用户名: 密码: 验证码:
尿激酶型纤溶酶原激活物受体(uPAR)与动脉粥样硬化之间的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:纤溶系统不仅介导纤维蛋白的溶解,而且还参与体内很多病理生理过程,例如细胞迁移、组织重塑以及炎症反应等。尿激酶型纤溶酶原激活物受体(uPAR)作为纤溶系统中一个重要成员,是一个具有多种重要生理功能的分子。它可以与细胞外及细胞膜上特定分子结合,如尿激酶型纤溶酶原激活物(uPA)、玻璃体粘连蛋白(VN)、整合素等,从而发挥重要的生理学功能。作为一个糖基化磷脂酰肌醇锚定于细胞膜上的受体,uPAR余了可以激活细胞周围蛋白水解,还参与细胞黏附、细胞增殖和趋化等过程,这些生物学功能贯穿于动脉粥样硬化发生演变的始终。越来越多证据表明,uPAR在动脉粥样硬化的发生发展中发挥着重要作用,但其中确切的机制尚未明确。
     目的:利用动脉粥样硬化斑块的动物模型,检测斑块发展各阶段外周血单核细胞及斑块内部uPAR的表达水平,探讨动脉粥样硬化发生发展与uPAR表达之间的相关性。
     方法:39只纯合C57BL/6雄性apoE-/-小鼠喂养至8周龄时被随机分成3个对照组(以Ⅰ、Ⅱ、Ⅲ组表示,每组6只小鼠)和3个实验组(以Ⅳ、Ⅴ、Ⅵ组表示,每组7只小鼠),分别喂以高脂饮食和普通饮食。于喂养第10周处死Ⅰ、Ⅳ组,第13周处死Ⅱ、Ⅴ组,第16周处死Ⅲ、Ⅵ组,分别测量每个动物的体重及腹部脂肪重量,留取外周血标本、心脏及主动脉标本(包括头臂动脉)。外周血标本通过流式细胞仪测定单核细胞中uPAR阳性细胞的比例。动脉标本通过HE染色寻找并计数各期斑块,通过免疫荧光及免疫组化的方法测定斑块内部单核巨噬细胞及泡沫细胞中uPAR的表达水平。
     结果:首先,本研究成功建立了动脉粥样硬化斑块的小鼠模型,在三个实验组动物身上均出现了明确的斑块,而三个对照组动物身上却没有发现任何斑块。其次,在实验组动物中,随着高脂饮食喂养周数的增加,动物的体重及腹部脂肪含量也逐渐增加,各组间存在显著性差异(p<0.05);与此同时,动脉斑块病变的严重程度也逐渐加重,第10周动物以早期病变为主,如脂纹,而第16周动物则晚期病变如纤维斑块和钙化斑块为主。第三,对外周血单核细胞uPAR阳性率测定结果显示:实验组动物的阳性率明显高于对照组,而在3个实验组内部,随着高脂喂养周数增加,外周血单核细胞uPAR阳性率也逐渐升高,3组间存在显著差异(p<0.01)。斑块内部uPAR表达量随着病变严重程度的加重而升高。第四,对斑块内部uPAR阳性的单核巨噬细胞和泡沫细胞数量进行测定的结果显示:钙化斑块>纤维斑块>早期病变如脂纹>正常动脉管壁(p<0.05),而在纤维斑块或钙化斑块内部:脂质核心或坏死核心>纤维帽(p<0.05)。
     结论:利用纯合apoE-/-C57BL雄性小鼠饲以高脂饮食能够成功建立动脉粥样硬化动物模型。随着斑块的发生及发展,小鼠外周血单核细胞uPAR表达阳性率逐渐升高。斑块内部uPAR表达量随着病变严重程度的加重而升高。所有这些结果均证实uPAR与动脉粥样硬化发生发展之间密切相关,为进一步深入研究uPAR在粥样硬化形成中的作用和机制打下了基础。
Background Fibrinolytic system exerts pleiotropic functions over the course of many physiologic and pathological processes, including cell migration, tissue remodeling and inflammation response. The urokinase-type-plasminogen-activator receptor (uPAR) is a key molecular of this system and can bind both extracellular moleculars and cell membrane moleculars, such as urokinase type plasminogen activator (uPA), vitronectin (VN), and integrins and so on. As a glycosylphosphatidylinositol-linked receptor, uPAR not only plays a key role in cell suface-associated proteolysis, but also involved in several processes not related to plasminogen activation including cellular adhesion, proliferation and chemotaxis, all of which are fundamental processes in atherogenesis. More and more studies had implicated that uPAR plays an important role in the development of atherogenesis, but the exact mechanism still remains to be elucidated.
