用户名: 密码: 验证码:
天麦消渴片通过microRNA和mRNA调控网络改善糖代谢机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     糖尿病严重危害人们的健康及生存质量。天麦消渴片和阿卡波糖在临床上表现出很好的降糖疗效。本研究旨在探讨天麦消渴片和阿卡波糖对糖尿病大鼠体重、血糖、血脂、胰岛素和胰高血糖素样肽-1(GLP-1)等相关代谢指标的影响,并且利用全基因组表达谱芯片、miRNA表达谱芯片和实时定量RT-PCR探讨天麦消渴片和阿卡波糖降血糖的机制。
     方法
     (1)SD大鼠通过高脂饮食/注射STZ法构建糖尿病大鼠模型。72小时后,空腹血糖高于11.1mmol/L的SD大鼠判定为糖尿病模型建立成功。(2)将SD大鼠分为小剂量天麦消渴片组(8只,给予50mg/kg/d的天麦消渴片粉末悬浊液)、大剂量天麦消渴片组(8只,给予100mg/kg/d的天麦消渴片粉末悬浊液)、小剂量阿卡波糖组(30mg/kg/d)、大剂量阿卡波糖组(60mg/kg/d)、糖尿病模型组(8只,给予等体积生理盐水)和正常对照组(8只,给予等体积生理盐水),均连续灌胃8周。(3)每2周测定SD大鼠空腹血糖(FBG)和体重。7周末进行口服糖耐量实验(OGTT),测空腹和葡萄糖负荷后血糖和血浆GLP-1水平。8周末测定大鼠空腹血糖、血清胰岛素和血脂水平,观察天麦消渴片和阿卡波糖对糖尿病大鼠血糖和血脂的改善作用。(4)取大鼠骨骼肌组织进行全基因组表达谱芯片实验,取胰腺组织和小肠组织进行miRNA表达谱芯片实验,并运用实时定量RT-PCR验证芯片结果,以期探讨天麦消渴片和阿卡波糖对糖尿病大鼠降血糖的机制。
     结果
     (1)血糖结果:干预后,大剂量天麦消渴片组大鼠较糖尿病模型组空腹血糖(15.4±5.3mmol/L vs24.1±2.5Inmol/L第2周,14.5±3.5vs25.3±3.1mmol/L第4周,16.3±4.3vs24.8±4.8mmol/L第6周,15.3±5.3vs23.6±4.3mmol/L第8周)和OGTT曲线下面积(AUC)(35.7±4.6vs53.7±3.4mmol/L,P<0.05)显著下降。干预后,大剂量阿卡波糖组较糖尿病模型组空腹血糖(14.6±4.3mmol/L vs23.8±4.9mmol/L第2周,15.4±2.5vs23.0±4.6mmol/L第4周,14.7±4.6vs24.6±5.4mmol/L第6周,15.3±6.2vs23.7±4.9mmol/L第8周)和OGTT曲线下面积(AUC)(31.7±4.7vs52.6±6.3mmol/L,P糖尿病模型组显著降低(P<0.01)。大剂量天麦消渴片组胰岛β细胞分泌指数(HOMA-β,31.85±3.65vs21.92±2.46)较糖尿病模型组显著升高(P<0.01)。(3)糖负荷后血浆GLP-1结果:干预7周后,大剂量天麦消渴片组糖负荷后15分钟的血浆GLP-1(6.7±0.6vs5.7±0.3pmol/L)较糖尿病模型组显著升高(P<0.05)。(4)血脂结果:干预8周后,大剂量天麦消渴片组血总胆固醇(TC)(1.27±0.01vs1.44±0.01mmol/L)和甘油三酯(TG)(0.49±0.04vs0.83±0.05mmol/L)较糖尿病模型组显著降低(P<0.05)。(5)全基因组表达谱芯片结果:大剂量天麦消渴片组较糖尿病模型组有1752个基因表达上调,471个基因表达下调。基因分类分析(GO)和基因生物学功能通路分析(Kegg)等生物信息学分析显示,大剂量天麦消渴片组骨骼肌差异表达基因主要涉及三个通路:胰岛素信号通路、糖酵解/糖异生通路和三羧酸循环通路。实时定量RT-PCR结果显示,大剂量天麦消渴片组骨骼肌Akt1(胸腺病毒原癌基因1,fold-change=5.83±0.15)和Irs2(胰岛素受体底物2,3.62±0.021)基因较糖尿病模型组显著上调。大剂量天麦消渴片组骨骼肌Fox03(叉头框蛋白3,0.24±0.009)、Pck2(磷酸羧化酶,0.21±0.017)和Ptpnl(又称Ptplb,蛋白酪氨酸磷酸酶1B,0.34±0.013)基因较糖尿病模型组显著下调。(6)miRNA表达谱芯片结果:大剂量天麦消渴片组胰腺较糖尿病模型组有18个miRNA上调,3个miRNA下调。实时定量RT-PCR结果显示证实的这一结果。miRNA靶基因预测和通路分析结果揭示,天麦消渴片能上调胰腺miR-375和miR-30d,从而改善胰腺功能;通过miRNA,抑制胰腺炎症因子表达。大剂量阿卡波糖组小肠较糖尿病模型组有6个miRNA上调,2个miRNA下调。实时定量RT-PCR结果显示证实的这一结果。miRNA靶基因预测和通路分析结果揭示,阿卡波糖能通过激活miR-10a-5p和miR-664改善小肠MAPK通路和抑制炎症因子改善糖尿病大鼠糖代谢。
     结论
     (1)天麦消渴片不仅能有效降低糖尿病大鼠FBG,改善胰岛素敏感性,增加糖负荷后血浆GLP-1分泌,还能调节脂代谢。阿卡波糖能改善糖尿病大鼠血糖。(2)天麦消渴片可能是通过改善骨骼肌胰岛素信号通路、降低PCK2、Fox03和PTP-1B水平;上调胰腺miR-375和miR-30d水平,刺激胰岛β细胞增殖,抑制胰岛α细胞增殖,增加胰岛素基因表达;上调胰腺let-7b、let-7e、miR-142-5p和miR-375,抑制细胞因子及受体相互作用通路和MAPK通路的功能,从而改善糖尿病大鼠血糖和胰岛素抵抗状态。(3)阿卡波糖可能通过激活miR-10a-5p和miR-664改善小肠MAPK通路和抑制炎症因子改善糖尿病大鼠糖代谢。
OBJECTIVE
     The incidence of type2diabetes mellitus is increasing rapidly worldwide, reaching8.3percent in developed countries. It is the fourth prior considerable disease which is the fifth main causes of death after carcinoma, AIDS, cardiovascular disease, imposing a major burden on the health. Chromium is an essential mineral that is thought to be necessary for normal glucose homeostasis. Numerous researches give evidence that acarbose and chromium picolinate which is a formulation designed to improve absorption moderate glucose and insulin resistance. The main ingredient of Tianmai Xiaokepian is chromium picolinate. The research is to explore the effects of Tianmai Xiaokepian and acarbose on the weight, blood glucose, lipid metabolism, serum insulin and glucagon-like peptide-1(GLP-1) in diabetic rats and to investigate its possible glucose-lowing mechanism.
     METHODS
     SD rats were randomly divided into four groups:low dosage of Tianmai Xiaokepian group (TML, treated with50mg/kg/d Tianmai Xiaokepian, n=8), high dosage of Tianmai Xiaokepian group (TMH, treated with100mg/kg/d Tianmai Xiaokepian, n=8), low dosage of acarbose group (AcarL, treated with30mg/kg/d acarbose, n=8), high dosage of acarbose group (AcarH, treated with60mg/kg/d, n=8), diabetic model group (n=8) and control group(n=8). The fasting blood glucose and weight were tested on week0,2,4,6and8. The OGTT test was done on week7to measure glucose and plasma GLP-1. Serum insulin, TC, TG, HDL-c and LDL-c were detected on week8. Roche NimbleGen gene array experiment was done using skeletal muscle of rats. miRcury LNATM miRNA array experiment was performed using pancrease and ileum of rats. Real time RT-PCR was done to verify the results of array.
