用户名: 密码: 验证码:
苹果渣与棉粕固态发酵生产NSP酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果渣与棉粕产量巨大,但目前尚未对其进行充分的综合利用,这不仅是资源的浪费,也带来了环境污染问题。另一方面发酵工业普遍采用的常规原料,如淀粉、葡萄糖、蔗糖等碳源,豆粕、麸皮、蛋白胨等氮源,近年来缺口很大,价格飞升,导致发酵产品成本上升,很多附加值较低的产品出现亏损。因此,本文拟将碳水化合物含量丰富的苹果渣与蛋白质含量丰富的棉粕用作碳源与氮源,部分取代常规发酵原料,生产NSP酶,以降低生产成本,部分解决发酵工业与人争粮、与畜争饲的问题,提升这些残渣资源的价值,同时也有利于环境保护。
     1、棉酚对微生物的影响及其生物脱毒
     以棉粕作为发酵原料,必须考虑棉酚对发酵过程的影响与产品中棉酚的残留问题。研究结果表明,棉酚对米曲霉F5、黑曲霉HG-1、黑曲霉F1、黑曲霉F2、黑曲霉F3、米曲霉F4等真菌孢子的萌发具有一定的抑制作用。在孢子萌发的初期,抑制效应比较明显,在6h时,含棉酚10μg/mL的培养基中米曲霉F5孢子的萌发率仅为对照的36.4%,但随着时间的延长,这种抑制效应不再明显,这说明棉酚只能抑制孢子的萌发,但不能杀死孢子。棉酚对真菌菌丝的生长具有一定的影响,但未达到显著水平,棉酚含量为10μg/mL的培养基中菌丝生长没有受到明显的抑制。
     实验所采用的微生物对棉粕脱毒都有一定的效果,但不同菌种以及同一菌种的不同菌株之间棉酚脱毒能力相差很大,其中白地霉G07的脱毒能力最强。采用Plackett–Burman实验设计与响应面实验设计对白地霉G07固态发酵棉粕脱毒的工艺进行了优化,结果标明,最佳培养基组成为1.63%(w/w) (NH_4)_2SO_4,0.10%(w/w)KH_2PO_4,0.05%(w/w)MnSO_4,0.1%(w/w)MgSO_4,0.2%(w/w)CaCl_2,初始含水量为62.19%(w/w)。在上述最佳培养基中,30°C培养48h,基质中自由棉酚的含量由144.0μg/g下降至30.42μg/g,这表明白地霉G07具有较高的棉酚脱毒能力。对干重减重与棉酚残留量的回归分析表明,在0~48h期间,棉酚脱毒率与菌体生长呈高度线性相关。
     体外消化实验表明,生物脱毒样品中的结合棉酚比FeSO_4脱毒样品中的结合棉酚在体外消化过程中更稳定,也就是生物脱毒样品比FeSO_4脱毒样品的安全性要高。生物脱毒后棉粕的营养价值得到了提高,粗蛋白与精蛋白含量提高显著,分别达12.6%与19.7%;氨基酸总量与必需氨基酸含量也大幅度提高,分别达17.0%与36.4%,蛋氨酸、赖氨酸与苏氨酸含量分别提高46.9%,21.0%与59.3%。
     2、黑曲霉HG-1固态发酵生产果胶酶
     苹果渣中果胶含量高,可诱导微生物分泌大量的果胶酶,是生产果胶酶的良好原料。本文选用果胶酶产量较高的黑曲霉HG-1为生产菌种,采用单因子实验和正交实验对其固态发酵工艺进行优化,结果表明,最适产酶培养基为苹果渣10g、棉粕10g、(NH_4)_2SO_4 0.2g、K_2HPO_4 0.06g、初始水分含量60%;最佳装料量为每瓶20g干料,30℃恒温培养48h,果胶酶酶活力可达22248 U/g。
     同时,对所产果胶酶的酶学性质进行了初步研究,结果表明,该酶酶促反应最适温度为45℃,最适pH为5.0;在50℃以下,pH 3.0~6.0时稳定性良好;Ca~(2+)、Mg~(2+)、Fe~(2+)对该酶有激活作用,而Ba~(2+)、Mn~(2+)、Zn~(2+)有抑制作用。
     3、黑曲霉F1与F3固态混菌发酵生产果胶酶、蛋白酶与纤维素酶
     与单一菌种发酵相比,混菌发酵具有更多的优势,多菌种在基质利用能力上互相补充,可以在价格低廉、营养组成复杂的基质上良好生长。本文所采用的两株黑曲霉具有不同的酶系,黑曲霉F1虽然对纤维素类物质的具有很强的分解能力,但在以棉粕为氮源的发酵体系中,相对较弱的蛋白质分解能力成为其生长的限制性因素;与此相反,黑曲霉F3虽然对蛋白质的分解能力很强,但在以苹果渣为碳源的发酵体系中,相对较弱的纤维素类物质的分解能力成为其生长的限制性因素;二者进行混菌发酵时,酶系作用互补,双方均可得到更好的生长,发酵产物的酶系组成更为合理,既有纤维素类物质的水解酶类,也含有蛋白质的水解酶类,同时,酶活水平更高。研究结果表明,混菌发酵的最佳培养基组成为苹果渣与棉粕1:1(w/w),(NH_4)_2SO_4 1%(w/w),KH_2PO_4 0.1%(w/w),黑曲霉F1与F3最佳配比为2:1(w/w),接种量0.4%(w/w),30℃恒温培养48h;果胶酶、蛋白酶、和纤维素酶活力分别达到21168 U/g,3585 U/g和1208U/g。
     除蛋白质含量较低外,苹果渣中果胶、单宁等抗营养因子含量较高也是制约其饲用价值的限制性因素。在发酵过程中,果胶与单宁等抗营养因子的降解率分别为99.0%和66.1%,可消除其抗营养作用。另外,发酵过程中低分子糖类被利用,蛋白质与氨基酸含量显著提高,营养价值得到全面的改善。
     4、黑曲霉SL-05固态发酵生产木聚糖酶、纤维素酶与β-甘露聚糖酶
     除果胶酶、纤维素酶外,β-甘露聚糖酶与木聚糖酶等其他NSP酶也可以采用苹果渣为主要原料进行生产。本文以苹果渣为碳源,通过单因素实验和统计学实验设计,采用回归分析研究了黑曲霉SL-05固态发酵产β-甘露聚糖酶、木聚糖酶和纤维素酶的工艺条件,确定了菌株SL-05发酵产酶的最佳培养基:棉粕和苹果渣比例1:1(w/w)、尿素2%(w/w)、葡萄糖2%(w/w)、KH_2PO_4 0.12%(w/w,β-甘露聚糖酶)、0.06%(w/w,木聚糖酶)、0.09%(w/w,纤维素酶),含水率60%(w/w,β-甘露聚糖酶)、65%(w/w,木聚糖酶)、62%(w/w,纤维素酶)。最佳的培养时间为48 h,此时未见孢子生成,酶活值已经达到了较高水平。在最佳条件下,β-甘露聚糖酶、木聚糖酶与纤维素酶的酶活力分别为296 U/g(干曲)、6347 U/g(干曲)与66032 U/g(干曲),比优化前分别提高了61%、49%、53%。发酵后大部分氨基酸含量增加,特别是几种常见限制性氨基酸,赖氨酸、蛋氨酸与组氨酸分别提高了38%、85%、69%。
     对β-甘露聚糖酶、木聚糖酶和纤维素酶酶学性质的初步研究表明,三种酶均为酸性酶,最佳反应pH分别为5.0、5.0、4.5,在pH 3.5~6.0范围内处理6 h和1 h残余酶活均保持在85%以上;三个酶的最适反应温度分别是80℃、55℃、75℃,β-甘露聚糖酶和纤维素酶热稳定性较好,β-甘露聚糖酶50℃处理6 h、纤维素酶60℃处理60 min后剩余酶活都保持在80%以上,而木聚糖酶60℃处理60 min后残余酶活只剩下17.35%。β-甘露聚糖酶酶促反应的Km和Vmax分别是0.83 g/L、166.67μmol/min。实验还研究了金属离子对β-甘露聚糖酶的影响,结果表明,Fe~(2+)与Mg~(2+)对酶活有激活作用,其中Fe~(2+)的激活作用最为显著,可达127%;Cu~(2+)对β-甘露聚糖酶的酶活有明显的抑制作用(91%);Ca~(2+)在浓度为0.5 mmol/L时对甘露糖酶具有激活作用,但在浓度为1.0 mmol/L时表现为抑制作用。
