酶组织化学和超微结构的影响[J].解剖学杂志, 1995;18(5):451.
    [43] Lynch JJ, Jarvis MF, Kowaluk EA, et al. An adenosine kinase inhibitor attenuatestactile allodynia in a rat model of diabetic neuropathic pain [J]. Eur J Pharmacol, 1999;364(2-3):141.
    [44]李晶,张春元,张宝珍,等.四氧嘧啶诱发大白兔糖尿病模型的研究[J].中国校医, 1999;13(1):30.
    [45]杨竹林,伍汉文,周智广,等.完全弗氏佐剂预防NOD鼠胰岛炎和糖尿病的机理研究[J].中华内分泌代谢杂志, 1999,15(5):271.
    [46]吴丙云,鲁珊珊,刘莹.糖尿病周围神经病分型及神经电生理检查研究进展[J].山东医药, 2007,47(17):96-97.
    [47]王宇石,巨名飞,饶明俐.糖尿病周围神经病动物模型的建立、病理观察及巴曲酶保护作用研究[J].中风与神经疾病杂志, 2007,24(1):26-29.
    [48] Kihara M, Schmelzer JD, Poduslo JF, et al. Aminoguanidine effects on nerve blood flow, vascular permeability, electrophysiology, and oxygen free radicals [J]. P roc Natl Acad Sci USA, 1991,88(14):610-611.
    [49] Calcutt N A, Campana W N, Eskeland N L, et al. Prosap-osingene expression and the efficasy of a prosaposin- derived peptide in preventing Structural and functional disorders of peripheral nerve in diabetic rats [J]. J Neurolpathol Exp Neurol, 1999,58(7):628-636.
    [50]贾军宏,马学毅,于国平.神经生长因子改善实验性糖尿病大鼠的感觉神经功能[J].中国糖尿病杂志, 1997,5(3):150-152.
    [51]刘春翠.糖尿病周围神经病发病机制及治疗现状[J].实用医院临床杂志, 2006,3(1):90-92.
    [52]金绍礼.前列地尔治疗神经病变观察[J].辽宁实用糖尿病杂志, 2004,12(2):40-1.
    [53]吴劲松,陈衔城,陆栋.激光多普勒血流测定法[J].中国激光医学杂志, 1999,8(3).
    [54] Wilander L, Rundquist I, Oberg PA. Laser He/Ne light exposure of red blood cells [J]. Med Biol Eng Comput, 1986,24:558-560.
    [55]刘春翠.糖尿病周围神经病发病机制及治疗现状[J].实用医院临床杂志, 2006,3(1):90-92.
    [56]金绍礼.前列地尔治疗神经病变观察[J].辽宁实用糖尿病杂志, 2004,12(2):40-41.
    [57]薛现中,任忠法,邢小燕.氧化应激与抗氧化应激T2DM的研究进展[J].实用糖尿病杂志, 2008,4(1):6-8.
    [58] Virag L, Szabo E, Gergely P, et al. Peroxynitrite-induced cytotoxicity: Mechanism and opportunities for intervention [J]. Toxicol lett, 2003:140-141.
    [59] Onody A, Csonka C, Giricz Z, et al. Hyperlipidemia induced by acholesterol-rich diet leads to enhanced peroxynitrite formation in rat hearts [J]. Cardio vasc Res, 2003,58(3):663-670.
    [60] Aiello LP, Wong J-S. Role of vascular endothelial growth factor in diabetic vascular complications [J]. Kidney Int, 2000,58(Suppl 77):S113-S119.
    [61] De Vriese AS, Verbeuren TJ, Van de Voorde J, et al. Endothelial dysfunction in diabetes [J]. Br J Pharmacol, 2000,130:963-974.
    [62] Adler SG, Pahl M, Seldin MF. Deciphering diabetic nephropathy: progress using genetic strategies [J]. Curr Opin Nephrol Hypertens, 2000,9:99-106.
    [63] Buraczynska M, Ksiazek P, Baranowicz-Gaszczyk I, et al. Association of the VEGF gene polymorphism with diabetic retinopathy in type 2 diabetes patients [J]. Nephrol Dial Transplant, 2007,22:827-832.
    [64] Grone HJ. Angiogenesis and vascular endothelial growth factor (VEGF): is it relevant in renal patients [J]? Nephrol Dial Transplant 1995,10:761-763.