     Objectives Using the animal model of atherogenesis, we determined the levels of uPAR of monocytes or macrophages both in peripheral vessels and in atherosclerotic plaques with different degrees of atherosclerotic lesions. The purpose is to evaluate the relationship between atherogenesis and the expression of uPAR.
     Methods39Male apolipoprotein E-knockout mice were randomised into6groups from the age of8weeks, including3control groups (Group1,11and III,6mice in each group) and3experimental groups (Group IV, V and VI,7mice in each group). The animals of experimental groups were fed a high-fat, cholesterol-enriched diet, while the control groups were fed a normal diet. Animals were euthanized at3-week intervals between10and16weeks of feeding, with1experimental group and1control group were euthanized each time. During dissection, the body weight of each animal were recorded, the peripheral blood and cardiovascular pathological samples were collected. The proportion of peripheral monocytes expressing uPAR was surveyed by flow cytometer. For cardiovascular pathological samples, HE staining was used to search and count the number of atherosclerotic plaques with different degrees of atherosclerotic lesions. Immunohistochemistry and immunofluorescence were employed to detect the expression of uPAR protein as well as its association with macrophages and SMC in different type of plaque.
     Results First, this study built the animal model of atherogenesis successfully. The animals of experimental groups were all found different type of atherosclerotic plaques, while none of the animals in control groups was found any atherosclerotic plaques. Second, as the weeks went on, body weight of the animals in experimental groups increased rapidly. There was significant difference between these groups (p<0.05). At the same time, the degrees of atherosclerotic lesions were progressing weekly. More early lesions could be seen in animals with10weeks of high-fat diet, while more severe lesions could be found in animals with16weeks of high-fat diet. Third, Surface expression of uPAR on peripheral monocytes was significantly higher in animals with high-fat diet, compared with that in animals with normal diet (p<0.03). Even more, among the animals with high-fat diet, the expression of uPAR on peripheral monocytes increased as the fed weeks went on. There was significant difference between there experimental groups (p<0.01). Fourth, the level of uPAR in different type of plaques were detected and the results are showed as follows:calcified plaques(CP)> fibrous plaques(FP)> early lesions(EL)> normal areas(NA)(p<0.05); the core of CP or FP> the cap of CP or FP.
     Conclusions Our study confirmed that male apolipoprotein E-knockout mice fed with a high-fat, cholesterol-enriched diet can build the animal model of atherogenesis successfully. With the development of atherosclerotic plaques, the expression of uPAR on mouse peripheral monocytes increased gradually. With the degree of atherosclerotic plaques developing, the level of uPAR in atherosclerotic plaques increased gradually. All these data confirm that the overexpression of uPAR both in peripheral monocytes and in advanced atherosclerotic lesions contributes to atherosclerotic plaques' development. This study provided new knowledge of monocyte/macrophage's atherogenic role by uPAR, and further investigation was required to elucidate its mechanism and the possibility of clinical application.
引文
1. Braunwald E. Lecture of cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med.1997; 337:1360-1369.
    2. Glass CK., Witztum JL.. Atherosclerosis, the road ahead. Cell.2001; 104:503-516.
    3. Shireman PK., Pearce WH.. Endothelial cell function:biologic and physiologic functions in health and disease. AJR Am J Roentgenol.1996; 166:7-13.