     以上研究表明:以苹果渣与棉粕代替麸皮、豆粕、淀粉等常规原料作为果胶酶、纤维素酶、木聚糖酶、β-甘露聚糖酶等NSP酶的生产原料在技术上具有可行性,在产生多种水解酶类、提高蛋白质含量的同时,还可降解果胶、单宁等抗营养因子,改善饲料的饲用价值。
Apple pomace and cottonseed powder are produced in huge quantity every year in China, but they are still not put into full use now, which not only is an economic waste of resources, but also causes the pollution of environment when they are deposited randomly and rotted naturally. On the other hand, the price of conventional materials in fermentation industry, such as carbon source including starch, glucose and sucrose, nitrogen source including wheat brean, soybean meal and peptone, increased markedly in recent years. As a result, the production cost increased in fermentation industry and many enterprises were running in the red. In this paper, apple pomace and cottonseed powder are adopted as raw material to produce NSP enzymes instead of conventional materials, which can reduce the production cost as well as benefit the full use of these solid residues.
     1、Effect of gossypol on the growth of microorganisms and the bio-detoxification of free gossypol
     The effect of gossypol on the growth of microorganism and the residual level of free gossypol in the production should be taken into account when cottonseed powder was used as raw material in fermentation industry. The germination of spores of fungi such as Aspergillus niger and Aspergillus oryzae can be restrained by gossypol at the initial stage. When the free gossypol level was 10μg/mL in the substrate, the germination efficiency of spores of Aspergillus oryzae F5 was only 36.4% of that of the control. However, the restraining effect was no longer significant at a later stage. This indicated that gossypol can only restrain the germination of spores, but can not kill them. The growth of the mycelium can be restrained slightly when the fungi were cultured in the medium containing 10μg/mL gossypol, but the restraining effect was not significant.
     All the microorganisms adopted in this study can detoxify free gossypol more or less. But the detoxification efficiency varied observably between different strains, and Geotrichum candidum G07 had the highest detoxification efficiency. Plackett–Burman design and response surface methodology were adopted to optimize the fermentation medium for Geotrichum candidum G07 to detoxify free gossypol in cottonseed powder by the solid-state fermentation. Results showed that the optimum medium was composed of 1.63% (w/w) (NH_4)_2SO_4, 0.10% (w/w) KH_2PO_4, 0.05% (w/w) MnSO_4, 0.1% (w/w) MgSO_4, 0.2% (w/w) CaCl_2 and 62.19% (w/w) initial moisture content. The residual free gossypol level decreased from 144.0μg/g to 30.42μg/g after incubating at 30°C for 48h in the optimized conditions and the detoxification efficiency reached 78.9%, which indicated that G. candidum G07 was a useful strain to detoxify free gossypol in cottonseed powder and the statistical methods adopted in this paper were effective and powerful. This study can contribute towards decreasing the residual level of free gossypol in cottonseed powder, and can benefit the full use the agricultural residue.