     RESULTS
     We found high dosage of Tianmai Xiaokepian could significantly decrease the level of fasting blood glucose (15.4±5.3vs24.1±2.5mmol/L week2,14.5±3.5vs25.3±3.1mmol/L week4,16.3±4.3vs24.8±4.8mmol/L week6,15.3±5.3vs23.6±4.3mmol/L week8), area under curve of blood glucose in oral glucose tolerance test (AUC,35.7±4.6mmol/L vs53.7±3.4mmol/L), serum fasting insulin (15.79±3.75vs31.90±4.68μIU/mL), HOMA-IR index (15.83±4.87vs33.46±8.30), TC (1.27±0.01vs1.44±0.01mmol/L) and TG (0.49±0.04vs0.83±0.05mmol/L), increase HOMA-β (31.85±3.65vs21.92±2.46) and plasma GLP-1at15min after glucose loading (6.7±0.6vs5.7±0.3pmol/L) compared with those of diabetic group (P<0.05or P<0.01). High dosage of acarbose could significantly decrease the level of fasting blood glucose (14.6±4.3mmol/L vs23.8±4.9mmol/L week2,15.4±2.5vs23.0±4.6mmol/L week4,14.7±4.6vs24.6±5.4mmol/L week6,15.3±6.2vs23.7±4.9mmol/L week8). Gene array showed that Tianmai Xiaokepian up-regulated1752gene expression, down-regulated471gene expression. Based on KEGG pathway analysis, we found that the most three significant pathways were "insulin signaling pathway","glycolysis/gluconeogenesis" and "citrate cycle (TCA)". Real time RT-PCR showed the expression of Akt1(fold-change=5.83±0.15) and Irs2(3.62±0.021) increased in high dosage of Tianmai Xiaokepian group; while Fox03(0.24±0.009)、Pck2(0.21±0.017) and Ptpnl (0.34±0.013) reduced. miRNA array showed18miRNAs increased and3miRNAs decreased in high dasage of Tianmai Xiaokepian group. miR-448, let-7b, miR-540, miR-296, miR-880, miR-200a, miR-500, miR-10b, miR-336, miR-30d, miR-208, let-7e, miR-142-5p, miR-874, miR-375, miR-879, miR-501and miR-188were up-regulated, while miR-301b, miR-134and miR-652were down-regulated in TMH group. Real time RT-PCR showed miR-375and miR-30d, which can stimulate insulin secretion in islet significantly increased. We found that miR-151*, miR-10a-5p, miR-205, miR-17-5p, miR-145and miR-664were up-regulated in the AcarH group, while miR-541and miR-135b were down-regulated. Real time PCR verified these results. Our data suggest that acarbose can improve blood glucose in diabetic rats through the MAPK pathway and can down-regulate pro inflammatory factors by activating miR-10a-5p and miR-664in the ileum.
     CONCLUSION
     Tianmai Xiaokepian acts the functions of regulating the levels of fasting blood glucose and lipid metabolism, moderating insulin resistance in diabetic rats. Acarbose can reduce the blood glucose in diabetic rats. The glucose-lowing mechanisms may be correlated with insulin signaling pathway, reducing PCK2, Fox03and PTP-1B in skeletal muscle; incresing miR-375and miR-30d to moderate insulin secretion and islet β cell function, increasing let-7b, let7e, miR-375and miR-142-5p to moderate cytokine-cytokine receptor interaction and MAPK signaling pathway in pancrease. Acarbose can improve blood glucose in diabetic rats through the MAPK pathway and can down-regulate proinflammatory factors by activating miR-10a-5p and miR-664in the ileum.
引文
[1]UK Prospective Diabetes Study (UKPDS) Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complication in patients with type 2 diabetes (UKPDS 33) [J]. Lancet,1998,352(9131):837.
    [2]Anderson RA, Kozlovsky AS. Chromium intake, absorption and excretion of subjects consuming self-selected diets[J]. Am J Clin Nutr,1985; 41(6):1177-1183.
    [3]Mertz W. Chromium occurrence and function in biological systems[J]. Physiol Rev,1969; 49(2):163-239.
    [4]Grant KE, Chandler RM, Castle AL, Ivy JL. Chromium and exercise training: effect on obese women [J]. Med Sci Sports Exerc,1997; 29(8):992-998.
    [5]Hasten DL, Hegsted M, Gilckman-Weiss EL. Effects of chromium picolinate and exercise on the body composition of the rat[J]. FASEB J,1993; 7:A77.
    [6]Page TG, Southern LL, Ward TL, Thompson DL Jr. Effect of chromium picolinate on growth and serum and carcass traits of growing-finishing pigs[J]. J Anim Sci,1993;71(3):656-662.
    [7]Anderson RA, Kozlovsky AS. Chromium intake, absorption and excretion of subjects consuming self-selected diets[J]. Am J Clin Nutr,1985; 41(6):1177-1183.
    [8]江澜.微量元素铬(Ⅲ)的生理功能[J].渝州大学学报(自然科学版),2000;17(4):74-76.
    [9]Davies S, McLaren Howard J, Hunnisett A, Howard M. Age-related decreases in chromium levels in 51,665 hair, sweat, and serum samples from 40,872 patients:implications for the prevention of cardiovascular disease and type Ⅱ diabetes mellitus[J]. Metabolism,1997; 46(5):469-473.
    [10]张贺芳,唐艳阁,何玉洁,钟成福,刘敏.天麦消渴片对糖耐量异常的干预 研究[J].中国实验方剂学杂志2011 17(21):266-267.
    [11]白丽华,王小强,戴卫红.天麦消渴片和吡格列酮对初发2型糖尿病胰岛素抵抗的影响[J].现代中西医结合杂志2012 21(24):2666-2667.
    [12]苑晓烨,杨圣俊,温志谦,李芳.天麦消渴片和二甲双胍联合治疗2型糖尿病疗效观察[J].河北医药2011 33(110):1543-1544.
    [13]苑晓烨,杨圣俊,温志谦,李芳.天麦消渴片联合胰岛素治疗2型糖尿病疗效观察[J].河北医药2011 33(12):1811-1812.
    [14]邵聪,吕肖峰,肖新华,许樟荣,杨兆军,王芃,刘雪莉,杨文英.天麦消渴片治疗中国新诊断2型糖尿病患者的疗效研究[J].中华医学杂志,2012;92(22):1522-1526.
    [15]英国前瞻性糖尿病研究(UKPDS)简介[J].中国糖尿病杂志,1999,7(2):117-118.
    [16]刘红,牛凯,王树松,刘冰.天麦消渴片对糖尿病大鼠降血糖作用机理的研究[J].河北中药.2007,29(7):653-655.
    [17]Matthews DR, Hosker JP, Rudenski AS, et al.Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man [J]. Diabetologia,1985,28(7):412-419.
    [18]薛雪花,邵晋康,苗芳,于翰,柳洁.天麦消渴片治疗2型糖尿病合并非酒精性脂肪肝患者的疗效观察[J].山西医药杂志,2012,41(3):250-252
    [19]尹陆黎.天麦消渴片治疗2型糖尿病胰岛素抵抗患者67例临床观察[J].中国中医药技术.2011,18(3):252
    [20]陆丽群.天麦消渴片治疗糖耐量异常病人的临床观察[J].齐齐哈尔医学院学报.2012,33(4):486.