    4. Ross R.. Atherosclerosis--an inflammatory disease. N Engl J Med.1999; 340:115-126.
    5. Saksela O.. Cell-associated plasminogen activation:regulation and physiological functions. Cell Biol.1988; 4:93-126.
    6. Christ G. Plasmin activation system in restenosis:Role in pathogenesis and clinical prediction. J. Thrombosis and Thrombolysis.1999; 7:277-285.
    7. Martin BS., Padro T., Schwaenen C, et al. Overexpression of urokinase receptor and cell surface urokinase-type plasminogen activator in the human vessel wall with different types of atherosclerotic lesions. Blood Coagulation and Fibrinolysis.2004; 15:383-391.
    8. Raghunath P. Plasminogen activator system in human coronary atherosclerosis. Arterioscler Thromb Vasc Biol.1995; 15(9):1432-1443.
    9. Abboud RT, Fera T, Johal S, et al. Effect of smoking on plasma neutrophil elastase levels. J Lab Clin Med.1986;108:294-300.
    10.陈未,陈连凤,朱文玲等.冠心病危险因素促使外周血单核细胞高表达尿激酶型纤溶酶原激活物受体的研究.中华心血管病杂志.2007;35:159-163.
    11. Andreasen PA, Egelund R., Petersen HH.. Cell. Mol. Life Sci.2000; 57:25-40.
    12. Behrendt N., Stephens RW. The urokinase receptor. Fibrinolysis proteolysis.1998; 12:191-204.
    13. Wary KK.. A requirement for caveolin-land associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell.1998; 144:625-634.
    14. Chavakis T., Kanse SM., May AE. et al. Haemostatic factors occupy new territory: the role of the urokinase receptor system and kininogen in inflammation. Bioche. Soc. Trans.2002,30:169-173.
    1. Falk E., Stephen MS., Zorina SG.., et al. Putative murine models of plaque rupture. Arterioscler. Thromb. Vasc. Biol.2007; 27:969-972.
    2. Johnson J., Carson K., Williams H., et al. Plaque ruptur after short periods of fat feeding in the apolipoprotein E-knockout mouse. Circulation.2005; 111:1422-1430.
    3. Christopher LJ., Martin RB., Erik AL., et al. Assessment of unstable atherosclerosis in mice. Arterioscler Thromb Vasc Biol.2007; 27:714-720.
    4. Wary KK. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell.1998; 144:625-634.
    5. Beluretidt N. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol Chern Hoppe Seyle.1995; 376(5):269-279.
    6. Chavakis T., Kanse SM., May AE., et al. Heamostatic factors occupy new territory:the role of the urokinase receptor system and kininogen in inflammation. Biochemical Society Transactions.2002; 30(2):168-173.
    7. Abboud RT, Fera T, Johal S, et al. Effect of smoking on plasma neutrophil elastase levels. JLab Clin Med.1986,108:294-300.
    8. Collier A., Jackson M., Bell D., et al. Neutrophil activation detected by increased neutrophil elastase activity in type 1 (insulin-dependent) diabetes mellitus. Diabetes Res. 1989; 10:135-138.
    9.陈未,陈连凤,朱文玲等.冠心病危险因素促使外周血单核细胞高表达尿激酶型纤溶酶原激活物受体的研究.中华心血管病杂志.2007;35:159-163.
    10. May AE., Schmidt R., Kanse SM., et al. Urokinase receptor surface expression regulates monocyte adhesion in acute myocardial infarction. Blood.2002; 100: 3611-3617.
    11. Steins MB., Padro T., Schwaenen C., et al. Overexpression of urokinase receptor and cell surface urokinase-type plasminogen activator in the human vessel wall with different types of atherosclerotic lesions. Blood Coagulation and Fibrinolysis.2004; 15:383-391.
    12. Salame MY., Samani NJ., Masood I., et al. Expression of the plasminogen activator system in the human vescular wall. Atherosclerosis.2000; 152(1):19-28.
    13. Gu JM., Johns A., Morser J., et al. Urokinase plasminogen activator receptor promotes macrophage infiltration into the cascular wall of ApoE deficient mice. J Cell Physiol. 2005; 204(1):73-82.