     2、Production of pectinase from apple pomace and cottonseed powder by Aspergillus niger HG-1 in solid state fermentation.
     Monofactorial and orthogonal experiments were adopted to optimize the culture medium and fermentation conditions of Aspergillus niger HG-1 to produce pectinase from apple pomace in solid state fermentation. The activity of pectinase reached 22248 U/g when Aspergillus niger HG-1 was cultured at 30℃for 48h in the optimized medium containing 10g apple pomace, 10g cottonseed powder, 0.2g (NH_4)_2SO_4 and 0.06g KH_2PO_4 at the optimized conditions including moisture content of solid substrate 60% (w/w) and 20g dry substrate /250mL flask. The optimal temperature and pH of pectinase reaction were at 45℃and pH 5.0. The prime characteristic of the pectinase was also studied. Pectinase was stable below 50℃and between pH 3.0 and pH 6.0. Ca~(2+), Mg~(2+) and Fe~(2+) increased pectinase activity whereas Ba~(2+), Mn~(2+), Zn~(2+) obviously inhibited it.
     3、Production of pectinase, cellulase and proteinase from apple pomace and cottonseed powder by Aspergillus niger F1 and F3 in solid state fermentation.
     The objectives of this work were to produce multienzyme bio-feed, biodegrade the anti-nutritional factors such as pectin and tannins in apple pomace, and obtain the nutritional enrichment of the fermented substrate. The mixture of apple pomace and cottonseed powder (1:1, w/w), supplemented with 1% (w/w) (NH_4)_2SO_4 and 0.1% (w/w) KH_2PO_4, was proved to be the optimum medium for the mixed strains of Aspergillus niger F1 and F3 (2:1, w/w). The activities of pectinase, proteinase and cellulase achieved 21168 U/g, 3585 U/g and 1208U/g, and the biodegradation efficiency of pectin and tannins reached 99.0% and 66.1%, respectively, when 0.4% (w/w) of the test fungi were inoculated and incubated at 30℃for 48h in solid state fermentation. The utilization of apple pomace in the paper can be served as a model for the similar waste recycling.
     4、Production ofβ-mannanase, xylanase and cellulase from apple pomace and cottonseed powder by Aspergillus niger SL-05 in solid state fermentation.
     Plackett–Burman design and response surface methodology were adopted to optimize the fermentation medium for Aspergillus niger SL-05 to produce extra-cellularβ-mannanase, xylanase and cellulase in solid state fermentation with apple pomace and cottonseed powder as the main raw material in the medium. The optimal medium forβ-mannanase production contained apple pomace and cottonseed powder (1:1, w/w) as carbon and nitrogen sources, 2% (w/w) urea, 2% (w/w) glucose, 0.12% (w/w) KH_2PO_4 and 60% (w/w) initial moisture content. The optimal medium for xylanase production contained apple pomace and cottonseed powder (1:1, w/w) as carbon and nitrogen sources, 2% (w/w) urea, 2% (w/w) glucose, 0.06% (w/w) KH_2PO_4 and 65% (w/w) initial moisture content. The optimal medium for cellulase production contained apple pomace and cottonseed powder (1:1, w/w) as carbon and nitrogen sources, 2% (w/w) urea, 2% (w/w) glucose, 0.09% (w/w) KH_2PO_4 and 62% (w/w) initial moisture content. Under optimized conditions,β-mannanase production of 296 Units/g (U/g) dw, xylanase production of 6347 U/g dw and cellulase production of 66032 U/g dw can be achieved, which were improved 61%, 49% and 53% compared with that of the initial medium, respectively.
     The growth kinetics of Aspergillus niger SL-05 was investigated. The results showed that the optimal fermentation time for the tree enzymes production under the optimized conditions would be 48 h. As spores were produced after 48 h, the enzymes production tended to be slower. The major enzymes secretion was observed during 24 ~ 48 h of inoculation with high cellular metabolism activities. In this period, the amount of total sugar and reducing sugar decreased dramatically, the pure protein increased rapidly, the pH value of the medium decreased, and the dry weight loss rate increased distinctly. Then, small increase in enzyme secretion was found. Compared with the amino acid content before fermentation, the content of most amino acid increased after fermentation, especially limiting amino acids: Lys, Met and His, which were improved 38%, 85%, 69% compared with that of the initial medium, respectively.
     The characteristics of the three enzymes were also extensively studied.β-mannanase, xylanase and cellulase were acidic enzymes and the optimal pH was 5.0, 5.0, and 4.5, respectively. Three enzymes all remained above 85% of the initial activity after incubated at pH 3.5~6.0. The optimal reaction temperature was 80℃, 55℃and 75℃, respectively. Thermal stabilities ofβ-mannanase and cellulase were high. They remained above 80% of initial activity afterβ-mannanase incubated for 5 h at 50℃and cellulase incubated for 30 min at 60℃. But xylanase remained only 17.35% after incubated for 30min at 60℃. The Km and Vmax of theβ-mannanase were obtained, which were 0.83 g/l and 166.67μmol/min, respectively. The activity of the mannanase was inhibited greatly by Cu~(2+) (91%) and was activated by Fe~(2+) and Mg~(2+), especially Fe~(2+) (127%). The activity of mannanase was inhibited by 0.5 mmol/L Ca~(2+); however it was activated at 1.0 mmol/L Ca~(2+).