    [21]张贺芳,唐艳阁,何玉洁,钟成福,刘敏.天麦消渴片对糖耐量异常的干预研究[J].中国实验方剂学杂志.2011,17(21):266-268.
    [22]戴白美.实用内科学[M].第九版.北京:人民卫生出版社,1993:627.
    [23]范晓烨.天麦消渴片联合格列本脲治疗2型糖尿病的临床研究[J].现代中医结合杂志.2011,20(8):926-928.
    [24]Anderson RA, Cheng N, Bryden NA, Polansky MM, Chi J, Feng J. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes[J]. Diabetes 1997; 46(11):1786-1791.
    [25]Cheng N, Zhu X, Shi H, Wu W, Chi J, Cheng J, Anderson R. Follow-up survey of people in China with type 2 diabetes mellitus consuming supplemental chromium[J]. J Trace Elem Exp Med 1999:12(2):55-60.
    [26]Vrtovec M, Vrtovec B, Briski A, Kocijancic A, Anderson RA, Radovancevic B. Chromium supplementation shortens QTc interval duration in patients with type 2 diabetes mellitus[J]. Am Heart J 2005; 149(4):632-635.
    [27]Martin J, Wang ZQ, Zhang XH, Wachtel D, Volaufova J, Matthews DE, Cefalu WT. Chromium picolinate supplementation attenuates body weight gain and increases insulin secsitivity in subjects with type 2 diabetes [J]. Diabetes Care 2006; 29(8):1826-1832.
    [28]Cefalu WT, Hu FB. Role of chromium in human health and in diabetes [J]. Diabetes Care 2004;27(11):2741-2751.
    [29]Anderson RA. Chromium, glucose tolerance, diabetes and lipid metabolism[J]. J Adv Med 1995; 8:37-49.
    [30]Roeback Jr JR, Mae K, Chambless LE, Fletcher RH. Effects of chromium supplementation on serum high-density lipoprotein cholesterol levels in men taking beta-blockers[J]. Ann Intern Med 1991;115(12):917-924.
    [31]Perfetti R, Merkel P. Glucagon-like peptide-1:a major regulator of pancreatic β cell function[J]. Eur J Endocrinol.2000,143(6):717-725.
    [32]牟波,胡仁明.胰升糖素样肽-1及其类似物的降糖机制研究进展[J].国外医学内分泌分册,2003,23(增刊):4-6.
    [33]Grant AP, McMullen JK. The effect of brewers yeast containing glucose tolerance factor on the response to treatment in type 2 diabetes:a short controlled study[J]. Ulster Med J.1982,51:110-114.
    [34]Bahijiri SM, Mira SZ, Mufti AM, Ajabnoor MA. The effects of inorganic chromium and brewer's yeast supplementation on glucose tolerance, serum lipids and drug dosage in individuals with type 2 diabetes [J]. Saudi Med. 2000,21:831-837.
    [35]Abraham AS, Brooks BA, Eylath U. Chromium and cholesterol-induced atherosclerosis in rabbits[J]. Ann Nutr Metab.1991,35:203-207.
    [36]Preuss HG, Wallerstedt D, Talpur N, Tutuncuoglu S0, Echard B, Myers A, Bui M, Bagchi D. Effects of niacin-bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects:a pilot study[J]. J Med.2000,31:227-246.
    [37]Vinson JA, Mandarano MA, Shuta DL, Bagchi M, Bagchi D. Beneficial effects of a novel IH636 grape seed proanthocyanidin extact and a niacin-bound chromium in a hamster atherosclerosis model[J]. Mol Cell Biochem.2002,240:99-103.
    [38]Thirunavukkarasu M, Penumathsa S, Juhasz B, Zhan L, Bagchi M, Yasmin T, Shara MA, Thatte HS, Bagchi D, Maulik N. Rnchanced cardiovascular function and energy level by a novel chromium (Ⅲ)-supplement [J]. Biofactors.2006, 27:53-67.
    [39]Thirunavukkarasu M, Penumathsa SV, Juhasz B, Zhan L, Cordis G, Altaf E, Bagchi M, Bagchi D, Maulik N. Niacin-bound chromium enhances myocardial protection from ischemiareperfusion injury[J]. Am J Physio Heart Circ Physiol.2006,291:H820-H826.
    [1]Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel human genome analysis:microarray-based expression monitoring of 1000 genes [J].Proc Natl Acad Sci USA,1996,93(20):10614-10619.
    [2]Luo J, Isaacs WB, Trent JM, Duggan DJ. Looking beyond morphology:cancer gene expression profiling using DNA microarrays[J]. Cancer Invest,2003,21(6): 937-949.
    [3]Carella M, Volinia S, Gasparini P. Nanotechnologies and microchips in genetic diseases [J]. J Nephrol,2003,16(4):597-602.
    [4]Birnbaum K, Shasha DE, Wang JY. A gene expression map of the Arabidopsis root[J]. Science,2003,302(5652):1956-1960.
    [5]Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-direeted, Spatially addressable parallel chemical synthesis[J]. Seienee,1991,251 (4995):767-773.
    [6]Schena M, Shalon D, Davis RW, Borwn PO. Quantitative monitoring of gene expression patterns with a complementary DNA miocrarray[J]. Science, 1995,270(5235):467-470.
    [7]陈蔚,俞茂华.以基因芯片技术研究黄芪多糖对NOD小鼠胰岛基因表达的影响[J].中华内分泌代谢杂志,2004,6(12):545-555.
    [8]郝丽娜,凌毅群,罗秀梅.葛根素减轻部分由过氧亚硝基阴离子导致的糖尿病大鼠晶状体上皮细胞调亡[J].生理学报,2006,6(58):548-592.
    [9]李澎灏,王兴,闰智勇,郝晓峰,等.糖肾平胶囊对糖尿病小鼠基因表达的影响[J].华西药学杂志,2003,18(4):253-255.
    [10]王波,李玉明,赵旭燕,蔡绍皙.胰岛素抵抗高血压大鼠基因表达谱和糖脂消对其的影响[J].介入放射学杂志,2004,12(8):205-211.
    [11]姜德友,白玉宾,姚丽,陈永坤,王兵,柳成刚,Fetherston Paul R,刘征,李秀源.糖心康对糖尿病大鼠心肌基因ARmRNA表达的影响[J].中国中医基础医学杂志,2006,12(11):831-833.
    [12]Dennis G Jr,Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID:Database for Annotation, Visualization, and Integrated Discovery[J]. Genome Biol.2003,4(5):P3.
    [13]Kopke R, Allen KA, Henderson D, Hoffer M, Frenz D, Van de Water T. A radical demise. Toxins and trauma share common pathways in hair cell death[J]. Ann N Y Acad Sci.1999,884:171-191.
    [14]Smith AG, Muscat GE. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease[J]. Int J Biochem Cell Biol,2005,37(10):2047-2063.
    [15]Mackowiak P, Krejpcio Z, Sassek M, Kacznarek P, Hertig I, Chmielewska J, Wojciechowicz T, Szczepankiewicz D, Wieczorek D, Szymusiak H, Nowak KW. Evaluation of insulin binding and signaling activity of newly synthesized chromium(III) complexes in vitro[J]. Mol Med Report,2010,3(2):347-353.
    [16]Yang X, Li SY, Dong F, Ren J, Sreejayan N. Insulin-sensitizing and cholesterol-lowering effects of chromium (D-phenylalanine)3[J]. J Inorg Biochem,2006,100(7):1187-1193.
    [17]Wang ZQ, Zhang XH, Russell JC, Hulver M, Cefalu WT. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulinresistant JCR:LA-cp rats[J]. J Nutr,2006,136(2):415-420.
