用户名: 密码: 验证码:
仔猪腹泻相关基因GPI1的筛选及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过在湖南湘潭沙子岭猪保种场随机选取亲缘关系相近的33头一周龄内的仔猪和30头湖南农业大学种猪场一周龄内大约克仔猪,共63头,屠宰后迅速取肝、小肠等组织样品,提取RNA、DNA;截取空肠组织,用于制备上皮细胞刷状缘,鉴定F4受体黏附表型。
     文章采用aCGH芯片筛选F4受体相关CNVs,针对ETEC F4ad受体,对其候选基因GPI1进行了克隆,获得了该基因的相关序列,利用生物信息学软件和工具预测了该基因的蛋白质理化性质、结构和功能,进一步对GPI1基因进行了定量表达分析,弄清楚该基因的基本表达规律,最后通过对基因的两个SNP位点与黏附特性的关联分析,期望找到有效的遗传标记,应用与育种实践。文章获得了以下主要研究结果。
     1.利用aCGH芯片,在猪的全基因组范围内筛选与F4受体有关的CNVs,找到了F4ab,ac,ad三种受体相关CNVs所在的染色体位置,以及CNVs产生的原因,其中F4ab、F4ac受体分别有11个和48个CNVs,而F4ad受体有66个CNVs;
     2.通过对获得的CNVs作进一步分析,找到了与CNVs对应的相关基因。发现糖代谢有关基因、SLC基因家族、ZNF基因家族、KIF基因家族、Toll like受体5基因、U6等基因多次出现,这些基因都与动物疾病和免疫力密切相关。尤其是GPI1基因,很可能是ETEC F4ad受体的候选基因。
     3.通过对GPI1基因的克隆测序,获得了GPIl基因1515bp的序列,通过与GenBank中的序列进行BLAST比对分析,发现与猪和人的GPI基因高度同源,一致性在90%以上。
     4.将获得的GPI1基因序列提交到了GenBank中,登录号为JX125039。
     5.通过对GPI1基因氨基酸预测,GPI1共出232个氨基酸组成,相对分子量为24964.5,理论等电点为9.44,其氨基酸组成中Leu的含量达19.8%,高于其它氨基酸含量8.2%—19.4%,不稳定参数为39.82,属于稳定蛋白,半衰期为30h。该蛋白脂肪系数为122.80,平均疏水度为0.512。氨基酸序列不含信号肽区域。利用TMHMM程序对猪GPI1进行跨膜区分析,该蛋白为疏水蛋白,这与GPI1作为F4ad受体的基本特征相符。在232位氨基酸间有3个跨膜区,这与GPI1作为细胞重要的信号传导成分的特征一致。SOPMA程序预测其二级结构:α—螺旋50.86%,p—转角4.74%,伸展链10.78%,无规卷曲33.62%。
     6. GPI1基因在黏附和不黏附的不同黏附类型中,在不黏附的小肠中表达量比黏附的表达量高,并且同一黏附类型中,沙子岭猪样品中的GPI1基因在小肠的表达量比大白猪高,且两种黏附类型和两个品种间的GPI1基因表达量差异显著(P<0.05)。在不同品种中,也是不黏附型比黏附型要高,且黏附和不黏附仔猪的表达量差异显著(P<0.05);而在两个品种不同组织的表达量也差异显著(P<0.05),肝脏中的表达量比小肠中的表达量要高。
     7.通过利用生物信息学预测SNP和内切酶位点,采用PCR-RFLP进行验证,发现了exon3的25bp处存在C→T的突变,exon5的211bp处存在G→C的突变。将两个外显子的SNP分别与黏附特性进行关联,发现这两个外显子的SNP与黏附特性存在相关,可以作为腹泻抗性的潜在遗传标记。
33Piglets were relative cultivars and from Shaziling breed conservation farm and30Yorkshire Piglets which from Hunan Agriculture University were used in the experiment, all of them are only a week old. After slaughtering, we collected the tissue samples of liver and small intestine as soon as possible so that we can extract DNA and RNA. To identify F4receptor adhesion phenotype, we should collect the jejunum organization, which was used to manufacture Brush Border Membrane.
     In this experiment, we used aCGH to screen the CNVs related with F4receptor. Especially for ETEC F4ad receptor, we obtained some related sequence of this gene and predicted protein physicochemical properties, structure and function of the gene by bioinformatics software and tools. Furthermore, we analyze the GPI1gene quantitatively so that we had figured out the expression regular of this gene. To find some effective genetic markers and make it used in breeding practice, we take association analysis between two gene locus of SNP and adhesion characteristics. The article has got the results as follows:
     1. The position of the related CNVs of F4ab receptor, ac receptor and ad receptor found by screening the related CNVs of F4receptor in the whole gene of pig. At the same time, we have clarified the origin of CNVs produce. In these, F4ab receptor and F4ac respectively contain11and48CNVs, but F4ad receptor contaid67CNVs;
     2. By further analyzing the CNVs that we have got, we have found the related gene of CNVs. We also discovered that the related gene of glucose metabolism, SLC gene-family, ZNF gene-family, KIF gene-family. Toll like receptor5gene and U6gene appear frequently. All of these genes are closely related to animal disease and immunity, especially for GPI1. It's very likely that GPI1is the candidate gene of ETEC F4ad receptor.
     3. By cloning and sequencing for GPI1, we've got1515bp sequence of this gene. Meanwhile, we took BLAST analysis between this sequence and other sequences in GenBank. As the consequence of the analysis, GPI1of pig and human are high homology, and the consistency is more than90%.
     4. The GPI1gene sequence was submitted to the GenBank, and the submit accession number is JX125039.
     5. By the prediction of amino acid of GPI1gene, GPI1consists of232amino acids, its relative molecular mass is24964.5, its theoretical isoelectric point is9.44. In the amino acid composition of GPI1, the leucine content of19.8%which is higher than the other amino acid content of8.2%-19.4%. its instability parameter is39.82, belongs to the stable protein. The half life of the protein period is30hours. The fat coefficient of the protein is122.80and the average hydrophobic degree is0.512. This amino acid sequence doesn't contain signal peptide area. We took the transmembrane domain analysis with TMHMM program, and the result show us that this protein is hydrophobic protein, it coincide with that GPI1as the basic characteristic of the F4ad receptor. There are3transmembrane domain among the232amino acids, and it coincide with the characteristic that GPI1is the important intracellular signal transduction. SOPMA program predict the secondary structure as follows:a-helical is50.86%; β-turn is4.74%; extend chain is10.78%; random coil is33.62%.