     All the studies above showed that it was technically and economically feasible to produce pectinase, cellulase,β-mannanase, xylanase and other NSP enzymes from apple pomace and cottonseed powder by Aspergillus niger or other fungi in solid state fermentation. It was also an effective way to make the best of apple pomace, an agricultural waste produced in larger quantities in China.
引文
白爱枝,梁运章,潘仁瑞.复合饲用酶菌株A3产果胶酶的研究[J].中国饲料, 2006, (7): 15-17.
    白洪志,杨谦,张鲁进.纤维素降解菌简青霉H-11的筛选及酶学特性的研究[J].华北农学报, 2007, 22 (3) : 160 -162.
    白剑宇,周晨妍,王瑾,等.宇佐美曲霉木聚糖酶基因在大肠杆菌中的表达与优化[J]. 食品工业科技, 2007, (6): 100-103.
    包怡红,李雪龙.木聚糖酶产生菌-类芽孢杆菌的筛选及其酶学性质研究[J].中国食品学报, 2008, 8 (2): 36-41.
    卜庆梅,杨迎霞,王淑芳,等.苹果渣高产栽培鸡腿菇的研究[J].食用菌, 2002, (3): 20-21.
    曹军卫,孙卫华.产碱性聚半乳糖醛酸酶嗜碱细菌抗利福平高产菌株的选育[J].武汉大学学报(自然科学版) , 1996, 42 (6): 753-758.
    常显波,薛泉宏,来航线,等.鲜苹果渣发酵生产饲料蛋白研究[J].西北农林科技大学学报, 2004, 32 (1): 40-46.
    陈峰,赵学慧.米曲霉固体发酵生产果胶酶的研究[J].中国酿造, 1998, (6): 18-20.
    陈合,魏颖杰,秦俊哲.苹果渣栽培金针菇实验初报[J].西北轻工业学院学报, 2002, 20 (4): 25-28.
    陈和秀,龙敏南,徐方成,等.木聚糖酶生产菌株的筛选及产酶条件的优化[J].中国生物工程杂志,2007, 27 (11): 41-44。
    陈五岭,段东霞,高再兴.微生物发酵果渣蛋白饲料研究Ⅰ菌种选育及理化性质测定[J].西北大学学报(自然科学版) , 2003, 33 (10) 91-93.
    陈哲超,谢必峰,林宇野,等.福建师范大学学报(自然科学版) . 1995, 11 (4): 68-73.
    成莉凤.β-甘露聚糖酶高产菌株筛选及酶的纯化与性质研究[D].中国农业科学院, 2007.
    程池,乐锡林,熊涛,等.对里氏木霉RutC-30所产非淀粉多糖酶系的分析[J].食品与发酵工业, 2004, (5): 64-67.
    程驭宁,梁如玉.绿色木霉HB产纤维酶的条件研究[J].西南农业大学学报,2000, 22 (6) :539-541.
    崔福绵,石家骥,鲁茁壮.枯草芽孢杆菌中性β-甘露聚糖酶的产生及性质[J].微生物学报, 1999, 39 (1): 60-63.
    崔福绵.果胶酶cp-8521菌株的选育及其液体发酵条件的研究[J].微生物学报, 1987, 27 (1): 37-44.
    戴卫东,李泉,钱礼华,等.丙酮、己烷与水混合溶剂脱除棉酚的实验研究[J].化学与生物工程, 2004 (5) , 32-33.
    邓维安.去毒棉籽蛋白的开发[J].河池师专学报(自然科学版) , 2001, 21 (2): 95-97.
    杜凤春,史登营,李红耀.猪棉籽饼中毒的的防治[J].河南畜牧兽医, 2000, 21 (4): 25-25.
    段金柱,曹淡君.固体发酵与液体发酵生产纤维素酶产率与催化性能比较[J].粮食与饲料工业, 2000, (3): 24-26.
    方洛云,邹晓庭,许梓荣.木聚糖酶基因的分子生物学与基因工程[J].中国饲料, 2002, (7): 11-13.
    冯定远,张莹,余石英.含有木聚糖酶和β-葡聚糖酶的酶制剂对猪日粮消化性能的影响[J].畜禽业, 2000, (7): 44-45.
    高雪峰.多菌发酵秸秆饲料生产工艺[J].内蒙古师范大学学报. 1999, (4): 12-15.
    葛邦国,吴茂玉,李丽,等.苹果渣膳食纤维的提取及脱色[J].中国果菜, 2008, (1): 45-46.
    顾赛红,孙建义,李卫芬.黑曲霉PES固体发酵对棉籽粕营养价值的影响[J].中国粮油学报, 2003, 18 (1): 70-72.
    郭爱莲,张渭,冯探.细菌果胶酶菌株Xg-02的选育[J].中国酿造, 1997 (4): 21-23.
    胡艳丽,王克然.饲料中真蛋白的测定[J].河南畜牧兽医. 2007, 28 (10): 31-32.
    黄艳,凌敏,覃拥灵,等.康氏木霉内切葡聚糖酶(EGⅠ)基因的克隆及表达[J].生物技术, 2008, 18 (2):10-12
    江正强.微生物木聚糖酶的生产及其在食品工业中应用的研究进展[J].中国食品学报, 2005, 5 (1): 1-9.
    江正强,邓伟,翟倩,等.链霉菌D21产木聚糖酶的发酵条件研究[J].林产化学与工业, 2007, 27 (1): 52-56.
    焦凌霞,胡翠青,李刚,等.利用苹果皮渣制备膳食纤维的工艺研究[J].贵州农业科学, 2008, (2): 155-157.