    [18]Yang X, Palanichamy K, Ontko AC, Rao MN, Fang CX, Ren J, Sreejayan N. A newly synthetic chromium complex -chromium(phenylalanine)3 improves insulin responsiveness and reduces whole body glucose tolerance[J]. FEBS Lett,2005,579(6):1458-1464.
    [19]Sree jayan N, Dong F, Kandadi MR, Yang X, Ren J. Chromium alleviates glucose intolerance, insulin resistance, and hepatic ER stress in obese mice[J]. Obesity (Silver Spring),2008,16(6):1331-1337.
    [20]Dong F, Kandadi MR, Ren J, Sreejayan N. Chromium (D-phenylalanine) 3 supplementation alters glucose disposal, insulin signaling, and glucose transporter-4 membrane translocation in insulin-resistant mice[J]. J Nutr, 2008,138(10):1846-1851.
    [21]Goldstein BJ. Protein-tyrosine phosphatases:emerging targets for therapeutic intervention in type 2 diabetes and related states of insulin resistance[J]. J Clin Endocrinol Metab,2002,87(6):2474-2480.
    [22]Sreejayan N, Lin Y, Hassid A. NO attenuates insulin signaling and motility in aortic smooth muscle cells via protein tyrosine phosphatase 1B-mediated mechanism[J]. Arterioscler Thromb Vasc Biol,2002,22(7): 1086-1092.
    [23]Mahadev K, Zilbering A, Zhu L, Goldstein GJ. Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade[J]. J Biol Chem,2001,276(24): 21938-21942.
    [24]van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H. Oxidation state of the activesite cysteine in protein tyrosine phosphatase 1B[J]. Nature, 2003,423(6941):773-777.
    [25]Barr AJ. Protein tyrosine phosphatases as drug targets:strategies and challenges of inhibitor development[J]. Future Med Chem,2010,2(10): 1563-1576.
    [26]Peters KG, Davis MG, Howard BW, Pokross M, Rastogi V, Diven C, Greis KD, Eby-Wilkens E, Maier M, Evdokimov A, Soper S, Genbauffe F. Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium (V04) as the active component[J]. J Inorg Biochem,2003,96(2-3): 321-330.
    [27]Davis CM, Sumrall KH, Vincent JB. A biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP) [J]. Biochemistry, 1996,35(39):12963-12969.
    [28]Goldstein BJ, Zhu L, Hager R, Hager R, Zilbering A, Sun Y, Vincent JB. Enhancement of postreceptor insulin signaling by trivalent chromium in hepatoma cells is associated with differential inhibition of specific protein-tyrosine phosphatases[J]. J Trace Elem Exp Med,2001,14(4): 393-401.
    [29]Wang H, Kruszewski A, Brautigan DL. Cellular chromium enhances activation of insulin receptor kinase[J]. Biochemistry,2005,44(22): 8167-8175.
    [30]Consoli Am Nur jhan N. Contribution of gluconeogenesisto overall glucose output in diabetic and nondiabetic men[J]. Ann Med 1990; 22(3):191-195.
    [31]Valera A, Pujol A, Pelegrin M, Bosch F. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes [J]. Proc Natl Acad Sci USA 1994; 91(19):9151-9154.
    [32]Yamamoto A, Wada 0, Ono T. Isolation of a biologically active low-molecularmass chromium compound from rabbit liver[J]. Eur J Biochem, 1987,165(3):627-631.
    [33]Yamamoto A, Wada 0, Manabe S. Evidence that chromium is an essential factor for biological activity of low-molecular-weight, chromium-binding substance[J]. Biochem Biophys Res Commun,1989,163(1):189-193.
    [34]Vincent JB. Recent advances in the nutritional biochemistry of trivalent chromium[J]. Proc Nutr Soc,2004,63(1):41-47.
    [35]Vincent JB. The biochemistry of chromium[J]. J Nutr,2000,130(4): 715-718.
    [36]Cefalu WT, Wang ZQ, Zhang XH, Baldor LC, Russell JC. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats[J]. J Nutr,2002,13.2(6):1107-1114.
    [37]Penumathsa SV, Thirunavukkarasu M, Samuel SM, Zhan L, Maulik G, Bagchi M, Bagchi D, Maulik N. Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, AMPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury [J]. Biochim Biophys Acta,2009,1792(1):39-48.
    [38]Jain SK, Croad JL, Velusamy T, Rains JL, Bull R. Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkappaB, Akt, and Glut-2 in livers of Zucker diabetic fatty rats[J]. Mol Nutr Food Res,2011,54(9):1371-1380.
    [39]Tuzcu M, Sahin N, Orhan C, Afca CA, Akdemir F, Tuzcu Z, Komorowski J, Sahin K. Impact of chromium histidinate on high fat diet induced obesity in rats[J]. Nutr Metab (Lond),2011,8:28.
    [40]Chen G, Liu P, Pattar GR, Tackett L, Bhonagiri P, Strawbridge AB, Elmendorf JS. Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism[J]. Mol Endocrinol,2006,20(4):857-870.
    [41]Pattar GR, Tackett L, Liu P, Elmendorf JS. Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions [J]. Mutat Res,2006,610(1-2):93-100.
    [42]Sealls W, Penque BA, Elmendorf JS. Evidence that chromium modulates cellular cholesterol homeostasis and ABCA1 functionality impaired by hyperinsulinemia—brief report[J]. Arterioscler Thromb Vasc Biol,2011, 31(5):1139-1140.
    [43]Cefalu WT, Rood J, Pinsonat P, Qin J, Sereda 0, Levitan L, Anderson RA, Zhang XH, Martin JM, Martin CK, Wang ZQ, Newcomer B, Characterization of the metabolic and physiologic response to chromium supplementation in subjects with type 2 diabetes mellitus[J], Metabolism,2010,59(5):755-762.
    [44]Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307) [J]. J Biol Chem,2000,275(12):9047-9054.
    [45]Sykiotis GP, Papavassiliou AG. Serine phosphorylation of insulin receptor substrate-1:a novel target for the reversal of insulin resistance[J]. Mol Endocrinol,2001,15(11):1864-1869.
    [46]Rui L, Fisher TL, Thomas J, White MF. Regulation of insulin/insulin-like growth factor-1 sinaling by proteasome-mediated degradation of insulin receptor substrate-2[J]. J Biol Chem,2001,276(43):40362-40367.
    [47]Solinas G, Naugler W, Galimi F, Lee MS, Karin M. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates[J]. Proc Natl Acad Sci U S A,2006,103(44):16454-16459.
    [48]Chen WY, Chen CJ, Liu CH, Mao FC. Chromium supplementation enhances insulin signalling in skeletal muscle of obese KK/H1J diabetic mice[J]. Diabetes Obes Metab,2009,11(4):293-303.
    [49]Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka TA, Ozawa K, Ogawa S, Hori M, Yamasaki Y, Matsuhisa M. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes[J]. J Biol Chem,2005,280(1):847-851.
    [50]Hotamisligil GS. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes[J]. Diabetes,2005,54(Suppl 2):S73-S78.
    [51]Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes [J]. Science,2004,306(5695): 457-461.
    [52]Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes[J]. Science,2006, 313(5790):1137-1140.
    [53]Engin F, Hotamisligil GS. Restoring endoplasmic reticulum function by chemical chaperones:an emerging therapeutic approach for metabolic diseases[J]. Diabetes Obes Metab,2010,12(Suppl 2):108-115.
    [54]Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes [J]. Free Radic Biol Med,2011,50(5):567-575.