    [65] Awata T, Inoue K, Kurihara S, et al. A common polymorphism in the 50-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes [J]. Diabetes, 2002,51:1635-1639.
    [66] Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor [J]. Endocr Rev, 1997,18:4-25.
    [67] Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology [J]. Kidney Int, 2004,65:2003-2017.
    [68] Aiello LP, Wong J-S. Role of vascular endothelial growth factor in diabetic vascular complications [J]. Kidney Int, 2000,58(Suppl 77):S113-S119.
    [69] Cha DR, Kim NH, Yoon JW, et al. Role of vascular endothelial growth factor indiabetic nephropathy [J]. Kidney Int, 2000,58(Suppl 77):S104-S112.
    [70] Chiarelli F, Spagnoli A, Basciani F, et al. Vascular endothelial growth factor (VEGF) in children, adolescents and young adults with type 1 diabetes mellitus: relation to glycaemic control and microvascular complications [J]. Diabet Med, 2000,17:650-656.
    [71] Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology [J]. Kidney Int, 2004,65:2003-2017.
    [72] Foster RR, Hole R, Anderson K et al. Functional evidence that vascular endothelial growth factor may act as an autocrine factor on human podocytes [J]. Am J Physiol, 2003,284:F1263-F1273.
    [73] Cooper ME, Vranes D, Youssef S, et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes [J]. Diabetes, 1999,48:2229-2239.
    [74] Brown LF, Berse B, Jackman RW, et al. Am J Pathol, 1993,143:1255-1262.
    [75] Benjamin LE, Golijanin D, Itin A, et al. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal [J]. J Clin Invest, 1999,103:159-165.
    [76] Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the anti-apoptotic proteins Bcl-2 and A1 in vascular endothelial cells [J]. J Biol Chem, 1998,273:13313-13316.
    [77] Atkinson MA, Eisenbarth GS: Type 1 diabetes: new perspectives on disease pathogenesis and treatment [J]. Lancet, 2001,358:221-229.
    [78]朱禧星.现代糖尿病学[M].上海:上海医科大学出版社, 2000:96-97.
    [79]王露,梁美云. C-反应蛋白与2型糖尿病大血管微血管并发症关系探讨[J].山西医药杂志, 2006,35(6):557-558.
    [80] Laaksonen DE, Niskanen L, Nyyssonen k, et al. C-reactive protein and the development of the development of metabolic syndrome and diabetes in middle-aged men [J]. Diabetologia, 2004,47(8):1403-1410.
    [81] Cnop M, Welsh N, Jonas JC, et al. Mechanisms of pancreatic cell death in type 1 and type 2 diabetes: many differences, few similarities [J]. Diabetes, 2005,54(Suppl.2):S97-S107.
    [82] Kagi D, Ho A, Odermatt B, et al. TNF receptor 1-dependent beta cell toxicity as an effector pathway in autoimmune diabetes [J]. J Immunol, 1999,162:4598-4605.
    [83] Devaraj S, Glaser N, Griffen S, et al. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes [J]. Diabetes, 2006,55:774-779.
    [84] Larsen CM, Dossing MG, Papa S, et al. Growth arrest-and DNA-damage-inducible beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells [J]. Diabetologia, 2006,49:980-989.
    [85] Petersen LG, Storling J, Heding P, et al. IL-1beta-induced pro-apoptotic signalling is facilitated by NCAM/FGF receptor signaling and inhibited by the C3d ligand in the INS-1E rat beta cell line [J]. Diabetologia, 2006,49:1864-1875.
    [86] Steer SA, Scarim AL, Chambers KT, et al. Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1 [J]. Plo S Med, 2006,3:e17.
    [87] Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indifferent [J]? Diabetes, 2005,54(Suppl.2):S114-S124.
    [88]王潭枫. 2型糖尿病患者血清CRP、TNF-α和IL-6水平检测临床价值[J].国际医药卫生导报, 2008,14(20):71-73.
    [89] Satoh J, Yagihashi S, and Toyota T. The Possible Role of Tumor Necrosis Factor-αin Diabetic Polyneuropathy [J]. Experimental Diab Res, 2003,4:65-71.
    [90] Rabinovitch A. Immunoregulatory and cytokine imbalances in the pathogenesis of IDDM: Therapeutic intervention by stimulation [J]? Diabetes, 1994,43,613-621.
    [91] Hotamisligil GS, and Spiegelman BM. Tumor necrosis factor alpha: A key component of the obesity-diabetes link [J]. Diabetes, 1994,43,1271-1278.