    金加明.木霉纤维素酶产酶适宜条件及对秸秆降解参数优化的研究[D].甘肃农业大学, 2006.
    荆丽珍,王宝维,龙芳羽,等.鹅源草酸青霉产果胶酶的发酵条件研究[J].沈阳农业大学学报, 2008, 39 (1): 38-43.
    彭霞薇,谢响明,白志辉,等.草酸青霉BZH-2002产果胶酶特性研究[J].生物技术, 2005, 15 (6) : 27-30.
    赖宪明,衣艳秋,崔爱学,等.植物和饲料中糖的DNS比色测定[J].农业与技术, 1997, (4): 29-30.
    李爱华,李耀忠,陈卫民,等.农作物秸秆发酵剂研究初报[J].夏大学学报, 2002, (3): 18-20.
    李爱科,郝淑红,张晓琳,等.我国饲料资源开发现状及前景展望[J].畜牧市场, 2007, (9): 13-16.
    李剑芳,邬敏辰,夏文水.β-甘露聚糖酶高产菌株选育及产酶条件的研究[J].食品发酵工业, 2005, 31 (9): 9-13.
    李剑芳,张静娟,邬敏辰,等.酸性β-甘露聚糖酶固态发酵工艺与粗酶性质[J].食品科学, 2006, 27 (5): 143-147.
    李卫芬,孙建义.木聚糖酶的特性研究[J].浙江大学学报(农业与生命科学版). 2001, 27 (1): 103-106.
    李忠玲,王卫卫,任平,等.产碱性纤维素酶兼性厌氧菌株的筛选和酶学性质的初步研究[J].微生物学通报, 2008, 35 (6): 851-854.
    林英,秦萍,杜志强,等.产纤维素酶绿色木霉F-UV-(264)产酶条件优化[J].安徽农业科学, 2006, 34 (11): 2312- 2314.
    刘成.黑曲霉SL-05固态发酵苹果渣产木聚糖酶、纤维素酶、β-甘露聚糖酶的研究[D]. 山东农业大学,2008.
    刘大川,齐玉堂.含水丙酮浸出棉籽油及脱除棉酚的研究[J].中国油脂, 1992, 17 (6): 3-7.
    刘清锋,支晓鹏,徐惠娟,等.纤维素降解菌青霉T24-2的分离及产酶特性[J].工业微生物, 2007, 37 (3): 15-19.
    刘燕,刘钟栋,潘坷,等.甘露聚糖酶水解烟草胶质的研究[J].河南工业大学学报, 2006, 27 (6): 69-72.
    龙健儿,陈一平.β-甘露聚糖酶的研究现状[J].微生物学杂志, 1998, 18 (3): 44-49.
    鲁慧芳,丁长河,侯丽芬,等.苹果渣中果胶提取条件及其分子质量的测定研究[J].食品与发酵工业. 2007, 33 (6):154-157.
    罗强,孙启玲,张兴宇,等.β-甘露聚糖酶菌株的复合诱变选育及发酵条件优化[J].四川大学学报(自然科学版) , 2003, 40 (1): 131-134.
    罗雯.苹果渣发酵生产蛋白饲料的研究[J].科学技术与工程, 2004, 4 (5): 371-373.
    马旭光,张宗舟,蔺海明,等.黑曲霉高产纤维素酶活突变株的筛选[J].中国酿造, 2008, (9) : 61-63.
    马艳萍,马惠玲,徐娟.苹果渣研究新进展[J].西北林学院学报, 2006, 21 (5): 160-164.
    马艳萍,马惠玲,陈长友,等.苹果渣固态酒精发酵工艺研究[J].西北农林科技大学学报(自然科学版) , 2004, 32 (11): 81-84.
    倪鸿静,张晓梅,胡恒先.固态法生产果胶酶及其应用的研究[J].云南化工, 1991, (4): 18-20.
    聂光军,岳文瑾,薛正莲,等.枯草芽孢杆菌产β-甘露聚糖酶的发酵条件优化分析(英文) [J].安徽工程科技学院学报(自然科学版) , 2008, 23 (1) : 1-6.
    庞宗文,董志刚,梁静娟,等.高温放线菌GPL1纤维素酶的酶学性质研究[J].现代食品科技, 2006, 22 (2): 20-23.
    彭爱铭,谷春涛,佟建明.不同培养条件对芽孢杆菌酶系的影响研究[J].饲料工业, 2004, 25 (3): 45-46.
    乔君毅,张福元.浅谈苹果渣发酵蛋白饲料的研究进展[J].饲料广角, 2007, (23): 38-40.
    秦全贵,宋永华,许开绍,等.纤维素酶与造纸工业[J].广西工业, 1997, (3): 12-15.
    佘元莉,李秀婷,马家津,等.产木聚糖酶放线菌的筛选[J].农产品加工, 2007, (11): 15-17.
    施安辉,刘淑君,肖海杰.纤维素酶固体发酵及其在食品工业中的应用[J].食品科学, 1997, 18 (7): 13-18.
    施安辉,张勇,曲品,等.高效降解棉酚菌株的选育及脱毒条件的研究[J].微生物学报, 1998, 38 (4): 318-320.
    石军,陈安国.木聚糖酶的应用研究进展[J].中国饲料, 2002, (4): 10-12.
    税欣,郑连爽.产碱性木聚糖酶细菌的筛选及产酶条件的优化[J].环境科学与技术, 2007, 30 (3): 29-31.
    宋安东,张世敏,马向东,等.利用苹果渣生产酒精的实验研究[J].中国沼气, 2003, 21 (2): 45-46.