    [55]Jain SK, Kannan K. Chromium chloride inhibits oxidative stress and TNF-alpha secretion caused by exposure to high glucose in cultured U937 monocytes[J]. Biochem Biophys Res Commun,2001,289(3):687-691.
    [56]Jain SK, Lim G. Chromium chloride inhibits TNFalpha and IL-6 secretion in isolated human blood mononuclear cells exposed to high glucose [J]. Horm Metab Res,2006,38(1):60-62.
    [57]Hazane-Puch F, Benaraba R, Valenti K, Osman M, Laporte F, Favier A, Anderson RA, Roussel AM, Hininger-Favier I. Chromium Ⅲ histidinate exposure modulates gene expression in HaCaT human keratinocytes exposed to oxidative stress[J]. Biol Trace Elem Res,2010,137(1):23-39.
    [58]Dong F, Yang X, Sreejayan N, Ren J. Chromium (D-phenylalanine) 3 improves obesity-induced cardiac contractile defect in ob/ob mice[J]. Obesity (Silver Spring),2007,15(11):2699-2711.
    [59]Lai MH. Antioxidant effects and insulin resistance improvement of chromium combined with vitamin C and e supplementation for type 2 diabetes mellitus[J]. J Clin Biochem Nutr,2008,43(3):191-198.
    [60]Cheng HH, Lai MH, Hou WC, Huang CL. Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects[J]. J Agric Food Chem,2004,52(5):1385-1389.
    [61]Hardie DG, Scott JW, Pan DA, Hudson ER. Management of cellular energy by the AMP-activated protein kinase system[J]. FEBS Lett,2003,546(1): 113-120.
    [62]Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA. AMPactivated protein kinase, super metabolic regulator[J]. Biochem Soc Trans,2003,31(Pt 1):162-168.
    [63]Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise[J]. Am J Physiol 1996:270(2 Pt 1):E299-304.
    [64]Rutter GA, Da Silva Xavier G, Leclerc I. Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis[J]. Biochem J,2003, 375 (Pt 1):1-16.
    [65]Zhao P, Wang J, Ma H, Xiao Y, He L, Tong C, Wang Z, Zheng Q, Dolence EK, Nair S, Ren J, Li J. A newly synthetic chromium complex-chromium (D-phenylalanine)3 activates AMP-activated protein kinase and stimulates glucose transport[J]. Biochem Pharmacol,2009,77(6):1002-1010.
    [66]Buteau J, Spatz ML, Accili D. Transcription factor FOX01 mediates glucagon-like peptide-1 effects on pancreatic beta cell mass[J]. Diabetes, 2006,55(5):1190-1196.
    [67]Okamoto H, Hribal ML, Lin HV, Bennett WR, Ward N, Accili D. Role of the forkhead protein FOX01 in beta cell compensation to insulin resistance[J]. J Clin Invest,2006,116(3):775-782.
    [68]李玉秀,王姮,曾静波,孙琦.转录因子Fox01、Fox03a在KKAy胰岛素抵抗糖尿病小鼠肌肉和肝组织中的表达[J].基础医学与临床,2006,26(8):860-862.
    [1]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993, 75(5):843-854.
    [2]Reinhart BJ, Slack FJ, Basson M, Pasguinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403(6772):901-906.
    [3]Lagos QM, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human[J]. RNA,2003,9(2):175-179.
    [4]Hutvaguer G, Zan ore PD. A microRNA in a multiple turnover RNAi enzyme complex[J]. Science,2002,297(5589):2056-2060.
    [5]Zhang C. Novel functions for small RNA molecules[J]. Curr Opin Mol Ther. 2009; 11(6):641-651
    [6]Zhao Y, Srivastava D. A developmental view of microRNA function[J]. Trends Biochem Sci.2007; 32(4):189-197
    [7]Gabbianelli M, Testa U, Morsilli 0, Pelosi E, Petricco E, Castelli G, Giovinazzi S, Mariani G, Fiori ME, Bonanno G, Massa A, Croce CM, Fontana L, Peschle C. Mechanism of human Hb switching:a possible role of the kit receptor/miR 221-222 complex[J]. Haematologica.2010; 95(8):1253-1260
    [8]Gordeladze JO, Djounad F, Brondello JM, Noel D, Duroux-Richard I, Apparailly F, Jorgensen C. Concerted stimuli regulating osteo-chondral differentiation from stem cells:phenotype acquisition regulated by microRNAs[J]. Acta Pharmacol Sin.2009; 30(10):1369-1384
    [9]O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Phydiological and pathological roles for microRNAs in the immune system[J]. Nat Rev Immunol. 2010; 10(2):111-122
    [10]Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harge BD, German MS. MicroRNA expression is required for pancreatic islet cell genesis in the mouse [J]. Diabetes,2007,56(12):2938-2945.
    [11]Bravo-Egana V, Rosero S, Molano RD, Pileggi A, Ricordi C, Dominguez-Bendala J, Pastori RL. Quantitative differential expression analysis reveals miR-7 as major islet microRNA[J]. Biochem Biophys Res Commun,2008,366 (4):922-926.
    [12]Correa-Medina M, Bravo-Egana V, Rosero S, Edlund H, Diez J, Pastori RL. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas [J]. Gene Expr Patterns,2009, 9(4):193-199.
    [13]Joglekar MV, Joglekar VM, Hardikar AA. Expression of isletspecific microRNAs during human pancreatic development [J]. Gene Expr Patterns,2009, 9(2):109-113.
    [14]Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development [J]. PLoS Biol,2007,5(8):e203.
    [15]Keller DM, McWeeney S, Arsenlis A, Drouin J, Wright CV, Wang H, Wollheim CB, White P, Kaestner KH, Goodman RH. Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy [J]. J Biol Chem,2007, 282 (44):32084-32092.
    [16]Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion [J]. Nature,2004,432(7014):226-330.
    [17]El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E. miR-375 targets 30-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells [J]. Diabetes,2008,57(10):2708-2717.
    [18]Herrera BM, Lockstone HE, Taylor JM, Wills QF, Kaisaki PJ, Barrett A, Camps C, Fernadez C, Tagoussis J, Gauguier D, McCarthy MI, Lindgren CM. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes [J]. BMC Med Genomics,2009,2:54.
    [19]Poy MN, Hausser J, Trajkovski M, Braun M, Collinms S, Rorsman P, Zavolan M, Stoffel M. miR-375 maintainsnormal pancreatic alpha-and beta-cell mass [J]. Proc Natl Acad Sci U S A,2009,106(14):5813-5818.
    [20]Plaisance V, Abderrahmani A, Perret-Menoud V, Jacguemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulinproducing cells [J]. J Biol Chem,2006, 281 (37):26932-26942.
    [21]Huang B, Qin W, Zhao B, Shi Y, Yao C, Li J, Xiao H, Jin Y. MicroRNA expression profiling in diabetic GK rat model [J]. Acta Biochim Biophys Sin (Shanghai),2009,41 (6):472-477.
    [22]Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs [J]. Biol Chem,2008,389(3):305-312.
    [23]Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Schargmann R, Rutter GA, Van Obberghen E. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines [J]. J Biol Chem,2007, 282(27):19575-19588.
    [24]Hennessy E, Clynes M, Jeppesen PB,O'Driscoll L. Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells [J]. Biochem Biophys Res Commun,2010,396(2): 457-462.
    [25]Roggli E, Britan A, Gattesco S, Lin-Marg N, Abderrahmani A, Meda P, Regazzi R. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells [J]. Diabetes,2010, 59(4):978-986.
    [26]Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Avderrahmani A, Regazzi R. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction [J]. Diabetes,2008, 57(10):2728-2736.
    [27]Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucoseregulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription [J]. RNA,2009,15(2):287-293.