    14. Reidy MA., Irvin C., Lindner V.. Migration of arterial wall cells:Expression of plasminogen activators and inhibitors in injured rat arteries. Circ Res.1996; 78:405-414.
    15. Odekon LE., Sato Y., Rifkin DB.. Urokinase-type plasminogen activator mediates basic fibroblast growth factor-induced bovine endothelial cell migration independent of its proteolytic activity. J Cell Physiol.1992; 150:258-263.
    16. Okada SS, Grobmyer SR, Barnathan ES. Contrasting effects of plasminogen activators, urokinase receptor, and LDL receptor-related protein on smooth muscle cell migration and invasion. Arterioscler Thromb Vasc Biol.1996; 16:1269-1276.
    17. Giannelli G, Falk-Marzillier J., Schiraldi O., et al. Induction of cell migration by matrix metalloproteinase-2 cleavage of laminin-5. Science.1997; 277:225-228.
    18. Jiang M.. Pitavastatin attenuates the PDGF-induced LR11/uPA receptor-mediated migration of smooth muscle cells. Biochem-Biophys-Res-Commun.2006; 348(4): 1367-1377.
    19. Plekhanova O.. Urokinase plasminogen activator augments cell proliferation and neointima formation in injured arteries via proteolytic. Atherosclerosis.2001; 159: 297-306.
    20. Niroko N.. Augmented urokinase receptor expression in atheroma. Arterioscler Thromb Vasc Biol.1995; 15:37-43.
    21. Piguet PF., Vesin C., Donati Y., et al. Urokinase receptor is a platelet receptor important for kinetics and TNF-induced endothelial adhesion in mice. Circulation.1999; 99(25):3315-21.
    22. Carmeliet P., Moons L., Herbert JM., et al. Urokinase but not tissue plasminogen activator mediates arterial neointima formation in mice. Circ Res.1997; 81:829-839.
    23. Renckens R. plasminogen activator receptor plays a role in neutrophil migration during lipopolysaccharide-induced peritoneal inflammation but not during Escherichia coli-induced peritonitis. J-Infect-Dis.2006; 193(4):522-530.
    24. Saksela O.. Cell-associated plasminogen activation:regulation and physiological functions. Cell Biol.1988; 4:93-126.
    1. Braunwald E., Shattuck. Lecture of cardiovascular medicine at the turn of the millennium:triumphs, concerns, and opportunities. N Engl J Me.1997; 337:1360-1369.
    2. Libby P.. Inflammation in atherosclerosis. Nature.2002; 420:868-874.
    3. Ross R.. Atherosclerosis-an inflammatory disease. NEngl JMed.1999; 340:115-126.
    4. Berenson GS., Srinivasan SR., Bao W., et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med.1998; 338:1650-1656.
    5. Glass CK., Witztum JL.. Atherosclerosis, the road ahead. Cell.2001; 104:503-516.
    6. Noris M., Morigi M., Donadelli R., et al. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res.1995; 76:536-543.
    7. Schwenke DC, Carew TE.. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis.1989; 9:895-907.
    8. Vainio S., Ikonen E.. Macrophage cholesterol transport:a critical player in foam cell formation. Ann Med.2003; 35(3):146-55.
    9. Navab M., Berliner JA., Watson AD., et al. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol.1996; 16:831-842.
    10. Berliner J. Introduction. Lipid oxidation products and atherosclerosis. Vascul Pharmacol.2002; 38:187-191.
    11. Steinberg D., Parthasarathy S., Carew TE., et al. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med.1989; 320: 915-924.
    12. Berkel V., Out TJ., Hoekstra R., et al.. Scavenger receptors:friend or foe in atherosclerosis? Curr Opin Lipidol.2005; 16:525-535.
    13. Pelton PD., Patel M.. Nuclear receptors as potential targets for modulating reverse cholesterol transport. Curr Top Med Chem.2005; 5(3):265-82.