    宋波,羊键.一株降解纤维素的放线菌的筛选及其产酶条件的研究[J].微生物学杂志,2005, 5 (25): 36-39.
    宋纪蓉,张建刚,李文哲,等.苹果资源的深加工研究[J].西北大学学报(自然科学版) , 2002, 33 (3): 217-220.
    宋纪蓉,黄洁,徐抗震,等. Production of citric acid from apple pomace enzymolyzed by cellulose [J].过程工程学报, 2003, 3 (5): 423-427.
    孙建义,许梓荣.假丝酵母固体发酵的条件及发酵动力学[J].浙江农业大学学报, 1995, 21 (5): 503-507.
    孙俊良,赵瑞香,李刚,等.苹果白兰地的研制[J].食品工业, 2002, (4): 16-17.
    孙玉梅,朱蓓薇,刘阳.黑曲霉的果胶酶生物合成模式[J].辽宁食品与发酵, 1994, (4): 22-24
    汤鸣强.黑曲霉产果胶酶的分离纯化和酶学特性研究[D].福建师范大学, 2004.
    唐辉,田晨煦,姚新成,等.食用棉籽蛋白中总棉酚与游离棉酚含量测定[J].石河子大学学报(自然科学版) , 2004, 22 (1): 53-55.
    田新玉,王欣.嗜碱芽孢杆菌N6-27碱性纤维素酶的纯化及性质[J].微生物学报, 1998, 38 (4) : 310-312.
    田英华,刘晓兰,邓永平.果胶酶高产菌Aspergillus niger HYA4的选育[J].齐齐哈尔大学学报, 2005, 21 (1): 12-14.
    佟勇.产纤维素酶放线菌及其酶学性质和淡水湖底微生物区系研究[D].中国科学院研究生院, 2004.
    汪天虹,邹玉霞,石屹峰,等.微紫青霉CBHⅠ酶纤维素结合结构域在大肠杆菌中的分泌型表达及性质研究[J].中国生物化学与分子生物学报, 2000, (5): 644-649.
    王冲,娄玉杰.常见饲料中抗营养因子及对动物的影响[J].家畜生态, 2000, 21 (4): 39-43.
    王冬梅,郭书贤,藏晋,等.利用EM菌剂对棉子饼粕发酵脱毒的研究[J].中国棉花, 2002, 29 (8): 14-15.
    王和平,王龙,文静,等.转β-甘露聚糖酶基因大肠杆菌在猪肠道内的外泌型表达[J]. 内蒙古大学学报, 2006, 37 (1): 58-64.
    王金全.小麦非淀粉多糖的抗营养机理及木聚糖酶在肉仔鸡小麦日粮中的应用研究[J]. 中国农业科学院, 2004.
    王景林,刘晓明,吴东林,等.纤维素酶产生菌黑曲霉X-15的选育及其产酶条件[J].中国兽医学报, 2000, 20 (1): 97-99.
    王俊锋.饲料中真蛋白质含量的测定方法[J].广东饲料, 2004, (6): 37-38.
    王树栋.棉籽饼综述[J].中国奶牛, 1999, (2): 22-24.
    王希国,梅林.青霉Z18纤维素酶降解纤维素的研究[J].哈尔滨工业大学学报, 2008, 40 (6): 919-922.
    王喜萍,张文英,李长生.山楂中果胶的测定及利用[J].中国林副特产, 1999, (4): 13-14.
    王宪青,何淑清.从苹果渣中提取果胶的研究[J].农产品加工(学刊). 2005, 04: 32-37.
    韦赟,江正强,李里特,等.枯草芽孢杆菌产β-甘露聚糖酶固体发酵条件的优化[J].微生物学通报, 2006, 33 (1) : 84-89.
    卫春会,杨辉.黑曲霉液态发酵生产果胶酶的工艺条件初探[J].食品研究与开发, 2005, 26 (2): 62-65.
    魏瑛,童群义,李博.里氏木霉摇瓶发酵产木聚糖酶培养条件的优化[J].安徽农业大学学报, 2008, 35 (2): 271-274.
    邬敏辰.β-甘露聚糖酶及其水解产物的应用研究[J].江苏调味副食品, 2001, 69 (2): 5-7.
    吴襟,何秉旺.微生物β-甘露聚糖酶[J].微生物学通报, 1999, 6 (2): 134-136.
    吴襟,何秉旺.诺卡氏菌形放线菌β-甘露聚糖酶的纯化和性质[J].微生物学报,2000, 40 (1): 69-74.
    吴琼,刘自溶.放线菌果胶酶产酶条件及酶促反应条件研究[J].工业微生物, 1994, 26 (4): 28-32.
    吴怡莹,张苓花,明静文,等.以苹果渣为原料固态发酵生产檬酸的研究[J].大连轻工业学院学报, 1994, 13 (2): 72-77.
    伍安国,曾辉,苏庆平.生物技术在造纸工业中的应用研究进展[J].西南造纸, 2005, 34 (2): 15-19.
    武会娟.苹果渣的开发与利用[J].饲料研究, 2003, (4): 29-31.
    夏黎明.固体发酵生产高活力纤维二糖酶[J].食品与发酵工业, 1999, 25 (2):1-5.
    肖春玲,徐常新.微生物纤维素酶的应用研究[J].微生物学杂志, 2002, 22 (2): 33-35.
    徐抗震,宋纪蓉,黄洁,等.液固态发酵苹果渣生产饲料蛋白的研究[J].化学工程, 2006, 34 (9): 47-50.
    徐抗震,宋纪蓉,赵宏安,等.苹果渣发酵生产饲料蛋白的菌种选育[J].西北大学学报(自然科学版) , 2003, 33 (2): 167-170.