    [28]Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets ofmicroRNAs[J]. Genome Res.2009,19(1):92-105.
    [29]Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID:Database for Annotation, Visualization, and Integrated Discovery[J]. Genome Biol.2003,4(5):P3.
    [30]Kopke R, Allen KA, Henderson D, Hoffer M, Frenz D, Van de Water T. A radical demise. Toxins and traumashare common pathways in hair cell death[J]. Ann N Y Acad Sci.1999,884:171-191.
    [31]Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs[J]. RNA.2005; 11(11):1737-1744.
    [32]Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR[J], Biotechniques.2005; 39(4):519-525.
    [33]Chen C, Ridzon DA Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, et al. Real-time quantification of microRNAs by stem-loop RT-PCR[J]. Nucleic Acids Res.2005;33(20):e179.
    [34]Kim VN, Nam JW. Genomics of microRNA[J], Trends Genet.2006; 22(3): 165-73.
    [35]Velu CS, Baktula AM, Gfimes HL Gfil regulates miR-21 and miR-196b to control myelopoiesis[J]. Blood.2009; 113(9):4720-4728.
    [36]Gao P, Tchemyshyov I, Chang TC, Lee YS, Kita K, Ochi T, ZellerXI, De Marzo AM, Van Eyk JE, Mendell JT, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature.2009; 458(7239):762-765.
    [37]Calin GA, Dumitm CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H Rattan S, Keating M, Rai K, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci USA.2002; 99(24):15524-15529.
    [38]Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L, Garate L, San Jose-Eneriz E, Abizanda G, Rodriguez-Otero P, Fones P, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia[J]. Cancer Res.2009; 69(10):4443-4453.
    [39]Grant-Downton RT, Dickinson HG. Epigenetics and its implications for plant biology 2. The'epigenetic epiphany':epigenetics, evolution and beyond[J]. Amn Bot.2006:97(1):11-27.
    [40]Kloosterman WP, Lagendi jk AK, Ketting RF, Moulton JD, Plasterk RH. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development[J]. PLoS Biol,2007,5(8):e203.
    [41]Keller DM, McWeeney S, Arsenlis A, Drouin J, Wright CV, Wang H, Wollheim CB, White P, Kaestner KH, Goodman RH. Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy [J]. J Biol Chem,2007, 282(44):32084-32092.
    [42]Poy MN, Eliasson L, Krutzfeldt J, Kuwijima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Roesman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion [J]. Nature,2004,432(7014):226-330.
    [43]El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E. miR-375 targets 30-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells [J]. Diabetes,2008,57(10):2708-2717.
    [44]Herrera BM, Lockstone HE, Taylor JM, Wills QF, Kaisaki PJ, Barrett A, Camps C, Fernandez C, Ragoussis J, Gauguier D, McCarthy MI, Lindgren CM. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes [J]. BMC Med Genomics,2009,2:54.
    [45]Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M. miR-375 maintainsnormal pancreatic alpha- and beta-cell mass [J]. Proc Natl Acad Sci U S A,2009,106(14):5813-5818.
    [46]Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucoseregulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription [J]. RNA,2009,15(2):287-293.
    [47]Hotamisligil GS. Inflammation and metabolic disorders [J]. Nature,2006, 444(7121):860-867.
    [48]Gregor MF, Hatamisligil GS. Inflammatory mechanisms in obesity [J]. Annu Rev Immunol,2011,29:415-445.
    [49]Schenk S, Saberi M, Olefsky JM. Insulin sentitivity:modulation by nutrients and inflammation [J]. J Clin Invest,2008,118(9):2992-3002.
    [50]Somm E, Cettour-Rose P, Asensio C, Charollais A, Klein M, Theander-Carrillo C, Juge-Aubry CE, Dayer JM, Nicklin MJ, Meda P, Rohner-Jeanrenaud F, Meier CA. Interleukin-1 receptor antagonist is upregulated during diet-induced obesity and regulates insulin sensitivity in rodents [J]. Diabetologia,2006,49(2):387-393.
    [51]Osborn 0, Brownell SE, Sanchez-Alavez M, Salomon D, Gram H, Bartfai T. Treatment with an Interleukin 1 beta antibody improves glycemic control in diet-induced obesity [J]. Cytokine,2008,44(1):141-148.
    [52]Zeng J, Zhou J, Huang K. Effect of selenium on pancreatic proinflammatory cytokines in streptozotocin-induced diabetic mice [J]. J Nutr Biochem,2009,20(7):530-536.
    [53]Dumont FJ, Staruch MJ, Fischer P,. Inhibition of T cell activated by pharmacologic disruption of the MEK1/ERK MAP kinase or calcineurin signaling pathways results in differential modulation of cytokine production [J]. J Immunol,1998,160(6):2579-2589.
    [54]Sekine S, Ogawa R, McManus MT, Kanai Y, Hebrok M. Dicer is required for proper liver zonation [J]. J Pathol,2009,219(3):365-372.
    [55]Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, Mason WS, Moloshok T, Bort R, Zaret KS, Taylor JM. miR-122, a mammalian liverspecific microRNA, is processed from her mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1 [J]. RNA Biol,2004,1(2):106-113.
    [56]Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S. LNA-mediated microRNA silencing in non-human primates [J]. Nature,2008,452(7189):896-899.
    [57]Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting [J]. Cell Metab,2006,3(2):87-98.
    [58]Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with'antagomirs'[J]. Nature,2005,438 (7068):685-689.
    [59]Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, Zen K, Li Y, Zhang CY. Differential expression of micro-RNAs in mouse liver under aberrant energy metabolic status [J]. J Lipid Res,2009,50(9):1756-1765.
    [60]Zhao E, Keller MP, Rabaglia ME, Oler AT, Stapleton DS, Schueler KL, Neto EC, Moon JY, Wang P, Wang IM, Lum PY, Ivanovska I, Cleary M, Greenawalt D, Tsang J, Choi YJ, Kleinhanz R, Shang J, Zhou YP, Howard AD, Zhang BB, Kendziorski C, Thornberry NA, Yandell BS, Schadt EE, Attie AD. Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice [J]. Mamm Genome,2009,20 (8):476-485.
    [61]Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argound K, Fernandez C, Travers ME, Grew JP, Randall JC, Gloyn AL, Gauguier D, McCarthy MI, Lindgren CM. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes [J]. Diabetologia,2010,53(6):1099-1109.
    [62]Nakanishi N, Nakagawa Y, Tokushige N, Aoki N, Matsuzaka T, Ishii K, Yahagi N, Kobayashi K, Yatoh S, Takahashi A, Suzuki H, Urayama 0, Yamada N, Shimano H. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice [J]. Biochem Biophys Res Commun,2009,385(4):492-496.
    [63]Esau C, Kang X, Peralta E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R. MicroRNA-143 regulates adipocyte differentiation [J]. J Biol Chem,2004,279(50):52361-52365.
    [64]Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity [J]. Diabetes,2009,58(5):1050-1057.
    [65]He A, Zhu L, Gupta N, Chang Y, Fang F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes [J]. Mol Endocrinol,2007,21 (11):2785-2794.
    [66]Granjon A, Gustin MP, Rieusset J, Lefai E, Guller I, Cerutti C, Paultre C, Disse E, Rabasa-Lhoret R, Laville M, Vidal H, Rome S. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway [J]. Diabetes,2009,58(11):2555-2564.
    [67]Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation [J]. Nat Genet,2006,38(2):228-233.
    [68]Nielsen S, Scheele C, Yfanti C, Akerstrom T, Nielsen AR, Pedersen BK, Laye MJ. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle [J]. J Physiol,2010,588(Pt20):4029-4037.