    [92] Vlassara H. Chronic diabetic complications and tissue glycosylation: Relevant concern for diabetes-prone black population [J]. Diabetes Care, 1990,13,1180-1185.
    [93] King GL, and Brownlee M. The cellular and molecular mechanisms of diabetic complications [J]. Endocrinol. Metab. Clin North. Am, 1996,25,255-270.
    [94] Satoh J, Seino H, Abo T, et al. Recombinant human tumor necrosis factor alpha suppresses autoimmune diabetes in nonobese diabetic mice [J]. J Clin Invest, 1989,84:1345-1348.
    [95] Tanaka S, Seino H, Satoh J, et al. Increased in vivo production of tumor necrosis factor after development of diabetes in nontreated, long-term diabetic BB rats [J]. Clin Immunol Immunopathol, 1992,62:258-263.
    [96] Katsuki A, Sumida Y, Murashima S, et al. Serum levels of tumor necrosis factor alpha are increased in obese patients with noninsulin-dependent diabetes mellitus [J]. J Clin Endocrinol Metab, 1998,83:859-862.
    [97] Morohoshi M, Fujisawa K, Uchimura I, et al. Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro [J]. Diabetes, 1996,45:954-959.
    [98] Mendez C, Garcia I, Maier RV. Oxidants augment endotoxin-induced activation of alveolar macrophages [J]. Shock, 1996,6:157-163.
    [99] Vlassara H, Brownlee M, Manogue KR, et al. Cachectin/TNF and IL-1 induced by glucose-modified proteins: Role in normal tissue remodeling [J]. Science, 1988,240:1546-1548.
    [100] Satoh J, Qiang X, Sagara M, et al. Treatment of diabetic neuropathy with antioxidants/TNF-αsuppressants [J]. Gendaiiryo, 1998,30:55-62.
    [101] Jeffreg JB, Malika B, Sacha BG,et al. Differential expression of stress proteins in human adult astrocytes in response to cytokines [J]. Journal of Neuroimmunology, 2002,106(1-2):14-16.
    [102] Fernandez-Real JM, Ricart W. Insulin resistance and inflammation in an evolutionary perspective: The contribution of cytokine genotype/phenotype to thriftiness [J]. Diabetologia, 1999,42:1367-1374.
    [103] Ferro TJ, Gertzberg N, Selden L, et al. Endothelial barrier dysfunction and p42oxidation induced by TNF-alpha are mediated by nitric oxide [J]. Am J Physiol, 1997,272(5, Pt 1):L979-L988.
    [104] Samad F, Uysal KT, Wiesbrock SM, et al. Tumor necrosis factor alpha is a key component in the obesity-linked elevation of plasminogen activator inhibitor [J]. Proc Natl Acad Sci U.S.A. 1999,96:6902-6907.
    [105]陆英杰,连至诚.细胞因子在糖尿病并发症中的作用[J].华水煤炭医学院学报, 2006,8(6):781-782.
    [106] Meager A. Cytokine regulation of cellular adhesion molecule expression in inflammation [J]. Cytokine Growth Factor Rev, 1999,10:27-39.
    [107] Morohoshi M, Fujisawa K, Uchimura I, et al. Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro [J]. Diabetes, 1996,45:954-959.
    [108] Mendez C, Garcia I, Maier RV. Oxidants augment endotoxin-induced activation of alveolar macrophages [J]. Shock, 1996,6:157-163.
    [109] Vlassara H, Brownlee M, Manogue KR, et al. Cachectin/TNF and IL-1 induced by glucose-modified proteins: Role in normal tissue remodeling [J]. Science, 1988,240:1546-1548.
    [110] Carrington AL, Litchfield JE. The aldose reductase pathway and nonenzymatic glycation in the pathogenesis of diabetic neuropathy: A critical review for the end of the 20th century [J]. Diabetes Rev, 1999,7:275-299.
    [111] Iwata T, Sato S, Jimenez J, et al. Osmotic response element is required for the induction of aldose reductase by tumor necrosis factor-alpha [J]. J Biol Chem, 1999,274:7993-8001.
    [112] Magnuson DK, Maier RV, Pohlman TH. Protein kinase C: A potential pathway of endothelial cell activation by endotoxin, tumor necrosis factor, and interleukin-1 [J]. Surgery, 1989,106:216-223.