    许牡丹,杨伟东,许宝红,等.微生物β-甘露聚糖酶的制备与应用研究进展[J].动物医学进展. 2006, 27 (9): 31-34.
    阎伯旭,齐飞,张颖舒,等.纤维素酶分子结构和功能研究进展[J].生物化学与生物物理进展, 1999, 26 (3): 233-237.
    杨保伟.苹果渣基质柠檬酸产生菌株的选育及固态发酵条件研究[J].西北农林科技大学, 2004.
    杨福有,祁周约,李彩风,等.苹果渣营养成分分析及饲用价值评估[J].甘肃农业大学学报, 2000, 35 (3): 340-344.
    杨辉,石振海,代春吉.苹果渣固体发酵生产果胶酶的研究[J].陕西科技大学学报, 2003, 21 (4): 1-5.
    杨辉,张宏,徐可为.苹果渣发酵生产果胶酶的工艺条件优化[J].食品科技, 2004, 7: 57-60.
    杨继良,周大云,杨伟华,等.高效降解棉酚菌种的筛选及棉饼脱毒参数的研究[J].棉花学报, 2000, 12 (5): 225-229.
    杨景芝,孙衍华,牛钟相,等.棉酚脱毒微生物的筛选及其脱毒效果的研究[J].山东农业大学学报, 1999, 30 (1): 26-30.
    杨清香,曹军卫.嗜碱芽孢杆菌NTT33β-甘露聚糖酶的纯化与性质研究[J].武汉大学学报, 1998, 44 (6): 761-764.
    杨天波,詹高越,丁万杰.二氧化碳激光对果胶酶产生菌ASP. 3. 396发酵期产酶性能的影响[J].应用激光, 1985, 5 (5): 221-222.
    张德强,黄镇亚,张志毅,等.绿色木霉纤维素酶AS3. 3032液体发酵的研究[J].北京林业大学学报,2001, 23 (1): 56-58.
    张飞,岳田利,费坚,等.果胶酶活力的测定方法研究[J].西北农业学报,2004,13 (4): 134-137.
    张辉,单安山,牟振波.植物饲料成分中抗营养因子对鱼类的影响[J].饲料广角, 2008, (9): 34-37.
    张继东,王志祥,丁景华,等.棉籽饼粕中天然抗营养因子的危害机理及消除措施[J]. 畜牧与饲料科学, 2006, (3): 53-55.
    张峻,何志敏,胡鲲.地衣芽孢杆菌β-甘露聚糖酶的制备[J].食品与发酵工业,2000, 27 (2): 5-7.
    张日卫.高效降解棉酚菌种黄曲霉5号在酱油生产中的应用[J].中国调味品,1994, (9): 15-17.
    张树飞,邬敏辰,盛金萍,等.酸性β-甘露聚糖酶高产菌株的诱变育种[J].农业生物技术学报, 2008, 16 (2): 346-350.
    张文举,赵顺红,许梓荣,等.复合固体发酵对棉籽饼脱毒效果的影响研究[J].粮食与饲料工业, 2006, (6): 35-37.
    张运雄,刘正初.高效菌株T85-260在芒麻脱胶过程中的胞外酶系研究[J].中国麻业, 2001, 23 (1).
    赵玮莉. Co60γ射线诱变选育木聚糖酶和β-葡聚糖酶高产菌株及其应用研究[D].河南农业大学, 2005.
    赵玉林,王福君,陈中耗.纤维素酶在造纸工业中的应用研究进展[J].纸和造纸, 2002, (2): 64-66
    朱宝成,王俊刚,成亚利,等.果胶酶生产菌原生质体再生及诱变育种[J].微生物学通报, 21 (1): 15-18.
    朱荷琴,周云.一株高效降解棉籽饼粕中棉酚的酵母菌株[J].农牧产品开发, 1999, (12): 19-19.
    朱劼,李剑芳,邬敏辰.酸性β-甘露聚糖酶的固态发酵工艺研究[J].西北农林科技大学学报, 2005, 33 (8): 139-143.
    庄桂.棉粕酱油酿造工艺和A. niger C93菌株脱除棉酚机理的探讨[J].郑州粮食学院学报,1996, 17 (2): 36-42.
    Abaham G, et al. Process engineering economic evaluation of the ethanol extraction of cottonseed; preliminary [J]. JAOCS, 1991, 63 (6): 276-279.
    Ademark P, Varga A. Softwood hemicellulose-degrading enzymes from Aspergillus niger: Purification and properties of aβ-mannanase [J]. J Biotechnol, 1998, 63 (3): 199-210.
    Aguilar G, Huitron C. Constitutive exo-pectinase produced by Aspergillus sp. CH-Y1043 on different carbon source [J]. Biotechnol. Lett, 1990, 12: 655-660.
    Akino T, Nakamura N, Horikoshi K. Production ofβ-mannosidase andβ-mannanase by an alkalophilic Bacillus sp [J]. Appl Microbio Biotechnol, 1987, 26 (4): 323-327
    Alberto Araujo, Owenp Ward. Mannanase Components from Bacillus pumilus [J]. Applied and Environmental Microbiology, 1990, 56 (6): 1954-1956
    Anderson R L, Wolf W J. Compositional changes in trypsin inhibitors phytic acid saponins and isoflavones related to soybean processing [J]. J Nutr, 1995, 125: 5815-5885
    AOCS. Free and total gossypol methods [M]. In Official and Tentative Methods of the AOCS, 1989, fourth ed. American Oil Chemists’Society, Chicago.