    [69]Gallagher IJ, Scheele C, Keller P, Nielsen AR, Remenyi J, Fischer CP, Roder K, Babraj J, Wahlestedt C, Hutvagner G, Pedersen BK, Timmons JA,. Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes [J]. Genome Med,2010,2(2):9.
    [70]Horie T, Ono K, Nishi H, Iwanaga Y, Nagao K, Kinoshita M, Kuwabara Y, Takanabe R, Hasegawa K, Kita T, Kimura T. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes [J]. Biochem Biophys Res Commun,2009,389(2):315-320.
    [71]Luo X, Xiao J, Lin H, Li B, Lu Y, Yang B, Wang Z. Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of IKs-encoding genes and potential implications in regional heterogeneity of their expressions [J]. J Cell Physiol,2007,212(2):358-367.
    [72]Zhang Y, Xiao J, Lin H, Luo X, Wang H, Bai Y, Wang J, Zhang H, Yang B, Wang Z. Ionic mechanisms underlying abnormal QT prolongation and the associated arrhythmias in diabetic rabbits:a role of rapid delayed rectifier K1 current [J]. Cell Physiol Biochem,2007,19(5-6):225-238.
    [73]Yu XY, Song YH, Geng YJ, Lin QX, Shan ZX, Lin SG, Li Y. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1 [J]. Biochem Biophys Res Commun,2008,376(3):548-552.
    [74]Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA, Cimino V, De Marinis L, Frustaci A, Catalucci D, Condorelli G. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions [J]. Circulation,2009,120(23):2377-2385.
    [75]Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes [J]. Free Radic Biol Med,2011,50(5):567-575.
    [76]Jain SK, Kannan K. Chromium chloride inhibits oxidative stress and TNF-alpha secretion caused by exposure to high glucose in cultured U937 monocytes[J]. Biochem Biophys Res Commun,2001,289(3):687-691.
    [77]Jain SK, Lim G. Chromium chloride inhibits TNFalpha and IL-6 secretion in isolated human blood mononuclear cells exposed to high glucose [J]. Horm Metab Res,2006,38(1):60-62.
    [78]Hazane-Puch F, Benaraba R, Valenti K, Osman M, Laporte F, Favier A, Anderson RA, Roussel AM, Hininger-Favier Ⅰ. Chromium Ⅲ histidinate exposure modulates gene expression in HaCaT human keratinocytes exposed to oxidative stress [J]. Biol Trace Elem Res,2010,137(1):23-39.
    [79]SethuPathy P, Megraw M, Hatzigeorgiou AG, et al. A gnide through Present computational approaches for the identification of mammalian microRNA targets [J]. Nat Methods,2006,3(11):881-886.
    [80]Enright AJ. John B.Gaul U. et al.MicroRNA targets in DrosoPhi la [J]. Genome Biol,2003,5(1):R1.
    [81]Rabinovitch A, Suarez WL, Thomas PD, Strynadka K, Simpson I. Cytotoxic effects of cytokines on rat islets:evidence for involvement of free radicals and lipid peroxidation[J]. Diabetologia.1992,35(5):409-413.
    [82]Suarez-Pinzon WL, Szabo C, Rabinovitch A. Development of autoimmune diabetes in NOD mice is associated with the formation of peroxynitrite in pancreatic islet β cells[J]. Diabetes.1997,46(5):907-911.
    [83]Stosi-Grujici c SD, Maksimovi c DD, Stojkovi c MB, Luki c ML. Pentoxifylline prevents autoimmune mediated inflammation in low dose streptozotocin induced diabetes[J]. Dev Immunol.2001,8(3-4):213-221
    [84]Stosic-Grujicic S, Cvetkovic I, Mangano K, Kim J, Al-Abed Y, Nicoletti F, Fresta M, Maksimovic-Ivanic D, Harhaji L, Popadic D, Momcilovic M, Miljkovic D, Kim J, Al-Abed Y, Nicoletti F. A potent immunomodulatory compound, (S, R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid, prevents spontaneous and accelerated forms of autoimmune diabetes in NOD mice and inhibits the immunoinflammatory diabetes induced by multiple low doses of streptozotocin in CBA/H mice[J]. J Pharmacol Exp Ther 2007;320 (3):1038-1049.
    [85]Maritim AC, Sanders RA, Watkins Ⅲ JB. Effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats[J]. J Nutr Biochem 2003;14(5):288-294.
    [86]Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R, Gueripel X, Ellingsgaard H, Schneider MK, Biollaz G, Fontana A, Reinecke M, Homo-Delarche F, Donath MY. Increased number of islet-associated macrophages in type 2 diabetes[J]. Diabetes.2007,56(9):2356-2370.
    [87]Giannoukakis N, Rudert WA, Trucco M, Robbins PD. Protection of human islets from the effects of interleukin-10 by adenoviral gene transfer of an Ⅰ κ B repressor[J].J Biol Chem.2000,275(47):36509-36513.
    [88]Eldor R, Yeffet A, Baum K, Doviner V, Amar D, Ben-Neriah Y, Christofori G, Peled A, Carel JC, Boitard C, Klein T, Serup P, Eizirik DL, Melloul D. Conditional and specific NF-κB blockade protects pancreaticβ cells from diabetogenic agents[J]. Proc Natl Acad Sci USA.2006,103(13):5072-5077.
    [89]Fukuda K, Tesch GH, Nikolic-Paterson DJ. c-Jun amino terminal kinase 1 deficient mice are protected from streptozotocin-induced islet injury [J]. Biochem Biophys Res Commun.2008,366(3):710-716.
    [90]Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression[J]. J Biol Chem.2002,277(33):30010-30018.
    [91]Maedler K, Schulthess FT, Bielman C, Berney T, Bonny C, Prentki M, Donath MY, Roduit R. Glucose and leptin induce apoptosis in human β-cells and impair glucose-stimulated insulin secretion through activation of c-Jun N-terminal kinases[J]. FASEB J.2008,22(6):1905-1913.
    [92]Jain SK, Rains JL, Croad JL. Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-alpha, IL-6, CRP, glycated hemoglobin, triglucerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats[J]. Free Radic Biol Med,2007; 43(8):1124-1131.
    [1]Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prebalence of overweight and obesity in the United States,1999-2004[J]. JAMA,2006,295(13):1549-1555.
    [2]Engelgau MM, Geiss LS, Saaddine JB, Boyle JP, Benjamin SM, Gregg EW, Tierney EF, Rios-Burrows N, Mokdad AH, Ford ES, Imperatore G, Narayan KM. The evolving diabetes burden in the United States. Ann Intern Med,2004, 140(11):945-950.
    [3]Eckel RH, Kahn R, Robertson RM, Rizza RA. Preventing cardiovascular disease and diabetes:a call to action from the American Diabetes Association and the American Heart Association. Circulation,2006, 113(25):2943-2946.
    [4]Flier JS. Obesity wars:molecular progress confronts an expanding epidemic. Cell,2004,116(2):337-350.
    [5]Hogan P, Dall T, Nikolov P. Economic costs of diabetes in the US in 2002. Diabetes Care,2003,26(3):917-932.
    [6]Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA,2003,289(1):76-79.
    [7]Martin AE, Montgomery PA. Acarbose:an alpha-glucosidase inhibitor. Am J Health Syst Pharm,1996,53(19):2277-2290.
    [8]Balfour JA, McTavish D. Acrbose. An update of its pharmacology and therapeutic use in diabetes mellitus. Drugs,1993,46(6):1025-1054.
    [9]Winter J, Jung S, Keller S, Greogory RJ, Diederichs S. Many roads to maturity:microRNA biogenesis pathways and their regulation. Nat Cell Biol, 2009,11(3):228-234.
    [10]Chen CZ, Lodish HF. MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol,2005,17(2):155-165.