     6. GPI1in the small intestine without adhesion is higher than GPI1in the small intestine with adhesion. And in the same types of adhesion, expression level of GPI1of piglets from Shaziling is more than Yorkshire's. The expression levels of GPI1between two kinds of adhesive type and two two varieties are significant differences(P<0.05). In different species, the expression level of GPI1in the small intestine without adhesion is higher than others, too. And there is significant difference between adhesion and inadhension(P<0.05).The expression level of different organization in two speices has a significant difference(P<0.05).The expression level of GPI1in liver is higher than in small intestine.
     7. We predicted SNP and endonuclease by using bioinformatics. At the same time, we took verification with PCR-RFLP so that we have found that there is a C→T mutation at25bp of exon3and there is a G→C mutation at211bp of exon5. When taking association with SNP of two exons, we've found that the SNP of two exons is related to the adhesion characteristics, and it can be treated as diarrhea resistance of potential genetic marker.
引文
1.施启顺,猪肠毒素大肠杆菌病F4受体研究进展[J].国外畜牧学-猪与禽.2003,(6):33~35.
    2. Baker D.R, Billey L.O, Francis D.H. Distribution of K88 Escherichia coli adherence and nonadhesive phenotypes among pigs of four breeds[J]. Veterinary Microbiology,1997,54(2):123-132.
    3. Bijlsma IG, de Nijs A, Vander Meer C, et al. Different pig phenotypes affect adherence of Escherichia coli to jejunal brush borders by K88ab, K88ac or K88ad antigen[J]. Infection and Immunity,1997,37:891-894.
    4. Edfors-LiLja I, Gustafsson U, Duval-Iflah Y, et al. The porcine intestinal receptor for Escherichia coli K88ab, K88ac:regional localization on chromosome 13 and influence of IgG response to the K88 antigen[J].Animal Genetics. 1995,2(4):237-242.
    5. Philippe A.G,& Michele A.M. Transferrin associated with the porcine intestinal mucosa is a receptor specific for K88ab fimbrial of Escherichia coli[J]. Infection and Immunity,1996,64(2):606-610.
    6. Kaller M, Ahmadian A, Lundeberg J. Microarray-based AMASE as a novel approach for mutation detection[J]. Mutat Res.2004,554:77-88.
    7. Moser RJ, Reverter A, Kerr CA, et al. A mixed-model approach for the analysis of cDNA microarray gene expression data from extreme performing pigs after infection with Actinobacillus pleuro-pneumoniae[J].J.Anim.Sci.2004,82(5): 1261-1271.
    8. Dvorak CM, Hyland KA, Machado JG, et al. Gene discovery and expression profiling in porcine Peyer's patch[J].Vet Immunol Immunopathol, 2005,105(3-4):301-315.
    9. Kajiwara K, Watanabe R, Pichler H, Ihara K, Murakami S, Riezman H, Funato K. Yeast ARV1 is required for efficient delivery of an early GPI intermediate to the first mannosyltransferase during GPI assembly and controls lipid flow from the endoplasmic reticμlum[J]. Mol Biol Cell,2008,19(5):2069-82.
    10.刘鑫.猪肠毒素大肠杆菌(ETEC)F4受体相关候选基因的筛选与表达研究[D].湖南农业大学博士学位论文.2008
    11.何阳花,俞英,张沅.拷贝数变异与疾病的关系及其在动物抗病育种中的应用前景[J].遗传,2008,30(11):1385-1391.
    12.蒋隽.猪ETEC F4受体相关基因及其相关SNP筛选的研究[D].湖南农业大学博士学位论文.2007
    13.施启顺.猪肠毒素大肠杆菌F4受体研究进展[J].国外畜牧学(猪与禽),2003,23(6):33-35.
    14.丁大有.猪MX1基因在气道上皮细胞SIV感染过程中的表达[D].东北农业大学硕士学位论文.2007
    15.武雪梅,肖华胜.人类基因组结构变异检测研究进展[J].中国科学(C辑:生命科学),2009,(3):237-244.
    16.刘月环.氟烷基因与FUT1基因对猪生产性能效应的研究[D].浙江大学硕士学位论文.2001
    17.严燕,殷宗俊.猪遗传抗性与抗病育种研究进展[J].猪业科学,2007,(6):58-61.
    18.于海洋.牙鲆微卫星标记的筛选和美洲牡蛎抗病相关基因SNP的初步分析[D].中国海洋大学博士论文,2010
    19.曹晶晶.苏太猪FUT1基因及其他候选基因的遗传效应分析[D].扬州大学硕士论文,2009
    20.梅书棋.猪抗病相关基因IRGC、MX1的鉴定、多态性分析及在优质猪品系中的应用研究[D].华中农业大学硕士论文,,2008
    21.徐德全.猪背最长肌差异表达基因的克隆鉴定及其特征分析[D].华中农业大学博士论文,2005
    22.动物分子抗病育种研究进展-抗病育种网络(http://tech.hc99.com/html/fanyujishu/kangbingyuzhong/6147225520253.html)
    23.徐如海.猪MHC和转铁蛋白多态性与仔猪大肠杆菌K88腹泻关系的研究[D].中国农业大学博士论文,2004
    24.黄路生,晏学明,任军,郭源梅,麻骏武,彭秋玲.鉴别显著影响断奶仔猪腹泻抗性的MUC4单核苷酸多态位点及应用[P].江西农业大学..2007
    25.黄路生,任军,晏学明,黄翔,张志燕,欧阳婧,曾维宏.可鉴别断奶仔猪F4腹泻易感性/抗性的MUC13分子标记及应用[P].江西农业大学.2009
    26.卢岳.糖基化磷脂酰肌醇特异性磷脂酶D基因表达与临床相关疾病[J].国外医学(生理、病理科学与临床分册),2004,.24(2):138-141.