    14. Gargalovic P., Dory L.. Caveolins and macrophage lipid metabolism. J Lipid Res. 2003; 44(1):11-21.
    15. Stemme S., Faber B., Holm J., et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A.1995; 92: 3893-3897.
    16. Bochaton-Piallat ML., Gabbiani G. Modulation of smooth muscle cell proliferation and migration:role of smooth muscle cell heterogeneity. Handb Exp Pharmacol. 2005:645-663.
    17. Saksela O.. Cell-associated plasminogen activation:regulation and physiological functions. Cell Biol 1988; 4:93-126.
    18. Christ G. Plasmin activation system in restenosis:role in pathogenesis and clinical prediction? J. Thrombosis and Thrombolysis.1999; 7:277-285.
    19. Andreasen PA., Egelund R., Petersen HH.. Cell. Mol. Life Sci..2000,57:25-40.
    20. Behrendt N., Stephens RW.. Fibrinolysis. Proteolysis.1998; 12:191-204.
    21. Ossowski L., Clunie G, Masucci MT., et al. In vivo paracrine interaction between urokinase and its receptor:effect on tumor cell incasion. J. Cell Biol.1993; 115: 1107-1112.
    22. Schmitt M., Harbeck N., Thomssen C., et al. Clinical impact of the plasminogen activation system in tumor invasion and metastasis:prognostic relevance and target for therapy. Thromb. Haemostasis.1997; 78:285-296.
    23. Witz, I. P.. Differential expression of genes by tumor cells of a low or a high malignancy phenotype:the case of murine and human Ly-6 proteins. J. Cell. Biochem, 2000; 77:61-66.
    24. Harder T., Simons K.. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr. Opin. Cell Biol..1997; 9:534-542.
    25. Horejsi V., Drbal K., Cebecauer M., et al. GPI-microdomains:A role in signalling via immunoreceptors. Immunol. Today.1999; 20:356-361.
    26. Andreasen PA.. The urokinase-type plasminogen activator system in cancer metastasis:Areview.Int J Cancer.1997; 72(1):1-22.
    27. Wary KK. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell.1998; 144:625-634.
    28. Beluretidt N. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol Chern Hoppe Seyler. 1995; 376(5):269-279.
    29. Chavakis T., Kanse SM., May AE., et al. Heamostatic factors occupy new territory: the role of the urokinase receptor system and kininogen in inflammation. Biochemical Society Transactions.2002; 30(2):168-173.
    30. Appella E., Robinson EA., Ullrich SJ., et al. The receptor-binding sequence of urokinase. A biological function for the growthfactor module of proteases. J Biol Chem. 1987; 262:4437-4440.
    31. Stoppelli MP., Corti A., Soffientini A., et al. Differentiationenhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci US.,1985; 82:4939-4943.
    32. Petersen LC. Kinetics of pro-urokinase/plasminogen activation:stimulation by a template formed by the urokinase receptor bound to poly-D-lysine. Eur JBiochem.1997; 245:316-323.
    33. Ellis V., Behrendt N., Dan(?) K.. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem.1991; 266:12752-12758.
    34. Ellis V., Dan(?) K.. Potentiation of plasminogen activation by an anti-urokinase monoclonal antibody due to ternary complex formation. A mechanistic model for receptor-mediated plasminogen activation. JBiol Chem.1993; 268:4806-4813.
    35. Ellis V., Ploug M., Plesner T., et al. Gene expression and function of the cellular receptor for uPA (uPAR). In:Glas-Greenwalt P, ed. Fibrinolysis in Disease. Molecular and Hemovascular Aspects of Fibrinolysis. Boca Raton, Florida:CRC Press. 1995:30-42.
    36. Pollanen J., Saksela O., Salonen EM., et al. Distinct localizations of urokinase-type plasminogen activator and its type 1 inhibitor under cultured human fibroblasts and sarcoma cells. J Cell Biol.1987; 104:1085-1096.
    37. Pollanen J., Hedman K., Nielsen LS., et al. Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts. J Cell Biol. 1988; 106:87-95.