    [113] Igarashi M, Wakasaki H, Takahara N, et al. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways [J]. J Clin Invest, 1999,103:185-195.
    [114] Ferro TJ, Gertzberg N, Selden L, et al. Endothelial barrier dysfunction and p42 oxidation induced by TNF-alpha are mediated by nitric oxide [J]. Am J Physiol, 1997,272(5,Pt 1):L979-L988.
    [115] Munoz-Fernandez MA, Fresno M. The role of tumor necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system [J]. Prog Neurobiol, 1998,56:307-340.
    [116] Sima AA, Sugimoto K. Experimental diabetic neuropathy: An update [J]. Diabetologia, 1999,42:773-788.
    [117] Creange A, Barlovatz-Meimon G, Gherardi RK. Cytokines and peripheral nerve disorders [J]. Eur Cytokine Netw, 1997,8:145-151.
    [118] Labow M, Shuster D,Zetterstrom M, et al. Absence of IL-1 signaling and reduced inflammatory response in IL-1 type I receptor-deficiency mice [J]. J Immunol, 1997,159:2452-2461.
    [119] Glaccum MB, Stocking KL, Charrier K, et al. Phenotypic and functional characterization of mice that lack the type I receptor for IL-1 [J]. J Immunol, 1997,159:3364-3371.
    [120] Corbett JA,Sweetland MA, Wang JL, et al. Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets Langerhans [J]. Proc Natl Acad Sci USA, 1993,90:1731-1735.
    [121] Eizirik DL, Tracey DE, Bendtzen K, et al. An interleukin-1 receptor antagonist protein protects insulin-producing beta cells against suppressive effects of interleukin-1 beta [J]. Diabetologia, 1991,34:445-448.
    [122] Thomas HE, Darwiche R,Corbett JA,et al.Interleukin-1 plusγ-interferon induced pancreaticβ-cell dysfunction is mediated byβ-cell nitric oxide production [J]. Diabetes, 2002,51:311-316.
    [123]陈益民,许志良,袁新旺,等. 2型糖尿病患者血清IL-6,TNF的变化[J].浙江中西医结合杂志, 2003,24(10):1074.
    [124]李旭光,魏瑞全,李彤,等. 2型糖尿病及其大血管并发症患者血清IL-6, TNT-α和CRP水平变化[J].西北国防医学杂志, 2003,24(3):219.
    [125]胡波,许珏,陈忠城,等. 2型DM患者IL-2, IL-6及TNF-α水平检测[J].广东医学, 2006,27(5):735-737.
    [126] Ript, Stefanski A. Diabetic hephropathy in type 2 diabetes [J]. Am J kidney Dis,1996,27(3):167.
    [127] Muller S, Martin S, Koenig W, et al. Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-alpha or its receptors [J]. Diabetologia 2002,45:805-812.
    [128] Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indifferent [J]? Diabetes, 2005,54 (Suppl. 2):S114-S124.
    [129] Carey AL, Steinberg GR, Macaulay SL, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase [J]. Diabetes, 2006,55:2688 -2697.
    [130] Carey AL, Petersen EW, Bruce CR, et al. Discordant gene expression in skeletal muscle and adipose tissue of patients with type 2 diabetes: effect of interleukin-6 infusion [J]. Diabetologia, 2006,49:1000-1007.
    [131] Kempf K, Rose B, Herder C, et al. The metabolic syndrome sensitizes leukocytes for glucose-induced immune gene expression [J]. J Mol Med, 2007,85:389-396.
    [132] Martos-Moreno GA, Barrios V, Soriano-Guillen L, Argente J: Relationship between adiponectin levels, acylated ghrelin levels, and short-term body mass index changes in children with diabetes mellitus type 1 at diagnosis and after insulin therapy. Eur J Endocrinol, 2006,155:757-761.
    [133] Pfleger C, Mortensen HB, Hansen L, et al. Association of IL-1ra and Adiponectin With C-Peptide and Remission in Patients With Type 1 Diabetes [J]. Diabetes, 2008,57:929-937.
    [134] Rossetti L, Giaccari A, DeFronzo RA: Glucose toxicity [J]. Diabetes Care,1990,13:610-630.
    [135] Yki-Jarvinen H, Koivisto VA: Natural course of insulin resistance in type I diabetes. N Engl J Med, 1986,315:224-230.
    [136] Zhong Y, Slade GD, Beck JD, et al. Gingival crevicular fluid interleukin-1b, prostaglandin E2 and periodontal status in a community population [J]. J Clin Periodontol, 2007;34:285-93.