    27.熊茂林.GPI锚的结构、功能及GPI锚定B7分子在肿瘤免疫治疗中的应用[J].国外医学(免疫学分册),2003.,26(5):230-233.
    28.张艳亮.微阵列比较基因组杂交在临床细胞遗传诊断中的应用研究.重庆医科大学博士论文[D],2010
    29. Zhao SH, Recknor J, Lunney JK, et al. Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig[J]. Genomics,2005,86(5):618-625.
    30. Xiao Guang-fen, Chen Fang-ping, Fu Bin, Wang Guang-ping, Jian Zai-fu. Effect and mechanism of glycosylphosphatidilinodito-1 specific phospholipase D on the adhesion function of bone marrow mononuclear cells separated from myeloid leukemia patients[J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2010,14(1):187-190.
    31.刘鑫,施启顺,柳小春,蒋隽,黄生强.不同猪种肠毒素大肠杆菌(ETEC)F4受体的微卫星标记遗传效应分析[J].遗传,2006,(8):945-948.
    32.蒋隽,柳小春,刘鑫.中外猪种肠毒素大肠杆菌F4受体黏附差异比较[J].湖南农业大学学报(自然科学版),2006,(02):64-68.
    33.麻志萍,原永舀,贾鑫明,王彦,曹永兵,付守廷,姜远英.基因芯片在白念球菌耐药基因研究中的应用[J].第二军医大学学报,2008.29(2):211-214.
    34.张太翔,田国宁,张金铃,田国华.感染性朊蛋白的毒性与糖磷脂酰肌醇的相关性[J].中国畜牧兽医,2008,35(9):141-142.
    35.刘淑杰,李永明,徐子伟,王一成.产肠毒素大肠杆菌K88黏附素蛋白亚基FaeG在L.lactis中的表达及其抗原性[J].中国兽医学报,2009,29(11):1415-1418.
    36.蒋隽,刘小兰,马海明,柳小春,何俊,黄生强,张细权.猪肠毒素大肠杆菌F4受体的微卫星标记筛选[J].湖南农业大学学报,,2010,36(3):321-325.
    37.施启顺.家畜遗传病学.北京.中国农业出版社.1995
    38. Hoch M, Eberle AN, Wagner U, et al. Expression and localization of melanocortin-1 receptor in human adipose tissues of severely obese patients[J]. Obesity (Silver Spring),2007,15(1):40-49.
    39. McNulty J. C., P. J. Jackson, D. A. Thompson, B. Chai, I. Gantz, G. S. Barsh, P. E. Dawson and G. L. Millhauser. Structures of the agouti signaling protein[J]. Mol. Biol,2005,346:1059-1070.
    40.唐国庆,王金勇,李学伟.猪抗病育种研究进展[J].中国畜牧兽医,2002.(6):12-14.
    41. Bumstead N, Rontved CM, Jensen KH. et al. Immune response to a killed infectious bursal disease virus vaccine in inbred chicken lines with different major histocompatibility complex haplotypes[J]. Poultry Science,2006,85(6): 986-998.
    42. Drogemμller C, Giese A, Martins-Wess F, et al. The mutation causing the black-and-tan pigmentation phenotype of Mangalitza pigs maps to the porcine ASIP locus but does not affect its coding sequence[J]. Mamm Genome,2006, 17(1):58-66
    43. Makarova EN, Shevchenko AIu, Iakovleva TV, Bazhan NM. Pregnancy and lactation prevent melanocortin obesity syndrome in mice with Agouti yellow mutation[J]. Dokl Biol Sci,2006.407:163-165.
    44. Shi KR. Wang AG, Yuan XF, et al. Analysis of the MCI R. KIT and ASIP loci in Chinese and European pigs[J]. Anim Genet,2006,37(3):300-302.
    45. Tanaka S, Kuwahara S, Nishijima K. et al. Genetic association of mutation at agouti locus with adrenal x zone morphology in BALB/c mice[J]. Exp Anim, 2006.55(4):343-347
    46. Hu Y, Fang C, Xu Y, et al. The effect of isoforms of the cell polarity protein, human ASIP, on the cell cycle and Fas/FasL-mediated apoptosis in human hepatoma cells[J]. Cell Mol Life Sci,2005,62(17):1974-1983.
    47. Hu ZL, Hasler-rapacz J. Huang SC, et al. studies in swine on inheritance and variation in expression of small intestinal receptors mediatingadhision of the K88 enteropathogenic Escherichia colivariants[J]. Hered,1993,84:157-165.
    48. Buschmann IR, Voskuil M, van Royen N. et al. Invasive and non-invasive evaluation of spontaneous arteriogenesis in a novel porcine model for peripheral arterial obstructive disease [J]. Atherosclerosis,2003,167(1):33-43.
    49. Rothschild MF, Kollers S, Mote B, et al. Single nucleotide polymorphism identification, linkage and radiation hybrid mapping of the porcine pituitary adenylate cyclase-activating polypeptide type Ⅰ receptor gene to chromosome 18[J]. Journal of Animal Breeding and Genetics,2006,123(6):414-418.
    50. Jacobs WR Jr, Sambandamurthy VK, Russell RG, et al. Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tubercμlosis in guinea pigs[J]. Infection and Immunity,2004,72(5):3031-3037.
    51. Baker DR, Billey LO, Francis DH. Distribution of k88 Escherichia coli adhesive and non-adhesive phenotypes among pigs of four breeds[J]. Vet Microbial,1997, 54:123-132.
    52.李晓丽,何万领,邓昌彦,熊远著.主要抗病候选基因在猪抗病育种中的研究进展[J].河南畜牧兽医,2007,(3):23-26.
    53. Meijerink AK, Wingohs JA, McFarland SY, et al. indentification of two porcine brush border glycoproteins that bind the k88ac adhesin of Escherichia coli and correlation of these binding glycoproteins with the adhesive phenotype[J]. Infect Immun,1992,60:983-988.