    38. Estreicher A., Muhlhauser J., Carpentier JL., et al. The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. J Cell Biol.1990; 111:783-792.
    39. Ossowski L.. Plasminogen activator dependent pathways in the dissemination of human tumor cells in the chick embryo. Cell.1988; 52:321-328.
    40. Ossowski L.. In vivo invasion of modified chorioallantoic membrane by tumor cells: the role of cell surface-bound urokinase. J Cell Biol.1988; 107:2437-2445.
    41. Ossowski L., Clunie G., Masucci MT., et al. In vivo paracrine interaction between urokinase and its receptor:effect on tumor cell invasion. J Cell Biol.1991; 115:1107-1112.
    42. Gudewicz PW., Gilboa N.. Human urokinase-type plasminogen activator stimulates chemotaxis of human neutrophils. Biochem Biophys Res Commun.1987;147:1176-1181.
    43. Gyetko MR., Todd RF., Wilkinson CC., et al. The urokinase receptor is required for human monocyte chemotaxis in vitro. J Clin Invest.1994; 93:1380-1387.
    44. Gyetko MR., Sitrin RG., Fuller JA., et al. Function of the urokinase receptor (CD87) in neutrophil chemotaxis. J Leuk Biol.1995; 58:533-538.
    45. Waltz DA., Chapman HA.. Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J Biol Chem.1994; 269:14746-14750.
    46. Wei Y., Waltz DA., Rao N., et al. Identification of the urokinase receptor as all adhesion receptor for vitronectin. JBiol Chem.1994; 269:32380-32388.
    47. Kanse SM., Kost C., Wilhelm OG., et al. The urokinase receptor is a major vitronectin-binding protein on endothelial cells. Exp Cell Res.1996; 224:344-353.
    48. Xue W., Kindzelskii AL., Todd RE, et al. Physical association of complement receptor type 3 and urokinase-type plasminogen activator receptor in neutrophil membranes. J Immunol.1994; 152:4630-4640.
    49. Wei Y., Lukashev M., Simon DI., et al. Regulation of integrin function by the urokinase receptor. Science.1996; 273:1551-1555.
    50. Brooks PC., Clark RAF., Cheresh DA.. Requirement of vascular integrin avb3 for angiogenesis. Science.1994; 264:569-571.
    51. Brooks PC., Montgomery AM., Rosenfeld M., et al. Integrin avb3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell.1994; 79:1157-1164.
    52. Bohuslav J.. Urokinase plasminogen activator receptor, β2-integrins, and src-kinases within a single receptor complex of human monocytes. J Exp Med.1995; 181: 1381-1390.
    53. Chaurasia P.. A region in urokinase plasminogen receptor domain Ⅲ controlling a functional association with alpha5betal integrin and tumor growth. J Biol Chem.2006; 281:14852-14863.
    54. Preissner KT.. Molecular crosstalk between adhesion receptors and proteolytic cascades in vascular remodeling. Thromb Haemostas.1997; 78:88-95.
    55. May AE.. Urokinase receptor (CD87) regulates leukocyte recruitment via β2-integrins in vivo. JExp Med.1998; 88:1029-1037.
    56. Xue W., Mizukami I., Todd RE, et al. Urokinase-type plasminogen activator receptors associate with b1-and b3-integrins of fibrosarcoma cells-dependenceon extracellular matrix components.Canc Res.1997; 57:1682-1689.
    57. Blasi F., Carmeliet P.. uPAR:a versatile signalling orchestrator. Nat Rev Mol Cell Biol.2002; 3:932-943.
    58. Tarui T., Mazar AP., Cines DB., et al. Urokinase-type plasminogen activator receptor (CD87) is a ligand for integrins and mediates cell-cell interaction. J Biol Chem.2001; 276:3983-3990.
    59. Waltz DA., Chapman HA.. Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J. Biol. Chem.1994,269:14746-14750.
    60. Simon DL.. Mac-1 (CD11b/CD 18) and the urokinase receptor (CD87) from a functional unit on monocytic cells. Blood.1996,88:3185-3194.