    [137] Offenbacher S. Periodontal diseases: pathogenesis [J]. Ann Periodontol, 1996;1:879-925.
    [138] Offenbacher S, Heasman PA, Collins JG. Modulation of host PGE2 secretion as a determinant of periodontal disease expression [J]. J Periodontol, 1993;64:432-44.
    [139] Karde?ler L, Buduneli N, B?y?ko?lu B, et al. Gingival crevicular fluid PGE2, IL-1?, t-PA, PAI-2 levels in type 2 diabetes and relationship with periodontal disease [J]. Clinical Biochemistry, 2008,41:863-868.
    [140]程大丽,张淑兰,郭欣宇. NF-κB激活在宫颈重度非典型性增生及鳞癌中的作用[J].中国病理生理杂志, 2006,22(9):1775-1778.
    [141] Schmeichel AM, Schmelzer JD, Low PA. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy [J]. Diabetes, 2003;5(1):165-171.
    [142] Aragno M, Mastrocola R, Bringnardello E, et al. Dehydroepiandrosterone modulates nuclear factor-kappa B activation in hippocampus of dianetic rats [J]. Endocrinology, 2002;143:3250-3258.
    [143] Hofmann M, Schiekofer S, Kanitz M, et al. Insufficient glycemic control increases NF-κB binding activity in peripheral blood mononuclear cells isolated from patients with type 1 diabetes [J]. Diabetes Care, 1998,21(9):1310-1316.
    [144] Morigi M, Angioletti S, Imberti B, et al. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-κB-dependent fashion [J]. J Clin Invest, 1998,101(9):1905-1915.
    [145]魏倩萍,邓华聪,赵劼. p38MAPK对大鼠肾小球系膜细胞表达NF-κB和COX22的调控.第二军医大学学报[J]. 2008,29(3):241-244.
    [146] Bierhaus A, Schiekofer S, Schwaninger M, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-B [J]. Diabetes, 2001,50(12):2792-2808.
    [147] Eldor R, Yeffet A, Baum K, et al. Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents [J]. PNAS, 2006,103(13): 072.
    [148] Sunshin K, Isabelle M, Hun SK, et al. NF-κB preventsβcell death and autoimmune diabetes in NOD mice [J]. NAS, 2007,104(6):1917.
    [149] Sakai N, Wada T ,Furuichi K, et al. Involvement of extracellular signal regulated kinase and p38 in human diabetic nephropathy [J]. Am J Kidney Dis, 2005,45:54-65.
    [150] Brownlee M. The pathobiology of diabetic complications: a unifying methanism [J]. Diabeties, 2005,54(6):1615-1625.
    [151] Russell JW, Sullivan KA, Windebank AL, et al. Neurons undergo apoptosis in animal and cell culture models of diabetes [J]. Neurobiol Dis, 1999,6(5): 47-363.
    [152] Srinivasan S, Stevens M, Wiley JW. Diabetic peripheral neuropathy- Evidence apoptosis and associated dysfunction [J]. Diabetes, 2000;49(11):1932- 1938.
    [153] Schmeichel AM, Schmelzer JD, Low PA. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy [J]. Diabetes, 2003,52(1):165-171.
    [154]叶仁群,陈泽奇,林国彬,等.牛磺酸对糖尿病大鼠背根节细胞Caspase-3和NF-κB表达的影响[J].重庆医科大学学报, 2008,33(8):923-926、930.
    [155] Wyllie AH, Kerr JFR, Currie AR: Cell death: The significance of apoptosis [J]. Int Rev Cytol, 1980,68:251-306.
    [156] Kerr JFR, Wyllie AH, Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer, 1972,26: 239-257.
    [157]陆英杰,连至诚.细胞因子在糖尿病并发症中的作用[J].华水煤炭医学院学报, 2006,8(6):781-782.
    [158] Feldman EL. Oxidative stress and diabetic neuropathy: a new understanding of an oldproblem [J]. J Clin Invest, 2003,11(4):431-433.
    [159] Szabo C. Roles of poly (ADP- ribose) polymerase activation in the pathogenesis of diabetes mellitus and its complications [J]. Pharmacological Research, 2005,25(1):60-71.
    [160]叶仁群,陈泽奇,贺玉磊,等.牛磺酸对糖尿病大鼠周围神经病变的保护作用[J].中国现代神经疾病杂志, 2006,2(6):128-133.