    54. Hanset PA, Mouricout MA. Transferrin association with the porcine intestinal mucosa is a receptor specific for the k88ab fimbriae of Escherichia coli[J]. Infect Immun,1995,64:152-159.
    55. Vogeli LO, Erickson AK. Francis DH, et al. Multiple receptors on porcine intestinal epithelial cells for the variants of Escherichia coli k88 fimbrial adhesin[J]. Vet microbial,1998,59:203-212.
    56.曹果清,周忠孝,朱向芳.转基因猪的研究进展[J].畜牧与兽医,2002.(5).35-38.
    57. Philippe A. G., Michele A. M. Transferrin associated with the porcine intestinal mucosa is a receptor specific for k88ab fimbrial of Escherichia coli[J]. Infect Immun.1996.64:606-610.
    58. Edfors-Lilja I, Gustafsson U, Duval-Iflah Y. et al. the porcine intestinal Receptor for Escherichia coli k88ab, k88ac:reginal localization on chromosome13 and influence of IgG response to the k88 antigen[J]. Anim Genet.1995.26:237-242.
    59. Guerin G, Duval-Iflah Y, Bonnean M, et al. evidence for linkage between k88ab,k88ac intestinal receptors to Escherichia coli and transferring loci in pigs[J]. Anim Genet,1993,24:393-396.
    60. Rothschild MF. Porcine genomics delivers new tools and resμlts:this little piggy did more than just go to market[J]. Genet Res,2004,83(1):1-6.
    61. Philippe A. Grange, Michele A. Mouricout, Steven B, Levery, et al. Evaluation of receptor binding specificity of Escherichia coli k88(F4) fimbrial adhesion variants using porcine serum transferring and glycosphingolipids as model receptors[J]. Infect Immun,2002,70:2336-2343.
    62. Bertschinger AK, Baker DR, Bosworth BT, et al. characterization of porcine intestinal receptors for the k88ac fimbrial adhesin of Escherichia coli as mucin-type sialoglycoproteins[J]. Infect Immune,1994,62:5404-5410.
    63. Bertschinger RC. The interaction of the k88 antigen with porcine intestinal epithelial cell brush borders[J]. Biochion Bio Phys Acta,1980,632:326-335.
    64. Vogeli M, Vddrine B,Grange P. Approach to the molecular basis and genetics of susceptibility/resistance to colibacilosis in porcine species[J]. Proc. of Inter Conf on anim. Biot 1997,47-50.
    65. Imberechts DC, McSweegan EF, Williams TJ, et al. identification and charcterization of mouse small intestine mucosal receptors for Escherichia coli k-12(k88ab) [J]. Infect Immun,1984,52:18-25.
    66. Rothschild MF, Marquardt RR, Biadoo SK, et al. characterization and purification of porcine small intestinal mucus receptor for Escherichia coli k88ac fimbrial adhesin[J]. Med Microbial,1999,27:17-22.
    67. Willesmsen PTJ, de Graaf FK. Age and serotype dependent binding of k88 fimbriae to porcine intestinal receptors[J]. Microbial Pathol,1992,12:367-375.
    68. Metcalfe JW, Krogfelt KA, Krivan HC, et al. Characterization and identification of a porcine small intestine mucus receptor for the k88ab fimbrial adhesion[J]. Infect. Immune.1991.59:91-96.
    69. Fang L, Gan Z, Marquardt RR. Isolation affinity purification, and identification of piglet small intestine mucosa receptor for enteroxigenic Escherichia coli k88ac fimbriae[J]. Infect Immun,2000,68:564-569.
    70. Steley TE, Wilson IB. Soluble pig intestinal cell membrane components with affinities for E. coli k88+ antigen[J]. Mol Cell Biochem,1983,52:177-189.
    71. Conway PL, Welin A, Cohen PS. Presence of k88-specific receptors in porcine ileal mucus is age dependent[J]. Infect Immun,1990,58:3178-3182.
    72. Chandler DS, Spicer EM. Fixed on flexisle dose regimes for detach. In:Baterham ES Manipμlation of pig production Ⅲ[J]. Australian Pig Science Association, Victoria.1994,32:146-148.
    73. Chandler DS, Mynott TL, Lake RK. The distribution and stability of Escherichia coli k88 receptor in the gastrointestinal tract of the pig[J]. Vet microbial,1994,38: 2003-215.
    74. Mynott TL, Luke RKJ. chandler DS. Oral adminstration of protease inhibits enterotoxigenic Escherichia coli receptor activity in piglet small intestine[J]. Gut, 1996.38:28-32.
    75. Marquardt RR, Jin LZ, Kim JW, et al. Passive protective effect of egg-yolk antibodies against enterotoxigenic Escherichia coli k88+ infection in neonatal and early weaned piglets[J]. Med Microbiol,1999,23:283-288
    76. Park Y H. Characterization of lymphocyte subpopμlations and major histo-compatibility complex haplotypes of mastitis-resistant and susceptible cows[J]. Vet Sci,2004,5(1):29-39.
    77. Sharif S,et al.Association of the bovine MHC DRB3 alleles with occurrence of disease and milk somatic cell score in Canadian dairy cattle[J].Animal Genetics, 1998,29:185-193.
    78. Sharif S.et al.Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) with production traits in Canadian dairy cattle[J]. Anim Genet, 1999,30(2):157-160.
    79.施启顺.猪肠毒性大肠杆菌(ETEC)病抗病育种研究[J].国外畜牧科技,1999.26(4):56-59.
    80.刘月环,徐宁迎,吴旧生.肠毒素型大肠杆菌(ETEC)F18抗原与猪抗病育种的研究进展[J].上海畜牧兽医通讯.2000(6):6-8.
    81. Sellwood R. Escherichia coli diarrhea in pigs with and without the F4 receptors [J]. Vet Rec.1979,105:228-230.
    82. Gibbons RA, Sellwood R, Burrows M, et al. Inhertance of resistance to neonatal diarrhoea in the pig:examination of the genetic system [J]. Theor Appl Genet. 1977,81:65-70.