    [11]Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev,2005,15(5):563-568.
    [12]Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, Reaven GM. A new rat model of type 2 diabetes:the fat-fed, streptozotocin-treated rat. Metabolism,2000,49(11):1390-1394.
    [13]Huang JH, Huang XH, Chen ZY, Zheng QS, Sun RY. Dose conversion among different animals and healthy volunteers in pharmacological study. Chinese Journal of Clinical Pharmacology and Therapeutics,2004,9:1069-1072.
    [14]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method. Methods, 2001,25(4):402-408.
    [15]Heeckt PF, Klein D, Beger HG. Short-bowel syndrome-surgical treatment with long-term benefit? Langenbecks Arch Surg,2000,385(1):50-56.
    [16]Chen H. Cellular inflammatory responses:novel insights for obesity and insulin resistance. Pharmacol Res,2006,53(6):469-477.
    [17]Coppack SW. Pro-inflammatory cytokines and adopose tissue. Proc Nutr Soc,2001,60(3):349-356.
    [18]Aldhahi W, Hamdy 0. Adipokines, inflammation, and the endothelium in diabetes. Curr Diab Rep,2003,3(4):293-298.
    [19]Krisiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes:the good, the bad, or the indifferent? Diabetes,2005,54(Suppl 2):S114-S124.
    [20]Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation,2004,109(21 suppl 1):Ⅱ 2-Ⅱ 10.
    [21]Choi SE, Choi KM, Yoon IH, Shin JY, Kim JS, Park WY, Han DJ, Kim SC, Ahn C, Kim JY, Hwang ES, Cha CY, Szot GL, Yoon KH, Park CG. IL-6 protects pancreatic islet beta cells from pro-inflammatory cytokines-induced cell death and functional impairment in vitro and in vivo. Transpl Immunol, 2004,13(1):43-53.
    [22]Ruan H, Lodish HF. Insulin resistance in adipose tissue:direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev,2003,14(5):447-455.
    [23]Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance. Science,1993,259(5091):87-91.
    [24]Stephens JM, Pekala PH. Transcriptional repression of the GLUT4 and CEBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J Biol Chem,1991,266(32):21839-21845.
    [25]Waetzig GH, Seegert D, Rosenstiel P, Nikolaus S, Schreiber S. p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J Immunol,2002,168(10): 5342-5351.
    [26]Hollenbach E, Neumann M, Vieth M, Roessner A, Malfertheiner P, Naumann M. Inhibit ion of p38MAP kinase- and RICK/NF-kappaB-signaling suppresses inflammatory bowel disease. FASEB J,2004,18(13):1550-1552.
    [1]Merz W, Schwarz K. Relationship of glucose tolerance to impaired intravenous glucose tolerance of rats on stock diets. Am J Physiol, 1959,196:614-618.
    [2]Jeejeebhoy KN, Chu RC, Marliss EB, et al. Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. Am J Clin Nutr, 1977,30:531-538.
    [3]Freund H, Atamian S, Fischer JE. Chromium deficiency during total parenteral nutrition. JAMA,1979,241:496-498.
    [4]Di Bona KR, Love S, Rhodes NR, et al. Chromium is not an essential trace element for mammals:effects of a "low-chromium" diet. J Biol Inorg Chem,2011,16:381-390.
    [5]Mummel M, Schnell SO. Chromium in metabolic and cardiovascular disease. Horm Metab Res,2007,39:743-751.
    [6]Evans GW, Pouchnik DJ. Composition and biological activity of chromium-pyridine carboxylate complexes. J Inorg Biochem,1993,49:177-187.
    [7]Balk EM, Tatsioni A, Lichtenstein AH, et al. Effect of chromium supplementation on glucose metabolism and lipids:a systematic review of randomized controlled trials. Diabetes Care,2007,30:2154-2163.
    [8]Kleefstra N, Houweling ST, Bilo HJ. Effect of chromium supplementation on glucose metabolism and lipids:a systematic review of randomized controlled trials. Diabetes Care,2007,30:e102.
    [9]邵聪,吕肖峰,肖新华,等.天麦消渴片治疗中国新诊断2型糖尿病患者的疗效研究.中华医学杂志,2012,22:1522-1526.
    [10]Wang ZQ, Qin J, Martin J, et al. Phenotype of subjects with type 2 diabetes mellitus may determine clinical response to chromium supplementation. Metabolism,2007,56:1652-1655.
    [11]Yamamoto A, Wada 0, Ono T. Isolation of a biologically active low-molecularmass chromium compound from rabbit liver. Eur J Biochem, 1987,165:627-631.
    [12]Davis CM, Vincent JB. Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry,1997,36:4382-4385.
    [13]Mackowiak P, Krejpcio Z, Sassek M, et al. Evaluation of insulin binding and signaling activity of newly synthesized chromium(Ⅲ) complexes in vitro. Mol Med Report,2010,3:347-353.
    [14]Wang ZQ, Zhang XH, Russell JC, et al. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin resistant JCR:LA-cp rats. J Nutr,2006,136:415-420.
    [15]Yang X, Li SY, Dong F, et al. Insulin-sensitizing and cholesterol-lowering effects of chromium (D-phenylalanine)3. J Inorg Biochem,2006,100:1187-1193.
    [16]Sreejayan N, Dong F, Kandadi MR, et al. Chromium alleviates glucose intolerance, insulin resistance, and hepatic ER stress in obese mice. Obesity (Silver Spring),2008,16:1331-1337.
    [17]Dong F, Kandadi MR, Ren J, et al. Chromium (D-phenylalanine) 3 supplementation alters glucose disposal, insulin signaling, and glucose transporter- 4 membrane translocation in insulin-resistant mice. J Nutr,2008,138:1846-1851.
    [18]Sahin K, Tuzcu M, Orhan C, et al. Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin. Br J Nutr,2012,5:1-9.
    [19]Penumathsa SV, Thirunavukkarasu M, Samuel SM, et al. Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, AMPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury. Biochim Biophys Acta,2009,1792:39-48.
    [20]Jain SK, Croad JL, Velusamy T, et al. Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkappaB, Akt, and Glut-2 in livers of Zucker diabetic fatty rats. Mol Nutr Food Res,2011,54:1371-1380.
    [21]Tuzcu M, Sahin N, Orhan C, et al. Impact of chromium histidinate on high fat diet induced obesity in rats. Nutr Metab (Lond),2011,8:28.
    [22]Chen G, Liu P, Pattar GR, et al. Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol Endocrinol,2006,20:857-870.
    [23]Pattar GR, Tackett L, Liu P, et al. Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions. Mutat Res,2006,610:93-100.
    [24]Sealls W, Penque BA, Elmendorf JS. Evidence that chromium modulates cellular cholesterol homeostasis and ABCA1 functionality impaired by hyperinsulinemia--brief report. Arterioscler Thromb Vasc Biol,2011,31:1139-1140.
    [25]Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling. Science,2006,312:1882-1883.
    [26]Barr AJ. Protein tyrosine phosphatases as drug targets:strategies and challenges of inhibitor development. Future Med Chem,2010,2:1563-1576.
    [27]Solinas G, Naugler W, Galimi F, et al. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates. Proc Natl Acad Sci U S A,2006,103:16454-16459.
    [28]Chen WY, Chen CJ, Liu CH, et al. Chromium supplementation enhances insulin signalling in skeletal muscle of obese KK/H1J diabetic mice. Diabetes Obes Metab,2009,11:293-303.
    [29]Wang YQ, Yao MH. Effects of chromium picolinate on glucose uptake in insulin resistant 3T3-L1 adipocytes involve activation of p38 MAPK. J Nutr Biochem,2009,20:982-991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700