    [161] Ametov AS, Barinov A, Dyck PJ, et al. The sensory symptoms of diabetic polyneuropathy are improved with alpha- lipoic acid: the SYDNEY trial [J]. Diabetes Care, 2003,26(7):770-776.
    [162] Gread JM. Neurolongical comp lications of diabetes [J]. Rev Mekd Brur, 1995,16(4):249-252.
    [163] Kolodziejska KE, Burns AR, Moore RH, et al. Regulation of inducible nitric oxide synthase by aggresome formation [J]. Proc NatlAcad Sci, 2005,102(13): 4854-4859.
    [164] Settergren M, Pernow J, Brismar K, et al. Endothelin-A receptor blockade improves nutritive skin capillary circulation in patients with type 2 diabetes and albuminuria [J]. J Vasc Res, 2008,45:295-302.
    [165] Zimmermann PA, Knot HJ, Stevenson AS, et al. Increased myogenic tone and diminished reponsiveness to ATP-sensitive K+channel openers in cerebral arteries from diabetic rats [J]. Cir Res, 1997,81(5):996-1004.
    [166]杜宏,王扬天,赵明,等.糖尿病大鼠心肌NF-κB、iNOS、COX-2表达的研究[J].中国病理生理杂志, 2008,24(1):80-83.
    [167] Kalani M. The importance of endothelin-1 for microvascular dysfunction in diabetes [J]. Vascular Health and Risk Management 2008:4(5):1061-1068.
    [168] Walmsley D, Wales JK, Wiles PG. Reduced hyperaemia following skin trauma: evidence for an impaired microvascular response to injury in the diabetic foot [J]. Diabetologia, 1989,32:736-739.
    [169] Tur E, Yosipovitch, Bar-On Y. Skin reactive hyperaemia in diabetic patients. A study by laser Doppler flowmetry [J]. Diabetes Care, 1991,14:9589-62.
    [170] Jorneskog. Functional Microangiopathy in the Digital Skin of Patients with Diabetes Mellitus [dissertation] [M]. Stockholm, Sweden: Karolinska Institute. 1995.
    [171] Low PA, Lagerlund TD, McManis PG. Nerve blood flow and oxygen delivery in normal, diabetic, and ischemic neuropathy [J]. Int Rev Neurobiol, 1989,31:355-438.
    [172] Cameron NE, Cotter MA, Low PA. Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits [J]. Am J Physiol, 1991,261:E1-E8.
    [173] Cameron NE, Cotter MA. Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents [J]. J Clin Invest, 1995.96:1159-1163.
    [174] Thrainsdottir S, Malik RA, Dahlin LB, et al. Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man [J]. Diabetes, 2003,52:2615-2622.
    [175] Giannini C, Dyck PJ. Basement membrane reduplication and pericyte degeneration precede development of diabetic polyneuropathy and are associated with its severity [J]. Ann Neurol, 1995,37:498-504.
    [176] Gall MA, Rossing P, Skott P, et al. Prevalence of micro-and macro-albuminuria, arterial hypertension, retinopathy and large vessel disease in European type 2 (non-insulin-dependent) diabetic patients [J]. Diabetologia, 1991,34:655-661.
    [177] Jaap AJ, Hammersley MS, Shore AC. Reduced microvascular hyperaemia in subjects at risk of developing type 2 (non-insulin-dependent) diabetes mellitus [J]. Diabetologia, 1994,37:214-16.
    [178] Shore AC, Jaap AJ, Tooke JE. Capillary pressure in patients with NIDDM [J]. Diabetes, 1994,43:1198-1202.
    [179] Resink TJ, Hahn AWA, Scott-Burden T, et al. Inducible endothelin messenger RNA expression and peptide secretion in cultured human vascular smooth muscle cells [J]. Biochem Biophys Res Commun, 1990,168:1303-1310.
    [180] Properzi G, Terenghi G, Gu XH, et al. Early increase precedes a depletion of endothelin-1 but not of von Willebrand factor in cutaneous microvessels of diabeticpatients; a quantitative immunohistochemical study [J]. J Pathol. 1995,175:243-252.
    [181] Kohan DE. Endothelins in the normal and diseased kidney [J]. Am J Kidney Dis. 1997,29:2-6.
    [182] Gokin AP, Fareed MU, Pan HL, et al. Local injection of endothelin-1 produces pain-like behaviour and excitation of nociceptors in rats [J]. J Neurosci, 2001,21:5358-5366.