    83. Bijlsma IGW, de Nijs A, van deer Meer C, et al. Different pig pheostypes affect adherence of Escherichia coli to jejunal brush borders by F4ab, F4ac and F4ad antigen [J]. Infect Immun,1982,37:894-897.
    84. Rapacz J. Hasler-rapacz J. Polymorphism and inheritance of swine small intestinal receptors mediating adhesion of three serological variants of Escherichia coli- producing F4 pilus antigen [J]. Anim Genet,1986,17:305-321.
    85. Hu ZL, Hasler-rapacz J, Huang SC, et al. Studies in swine on inheritance and variation in expression of small intestinal receptors mediatingadhision of the F4 enteropathogenic Escherichia coli [J]. J Hered,1993,84:157-165.
    86. Baker DR, Billey LO, Francis DH. Distribution of F4 Escherichia coli adhesive and non-adhesive phenotypes among pigs of four breeds [J]. Vet Microbial, 1997,54:123-132.
    87. Bijlsma E, Ponsuksili S, Schellander K, et al. Association of corticotropin releasing hormone gene variation with performance and meat quality traits in commercial pig lines[J]. Anim Genet,2006,37(5):509-512.
    88. Billey LO, Erickson AK, Francis DH, et al. Mμltiple receptors on porcine intestinal epithelial cells for the variants of Escherichia coli F4 fimbrial adhesin [J]. Vet microbial,1998.59:203-212.
    89. Erickson AK, Wingohs JA, McFarland SY, et al. Indentification of two porcine brush border glycoproteins that bind the F4ac adhesin of Escherichia coli and correlation of these binding glycoproteins with the adhesive phenotype [J]. Infect Immun.1992,60:983-988.
    90. Grange PA, Mouricout MA. Transferrin association with the porcine intestinal mucosa is a receptor specific for the F4ab fimbriae of Escherichia coli [J]. Infect Immun,1996,64:606-610.
    91. Edfors-Lilja I, Gustafsson U. Duval-Iflah Y, et al. The porcine intestinal Receptor for Escherichia coli F4ab, F4ac:reginal localization on chromosome13 and influence of IgG response to the F4 antigen [J]. Anim Genet,1995.26:237-242.
    92. Peelman LJ. Genetic investigation of the resistance mechanisms of the pig against diarrhea caused by E. coli [J]. Verh K Acad Geneeskd Belg,1999,61(4):489-515.
    93.施启顺,谢新民,柳小春,黄生强,贺长青.猪肠毒素大肠杆菌(ETEC) F18受体基因检测报告[J].遗传:2002,24(6):656-658.
    94.蒋隽,施启顺,柳小春,黄生强,贺长青.不同猪种肠毒素大肠杆菌(ETEC) F4受体微卫星标记遗传差异性分析[J].遗传,2004,26(2):160-162.
    95. Cheng D, Sun H, Xu J, Gao S. Prevalence of fimbial colonization factors F18ab and F18ac in Escherichia coli isolates from weaned piglets with edema and/or diarrhea in China [J]. Vet Microbiol,2005,110(1-2):35-39.
    96. Erickson AK, Baker DR, Bosworth BT, et al. characterization of porcine intestinal receptors for the F4ac fimbrial adhesin of Escherichia coli as mucin-type sialoglycoproteins [J]. Infect Immune.1994,62:5404-5410.
    97. Jin LZ, Marquardt RR, Biadoo SK, et al. Characterization and purification of porcine small intestinal mucus receptor for Escherichia coli F4ac fimbrial adhesin [J]. Med Microbial,2000,27:17-22.
    98. Willesmsen PT, de Graaf FK. Age and serotype dependent binding of F4 fimbriae to porcine intestinal receptors [J]. Microbial Pathol,1992,12:367-375.
    99. Fang L, Gan Z, Marquardt RR. Isolation affinity purification, and identification of piglet small intestine mucosa receptor for enteroxigenic Escherichia coli F4ac fimbriae [J]. Infect Immun,2000,68:564-569.
    100.Starkenburg R J,et al.Frequencies and effects of alternative DRB3.2 alleles of BoLA for Holsteins in milk selection and control lines[J].Dairy Sci,1997,80: 3411-3419.
    101.Garcia-Briones M.Association of bovine DRB3 alleles with immune response to FMDV peptides and protection against viral challenge[J]. Vaccine,2000, 19(9-10):1167-1171.
    102.黄生强,柳小春,晏光荣,施启顺,.微卫星标记预测猪部分经济性状杂种优势的研究[J].湖南农业大学学报(自然科学版),2007,(5):54-57.
    103.Webero P, Viruel M A, Hormaza J I. Molecμlar analysis of genetic diversity and geographic origin within an ex situ germplasm collection of cherimoya by using SSRs[J]. Journal of the American Society for Horticultural Science,2007,132(3): 357-367.
    104.尚邦华.连林生,.微卫星标记技术在猪遗传育种中的应用[J].现代畜牧兽医,2006,(12):42-46.
    105.张敬虎,熊远著,邓昌彦,蒋思文,雷明刚,左波,徐德全,李家连,李凤娥,郑嵘,.微卫星标记对杂种优势研究杂交猪群的遗传评价(英文)[J].农业生物技术学报,2006,(4):64-67.
    106.Lee KT, Oliveira K M, Marconi T, et al. Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs[J]. Plant Breeding,2006,125(4):378-384.
    107.Hu ZL, Roose ML, Krueger RR, et al. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs) [J]. Theoretical and Applied Genetics,2005,112 (8):1519-1531.
    108.Kanis E, Maguire TL, Saenger P. Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs[J]. Theoretical and Applied Genetics,2005,104(2):388-398.
    109.刘鑫,施启顺,柳小春,蒋隽,黄生强.不同猪种肠毒素大肠杆菌(ETEC)F4受体的微卫星标记遗传效应分析[J].遗传,2006,(8):945-948.
    110.Li Wang, Jing Guo, Gui-Fang Zhao. Genetic diversity of the endangered and endemic species Psathyrostachys huashanica natural populations using simple sequence repeats (SSRs) markers[J]. Biochemical Systematics and Ecology,2006, 34(4):310-318.