    61. Ferias-Eisner, R. Thye urokinase plasminogen activator receptor (uPAR) is preferentially indeced by nerve growth factors in PC 12 pheomocromocytoma cells and is required for NGF-driven differentiation. J. Neurosci.2000,20:230-239.
    62. Rabbani SA.. Structural requirements for the growth factor activity of the amino-terminal domain of urokinase. J. Biol. Chem.1992,267:14151-14156.
    63. Yu W., Kim J., Ossowski L.. Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy. J. Cell Biol.1997,137:767-777.
    64. Aguirre-Ghiso JA., Kovalski K., Ossowski L.. Tumor dormancy indeced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. cell Biol.1999,147:89-104.
    65. Aguirre-Ghiso JA., Liu D., Mignatti A., et al. Urokinase receptor and fibronectin regulate the ERK (MAPK) to p38 (MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell.2001,12:863-879.
    66. Sukhova GK., Shi GP., Simon DL. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest. 1998,102:576-583.
    67. Galis ZS., Sukhova GK., Lark MW., et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest.1994;94:2493-2503.
    68. Herman MP., Sukhova GK., Libby P., et al. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma:a novel collagenolytic pathway suggested by transcriptional profiling. Circulation.,2001; 104:1899-1904.
    69. Halpert I., Sires UI., Roby JD., et al. Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci U S A.1996,93:9748-9753.
    70. Dollery CM., Owen CA., Sukhova GK., et al. Neutrophil elastase in human atherosclerotic plaques:production by macrophages. Circulation.2003; 107:2829-2836.
    71. Steins MB., Padro T., Li CX., et al. Overexpression of tissue-type plasminogen activator in atherosclerotic human coronary arteries. Atherosclerosis.1999; 145:173-180.
    72. Yasuda Y., Li Z., Greenbaum D., et al. Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. JBiol Chem.2004; 279:36761-36770.
    73. Abboud RT., Fera T., Johal S., et al. Effect of smoking on plasma neutrophil elastase levels. JLab Clin Med.1986,108:294-300.
    74. Collier A., Jackson M., Bell D., et al. Neutrophil activation detected by increased neutrophil elastase activity in type 1 (insulin-dependent) diabetes mellitus.Diabetes Res. 1989,10:135-138.
    75. Raghunath P.. Plasminogen activator system in human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 1995,15(9):1432-1443.
    76. Steins M.. Overexpression of urokinase receptor and cell surface urokinase-type plasminogen activator in the human vessel wall with different types of atherosclerotic lesions. Blood-Coagul-Fibrinolysis.2004,15(5):383-391.
    11. Salame M.. Expression of the plasminogen activator system in the human vascular wall. Atherosclerosis.2000,152(1):19-28.
    78. Reidy MA., Irvin C., Lindner V.. Migration of arterial wall cells. Expression of plasminogen activators and inhibitors in injured rat arteries. Circ Res,1996;78:405-414.
    79. Odekon LE., Sato Y, Rifkin DB.. Urokinase-type plasminogen activator mediates basic fibroblast growth factor-induced bovine endothelial cell migration independent of its proteolytic activity. J Cell Physiol.1992; 150:258-263.
    80. Jiang M.. Pitavastatin attenuates the PDGF-induced LR11/uPA receptor-mediated migration of smooth muscle cells. Biochem-Biophys-Res-Commun.2006,348(4): 1367-1377.
    81. Plekhanova O., Parfyonova Y, Bibilashvily R., et al. Urokinase plasminogen activator augments cell proliferation and neointima formation in injured arteries via proteolytic mechanisms. Atherosclerosis.2001; 159:297-306.
    82. Renckens R... Plasminogen activator receptor plays a role in neutrophil migration during lipopolysaccharide-induced peritoneal inflammation but not during Escherichia coli-induced peritonitis. J-Infect-Dis.2006,193(4):522-530
    83. Saksela O.. Cell-Associated Plasminogen Activation:Regulation and Physiological Functions. Cell Biol.1988,4:93-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700