    [183] Anggard E, Galton S, Rae G, et al. The fate of radioiodinated endothelin-1 and endothelin-3 in the rat [J]. J Cardiovasc Pharmacol, 1989,13:S46-S49.
    [184] Abassi ZA, Tate JE, Golomb E, et al. Role of neutral endopeptidase in the metabolism of endothelin [J]. Hypertension, 1992,20:89-95.
    [185] Jorneskog G, Kalani M, Kuhl J, et al. Early microvascular dysfunction in healthy normal-weight males with heredity for type 2 diabetes [J]. Diabetes Care, 2005,28:1495-1497.
    [186] Molenaar P, O’Reilly G, Sharkey A, et al. Characterization and localization of endothelin receptor subtypes in the human atrioventricular conducting system and myocardium [J]. Circ Res, 1993,72:526-538.
    [187] Sakurai T, Yanagisawa M, Masaki T. Molecular characterization of endothelin receptors [J]. Trends Pharmacol Sci, 1992,13:103-108.
    [188] Seo B, Oemar BS, Siebenmann R, et al. Both ETA and ETB receptors mediate contraction to endothelin-1 in human blood vessels [J]. Circulation, 1994,89:1203-1208.
    [189] Kyriakides ZS, Kremastinos DT, Bofi lis E, et al. Endogenous endothelin maintains coronary artery tone by endothelin type A receptor stimulation in patients undergoing coronary arteriography [J]. Heart, 2000,84:176-182.
    [190] Halcox JP, Nour KR, Zalos G, et al. Coronary vasodilation and improvement in endothelial dysfunction with endothelin ET (A) receptor blockade [J]. Circ Res, 2001,89:969-976.
    [191] Strachan FE, Spratt JC, Wilkinson IB, et al. Systemic blockade of the endothelin-Breceptor increases peripheral vascular resistance in healthy men [J]. Hypertension, 1999,33:581-585.
    [192] Cardillo C, Kilcoyne CM, Waclawiw M, et al. Role of endothelin in the increased vascular tone of patients with essential hypertension [J]. Hypertension, 1999,33:753-758.
    [193] Pernow J, Bohm F, Johansson BL, et al. Enhanced vasoconstrictor response to endothelin-B-receptor stimulation in patients with atherosclerosis [J]. J Cardiovasc Pharmacol, 2000,36:S418-S420.
    [194] Cardillo C, Kilcoyne CM, Cannon RO, et al. Increased activity of endogenous endothelin in patients with hypercholesterolemia [J]. J Am Coll Cardiol, 2000,36:1483-1488.
    [195] Cowburn PJ, Cleland JG, McArthur JD, et al. Endothelin B receptors are functionally important in mediating vasoconstriction in the systemic circulation in patients with left ventricular systolic dysfunction [J]. J Am Coll Cardiol, 1999,33:932-938.
    [196] Love MP, Ferro CJ, Haynes WG, et al. Endothelin receptor antagonism in patients with chronic heart failure [J]. Cardiovasc Res, 2000,47:166-172.
    [197] Nohria A, Garrett L, Johnson W, et al. Endothelin-1 and vascular tone in subjects with atherogenic risk factors [J]. Hypertension, 2003,42:43-48.
    [198] Jarvis MF, Wessale JL, Zhu CZ, et al. ABT-627, an endothelin ET(A) receptor-selective antagonist, attenuates tactile allodynia in a diabetic rat model of neuropathic pain [J]. Eur J Pharmacol, 2000,388:29-35.
    [199] Siren AL, Lewczuk P, Hasselblatt M, et al. Endothelin B receptor deficiency augments neuronal damage upon exposure to hypoxiaischemia in vivo [J]. Brain Res, 2002,945:144-149.
    [200] Berti-Mattera LN, Gariepy CE, Burke RM, et al. Reduced expression of endothelin B receptors and mechanical hyperalgesia in experimental chronic diabetes [J]. Exp Neurol, 2006,201:399-406.
    [201] Khan ZA, Chakrabarti S. Endothelins in chronic diabetic complications [J]. Can JPhysiol Pharmacol, 2003,81:622-634.
    [202] Mather KJ, Mirzamohammadi B, Lteif A, et al. Endothelin contributes to basal vascular tone and endothelial dysfunction in human obesity and type 2 diabetes [J]. Diabetes, 2002,51:3517-3523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700