    111.Garoia F, Guarniero I, Grifoni D, et al. Comparative analysis of AFLPs and SSRs efficiency in resolving popμlation genetic structure of Mediterranean Solea vμlgaris[J]. Molecμlar ecology,2007,16(7):1377-1387.
    112.Mlrich K P, Philippe B, GINTARAS B, et al. Comparative Analysis of Genetic Similarity between Perennial Ryegrass Genotypes Investigated With AFLPs, ISSRs, RAPDs and SSRs[J]. Czech Journal of Genetics and Plant Breeding,2006, 42(3):87-94.
    113.Ponsuksili S. W immers K, SchellanderK. Application of differential display to identify porcine liverESTs[J].Gene,2001,280(1-2):75-85.
    114.Heppperle C, HartfelderK. D ifferential expressed regμlatory genes in honey bee caste development[J].Naturwissenschaften,2001,88(3):113-116.
    115.刘迪.曹秀云,兰进好.分离差异mRNA技术及其应用[J].河北农业科学,2005,(01):54-56.
    116.木古丽.鸡传染性喉气管炎病毒潜伏感染状态下相关基因表达水平的研究[D].新疆农业大学硕士论文,2007
    117.Berthier D, Quere R, Thevenon S, et al. Serial analy-sis of gene expression (SAGE) in bovine trypanotolerance:pre-liminary results[J].Genet Sel Evol,2003, 35(Suppl1):35-47.
    118.袁峥嵘DGAT1基因SNPs筛选及其与猪部分经济性状关联性研究[D].湖南农业大学硕士论文,2008
    119.刘定发,马海明,何俊,蒋隽.2个猪品种的ATP2B1基因表达与ETEC F4粘附性关联分析[J].家畜生态学报,2011,32(02):19-22.
    120.木古丽,王云峰,石星明,童光志,何来,王玫.实时荧光定量RT-PCR检测ICP4、 IFN-γ和IL-18基因在ILTV感染鸡三叉神经节中的表达[J].中国兽医学报,2008,28(10):1150-1153.
    121.韩文雄.传染性喉气管炎病毒U_s区基因结构分析及细胞传代致弱的研究[D].内蒙古农业大学硕士论文,,2008
    122.朱国坡RT-PCR和荧光定量RT-PCR检测CSISV在SPF雏鸡体内分布[D].河南科技学院硕士论文,2010
    123.徐翼.沙丁胺醇诱导p-2肾上腺素能受体下调细胞水平的研究[D].南通大学硕士论文,2010
    124.RT-PCR原理与实验技术-基因时代.网络(http://ggene. cn/html/protocol/mol/ pcr/2009/0820/2603.html)
    125.贺笋.基因修饰的鸡新城疫病毒F(48)E 9株HN基因DNA疫苗的构建及其免疫效力的评价[D].新疆农业大学硕士论文,2007
    126.顾海涛siRNA干扰ATX对乳腺癌M.CF-7细胞生物学活性的影响[D].重庆医科大学硕士论文,2009
    127.曲芸芸.免疫复合物对单核巨噬细胞调节及其机制的实验研究[D].山东大学硕士论文,2010
    128.朱峰Polt基因在人肺癌组织中的表达及其与临床病理学特征和预后的关系[D].山东大学硕士论文,,2010
    129.魏麟.猪LBP和BPI基因多态性及其蛋白质N端功能研究[D].湖南农业大学博士论文,2011
    130.Carre W, Bourneuf E, Douaire M, et al. Differential expression and genetic variation of hepatic messenger RNAs from genetically lean and fat chickens[J].Gene,2002,16(1):235-243.
    131.Li S S-L. Liu Y H, Tseng C N, et al. Analysis of geneexpression in single human oocytes and preimplanta-tion embryos [J].Biochemical and Biophysical Re-search Communications,2006. (340):48-53.
    132.Lee K F, Chow J F, Xu J S, et al. A comparative studyof gene expression in murine embryos developed in vi-vo,cμltured in vitro,and cocμltured with human ovi-ductal cells using messenger ribonucleic acid differenti-al display[J].Biol Reprod,2001,64 (3):4910-917.
    133.Ponsuksili S, Tesfaye D, El-Halawany N, et al. Stage-specific expressed sequence tags obtained during pre-implantation bovine development by differential dis-play RT-PCR and suppression subtractive hybridiza-tion[J].Prenat Diagn,2002,22 (12):1135-1142.
    134.Tajima K, Aminov R I, Nagamine T, et al. Diet-dependent shifts in the bacterial popμlationof the rumen revealed with real-time PCR [J].Appl Environ Microbiol. 2001,67(6):2766-2774.
    135.David M Stevenson, Paμl J.Weimer. Dominance of Prevotella and lowabundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR[J].Applied Microbiologyand Biotechnology,2007, 75 (1):165-174.
    136.Rutledge RG.. Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing automated highthroughput applications[J].Nucleic Acids Res.2004,32:178.
    137.Tichopad A. Didier A, Pfaffl MW. Inhibition of real-time RT-PCR quantification due totissue-specific contaminants[J].Mol Cell Probes,2004. (18):45-50.
    138.HaoQiu. Gene expression ofHIF-laand XRCC4measured in human samples by real-time RT-PCRusing the sigmoidal curve-fitting method[J].Bio Techniques. 2007,42:355-362.
    139.Bahram Arezi, Weimei Xing, Joseph A. Sorge and Holly H. Hogrefe. Amplification efficiency of thermostable DNA polymerases[J].Analytical Bio-chemistry,2003,321 (2):226-235.
    140.Einspanier R, Lutz B, Rief S, et al. Tracing residual recombinant feed molecμles during digestion and rumen bacterial diversity in cattle fed transgene maize[J].European Food Research and Technology.2004,218(3):269-273
    141.Chung WB, Chan WH, Chaung HC, et al. Real-time PCR for quantitation of porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 in naturally-infected and challenged pigs[J]. Virol Methods,2005,124 (1-2): 11-19.
    142.FAN Jun, MA Wei-hang, YANG Mei-fang, et al. Real-time fluorescent quantitative PCR assay for measuring cytomegalovirus DNA load in patients after haematopoietic stem cell transplantation[J]. Chinese Medical Journal,2006,119 (10):871-874.
    143.Huang C, Yang L, Li Z, et al. Detection of CCND1 amplification using laser capture microdissection coupled with real-time polymerase chain reaction in human esophageal squamous cell carcinoma[J]. Cancer Genetics and Cytogenetics,2007,175 (1):19-25.
    144.AI Hong, LU Hong-fei. LIANG Huan-you, et al. Influences of bracket bonding on mutans streptococcus in plaque detected by real time fluorescence-quantitative polymerase chain reaction[J]. Chinese Medical Journal,2005,118 (23): 2005-2010.
    145.吴慧光.肉牛Calpain 1基因的SNPs筛查及其与肉质相关性分析[D].河北农业大学硕士论文,2006
    146.高雪,吴慧光,许尚忠,陈金宝,任红艳.基于生物信息学对牛CAPN1基因的SNPs筛查与验证[C].中国动物遗传育种研究进展-第十五次全国动物遗传育种学术讨论会论文集,2009
    147.赖长华.共轭亚油酸对断奶仔猪免疫应激的调控[D].中国农业大学博士论文,2004
    148.梁斌.微卫星标记预测湘西黄牛杂种优势及遗传多样性研究[D].湖南农业大学硕士论文,2008
    149.陈旭.微卫星标记与猪部分肉质性状相关分析[D].湖南农业大学硕士论文,2007
    150.何静.有机电致发光器件(OLED)用吡嗪嘧啶铱(Ⅲ)磷光材料的研究[D].北京林业大学博士论文.2007
    151.贺亮.中国陕甘地区苦楝多糖及苦楝籽油的研究[D].北京林业大学博士论文,2007
    152.董静.白色金针菇不同菌株工厂化栽培部分相关工艺研究[D].福建农林大学硕士论文.2008
    153.He YX, Hua RH. Zhou YJ, et al. Interference of porcine reproductive and respiratory syndrome virus replication on MARC-145 cells using DNA-based short interfering RNAs[J]. Antiviral Research,2007,74(2):83-91.
    154.蒋隽,柳小春,刘鑫.中外猪种肠毒素大肠杆菌F4受体黏附差异比较[J].湖南农业大学学报(自然科学版),2006,(02):64-68.
    155.亓小红,张勤,刘培琼,仔猪腹泻抗性相关特异表达ESTs的筛选(英文)[J].遗传学报,2004,(03):56-39.
    156.王红宁.仔猪腹泻成因及综合防治技术措施[J]中国畜牧杂志,2006,(06):42-45.
    157.Bishop S C, Morris C A. Genetics of disease resistance in sheep and goats [J]. Small Rumin Res,2007,70 (1):48-49.
    158.Diez-Tasc C, Keane O M, Wilson T, et al. Microarray analysis of selection lines from outbred popμlations to identify genes involved with nematode parasite resistance in sheep[J]. Phys Cenom,2005, (21):59-69.
    159.Murani E. Ponsuksili S, Schellander K, Wimmers K. Association of corticotropin releasing hormone gene variation with performance and meat quality traits in commercial pig lines[J]. Anim Genet.2006,37(5):509-512.
    160.SanCristobal M, Chevalet C, Haley CS. et al. Genetic diversity within and between European pig breeds using microsatellite markers[J]. Anim Genet.2006, 37(3):189-198.
    161.Berg F, Stern S, Andersson K, Andersson L, Moller M. Refined localization of the FAT1 quantitative trait locus on pig chromosome 4 by marker-assisted backcrossing[J]. BMC Genet.2006.17(7):17-23.
    162.LBuske B, Sternstein I, Brockmann G, et al. QTL and candidate genes for fecundity in sows[J]. Anim Reprod Sci.2006,95(3):167-183.
    163.Rimessi A, Coletto L, Pinton P, et al. Inhibitory interaction of the 14-3-3 {epsilon} protein with isoform 4 of the plasma membrane Ca(2+)-ATPase pump[J]. J Biol Chem.2005,280(4):195-203.
    164.DeMarco SJ, Chicka MC. Strehler EE, et al. Plasma membrane Ca2+ ATPase isoform 2b interacts preferentially with Na+/H+ exchanger regulatory factor 2 in apical plasma membranes[J]. J Biol Chem.2002,22 (12):105-111.
    165.Zwadlo C, Borlak J. Disease-associated changes in the expression of ion channels, ion receptors. ion exchangers and Ca(2+)-handling proteins in heart hypertrophy [J]. Toxicol Appl Pharmacol.2005,15 (3):244-256.
    166. Gonzalez de Aguilar JL, Niederhauser-Wiederkehr C, Halter B, et al. Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model [J]. Physiol Genomics.2008,32(2):207-218.
    167. Feng Z, Tang ZL, Li K. et al. Molecular characterization of the BTG2 and BTG3 genes in fetal muscle development of pigs[J]. Gene.2007,403(1-2):170-177.
    168.Jangi SM. Ruiz-Larrea MB, Nicolau-Galmes F, et al. Terfenadine-induced apoptosis in human melanoma cells is mediated through Ca2+ homeostasis modμlation and tyrosine kinase activity, independently of H1 histamine receptors[J]. Carcinogenesis.2008,29(3):500-509.
    169.Smith N, Nrowning CA. Duroudier N, et al. Salmeterol and cytokines modulate inositol-phosphate signalling in human airway smooth muscle cells via regμlation at the receptor locus[J]. Respir Res.2007.8:68-71.
    170.Zhang Z, Krainer AR. Splicing remodels messenger ribonucleoprotein architecture via eIF4 A3-dependent and -independent recruitment of exon junction complex components[J]. Proc Natl Acad Sci U S A.2007,104(28):11574-11579.
    171.Urban T, Mikolasova R, Kuciel J, A study of associations of the H-FABP genotypes with fat and meat production of pigs[J]. J Appl Genet.2002, 43(4):505-509.
    172.Gerbens F, Jansen A, van Erp AJ, et al. The adipocyte fatty acid-binding protein locus:characterization and association with intramuscular fat content in pigs[J]. Mamm Genome.1998,9(12):1022-1026.
    173.Bonnet A, Frappart PO, Dehais P, et al. Identification of differential gene expression in in vitro FSH treated pig granulosa cells using suppression subtractive hybridization[J]. Reprod Biol Endocrinol.2006,7(4):35.
    174.Tongchusak S, Leelayuwat C, Brusic V, et al. In silico prediction and immunological validation of common HLA-DRB1-restricted T cell epitopes of Candida albicans secretory aspartyl proteinase 2. Microbiol Immunol[J].2008. 52(4):231-242.
    175.Matsumura Y. Kinouchi Y, Nomura E, et al. HLA-DRB1 alleles influence clinical phenotypes in Japanese patients with ulcerative colitis[J].Tissue Antigens.2008 May;71(5):447-452.
    176.Bagherian A, Nematollahi H, Afshari JT, et al. Comparison of allele frequency for HLA-DR and HLA-DQ between patients with ECC and caries-free children[J]. Indian Soc Pedod Prev Dent.2008 Jan-Mar;26(1):18-21.
    177.Abad S, Monnet D, Caillat-Zucman S, et al. Characteristics of Vogt-Koyanagi-Harada disease in a French cohort:ethnicity, systemic manifestations, and HLA genotype data[J]. Ocμl Immunol Inflamm.2008 Jan-Feb;16(1):3-8.
    178.Narimatsu H. Murata M. Terakura S, et al. Potential role of a mismatched HLA-specific CTL clone developed pre-transplant in graft rejection following cord blood transplantation. Biol Blood Marrow Transplant[J].2008 Apr; 14(4): 397-402.
    179.Eisele L, Klein-Hitpass L, Chatzimanolis N, et al. Differential expression of drug-resistance-related genes between sensitive and resistant blasts in acute myeloid leukemia[J].Acta Haematol.2007,117(1):8-15.
    180.Geibel, J., K. Sritharan, R. Geibel. P. Geibel, et al. Calcium-sensing receptor abrogates secretagogue induced increases in intestinal net fluid secretion by enhancing cyclic nucleotide destruction[J]. Natl. Acad. Sci. U.S.A.2006,103: 9390-9397.
    181.Yamagishi N., M. Miyazaki and Y. Naito. The expression of genes for transepithelial calcium-transporting proteins in the bovine duodenum[J].Vet. J. 2006,171:363-366.
    182.Moreau R, Daoud G, Masse A, et al.Expression and role of calcium-ATPase pump and sodium-calcium exchanger in differentiated trophoblasts from human term placenta[J]. Mol Reprod Dev.2003,65(3):283-288.
    183.Afroze T, Yang LL, Wang C, et al. Calcineurin independent regulation of plasma membrane Ca2+ ATPase-4 in the vascular smooth muscle cell cycle[J]. Am J Physiol Cell Physiol.2003,28(1):88-95.
    184.Kendal-Wright CE, Hubbard D. Bryant-Greenwood GD. Chronic Stretching of Amniotic Epithelial Cells Increases Pre-B Cell Colony-Enhancing Factor (PBEF/Visfatin) Expression and Protects Them from Apoptosis[J]. Placenta.2008 Mar;29(3):255-265.
    185.Luk T, Malam Z, Marshall JC. Pre-B cell colony-enhancing factor (PBEF)/ visfatin:a novel mediator of innate immunity[J]. Leukoc Biol.2008 Apr;83(4): 804-816.
    186.Tilg H, Moschen AR.Role of adiponectin and PBEF/visfatin as regμlators of inflammation:involvement in obesity associated diseases.Clin Sci (Lond) [J]. 2008 Feb;114(4):275-288.
    187.Revollo JR, Korner A, Mills KF, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme[J]. Cell Metab. 2007 Nov;6(5):363-375.
    188.Tanaka T, Nabeshima Y. Nampt/PBEF/Visfatin:a new player in beta cell physiology and in metabolic diseases[J]. Cell Metab.2007 Nov;6(5):341-343.
    189.Johnson CK.Calmodulin, conformational states, and calcium signaling. A single-molecμle perspective[J]. Biochemistry.2006,45(48):14233-14246.
    190.Choi JH, Cho YM, Suh KS, et al. Short-term efficacy of enzyme replacement therapy in korean patients with fabry disease[J]. Korean Med Sci.2008 Apr;23(2):243-250.
    191.Kim K, Shin YJ, Nam JH, et al.A Dose-Response Relationship between Types of Physical Activity and Distress[J]. Korean Med Sci.2008 Apr;23(2):218-225.
    192.Buch AN, Javaid A, Steinberg DH, et al. Outcomes after sirolimus- and Paclitaxel-eluting stent implantation in patients with insulin-treated diabetes mellitus[J]. Am J Cardiol.2008 May 1;101(9):1253-1258.
    193.Kim H, Choi J, Rim H, et al.Factors affecting the designation of cerebrovascμlar diseases as work-related in administrative litigation[J]. Korean Med Sci.2008 Apr;23(2):236-242.
    194.Dennis R, Zhang HM, Cheng HW, et al. Effect of selection for resistance and susceptibility to viral diseases on concentrations of dopamine and immunological parameters in six-week-old chickens[J]. Poult Sci.2006,85(12):2135-40
    195.Renard C, Hart E, Sehra H, et al. The genomic sequence and analysis of the swine major histocompatibility complex. Genomics[J].2006,88(1):96-110.
    196.Gilmore AJ, Billing RL, Einstein R. The effects on heart rate and temperature of mice and vas deferens responses to noradrenaline when their cage mates are subjected to daily restraint stress[J]. Lab Anim.2008 Apr;42(2):140-148.
    197.Spatz SJ, Petherbridge L, Zhao Y, Nair V, et al. Comparative full-length sequence analysis of oncogenic and vaccine (Rispens) strains of Marek's disease virus[J]. J Gen Virol.2007.88(4):1080-1096.
    198.Rothschild MF, Hu ZL, Jiang Z, et al. Advances in QTL mapping in pigs[J]. Int J Biol Sci.2007,10(3):192-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700