    Aoyama M, Yasuda M, Nakachi K, et al. Soybean-milk-coagulating activity of Bacillus pumilus derives from a serine proteinase [J]. Appl. Microbiol. Biotechnol., 2000, 53: 390–395.
    Bailey M J, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity [J]. Biotechnol, 1992, 23 (3): 257-270.
    Beg Q K, Kapoor L and Mahajan L. Microbial xylanses and their industrial application: a review [J]. Appl Microbiol Biotechnol, 2001, 56: 326-338.
    Berovic M, Ostroversnik H. Production of Aspergillus niger pectolytic enzymes by solid state bioprocessing of apple pomace [J]. Journal of biotechnology. 1997, 53 (1): 47-53.
    Bhalla T C, Monica J. Production of cellulase and xylanase by Trichoderma viride and Aspergillus spp. on apple pomace [J]. Indian Journal of Microbiology. 1993, 33 (4): 253-255.
    Bhalla TC, Joshi M. Protein enrichment of apple pomace by co-culture of cellulolytic moulds and yeasts [J]. World journal of microbiology & biotechnology, 1994, 10 (1): 116-117.
    Bisaria V S, Glose T K. Biodegradation of cellulosic materials microorganisms’enzymes substrates and products [J]. Enzyme Microbiotechnol, 1981, 3: 90-104.
    Borja Vila, Josep Mascarell. Alpha galaclosides in soybean mealican enzyme help. [J]. Feed International, 1999, (7): 24-29
    Bozena. Relationships between calcium and lead on pomace dietary fibre [J]. Polish Journal of Food and Nutrition Sciences, 2000, 50 (1): 230-232.
    Brocas C, Rivera R M, Paula-Lopez F F, McDowell L R, Calhoun M C, Staples R, Wilkinson N S, Boning A J, Chenoweth P J, Hansen P J. Deleterious actions of gossypol on bovine spermatozoa, oocytes, and embryos [J]. Biol. Reprod., 1997, 57: 901–907.
    Chenoweth P J, Chase C C, Risco C A, Larsen R E. Characterization of gossypol-induced sperm abnormalities in bulls [J]. Theriogenology, 2000, 53: 1193–1203.
    Cherry J P, Gray S. Methylene chloride extraction of gossypol from cottonseed products [J]. Food Sci., 1981, 46: 1726–1733.
    Coon C A, Leske K L, Akavanichan O, et al. Effect of oligosaccharide–free soybean meal on true metabolizable energy and fibre digestion in adult roosters [J]. Poultry Sci, 1990, 69: 787-793
    Desai J D, Desai A J, Patel N P. Production of cellulases andβ-glucosidase by shake culture of Scytalidium lignicola [J]. J Ferment Technol, 1982, 60: 117-124.
    Dorsa W J, Robinette H R, Robinson E H, et al. Effects of dietary cottonseed and gossypol on growth of young channel catfish [J]. Trans. Am. Fish. Soc. ,1982, 3: 651-655.
    Drochner W, Kerler A, Zacharias B. Pectin in pig nutrition, a comparative review [J]. Journal of Animal Physiology and Animal Nutrition, 2004, 88: 367-380.
    Duffaud G D, McCutchen C M, Leduc P, et al. Purification and characterization of extremely thermostableβ-mannanase,β-mannosidase, andα-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068 [J]. Appl Environ Microbiol, 1997, 63: 169-177.
    Edumund Wlusas, et al. Isopropyl alcohol to be tested as solvent in-form [J]. J A O C S,1991,11 (2) :78-82
    Elibol M. Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3 (2) with response surface methodology [J]. Process Biochem., 2004, 39: 1057–1062.
    El-Saidy D M S D, Gaber M M. Use of cottonseed meal supplemented with iron for detoxification of gossypol as a total replacement of fish meal in Nile tilapia, Oreochromis niloticus (L. ) diets [J]. Aquac. Res., 2004, 35: 859–865.
    El-Sayed A F. Long-term evaluation of cottonseed meal as a protein source for Nile tilapia,Oreochromis niloticus (Linn. ) [J]. Aquaculture, 1990, 84: 315-320.
    FAO. Food and Agricultural Organization. 2005, www. fao. org.
    Femandez M L, Sun D M, Tosca M A, McNamara D J. Citrus pectin and cholesterol interact to regulate hepatic cholesterol homeostasis and lipoprotein metabolism: a dose-response study in guinea pigs [J]. Am. J. CIin. Nutr. 1995, 59: 869-873.
    Feng Y Y, He Z M, et al. Optimization of agitation, aeration, and temperature conditions β-mannanase production for maximum [J]. Enzyme and Microbial Technology, 2003, 32: 282-289.
    Fowler L G. Substitution of soybean and cottonseed products for fish meal in diets fed to Chinook and cohosalmon [J]. Fish. Cult., 1980, 42: 82-91.
    Friedrich J. Production of pectolytic by Aspergillus niger on sucrose [J]. Food biotechnology, 1992, 46 (3): 207-216.
    Gao J M, Weng H B, Zhu D H, et al. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover [J]. Biore Technol, 2008, in press.
    Geater C W, Fehr W R, Wilson L A, et al. A more rapid method of total sugar analysis for soybean seed. Crop Sci, 2001, 41: 250-252.
    Getachew G, Makkar H P S, Becker K. Method of polyethylene glycol application to tanning-containing browses to improve microbial fermentation and efficiency of microbial protein synthesize from tannin-containing browses [J]. Animal Feed Science and Technology, 2001, 92: 51-57.
    Gitzelmann R, Auricchio S. The handing of soy aipha-galaclosidase by a normal an galactosemic child [J]. Pediatrics, 1965, 36: 231-233.
    Grohmann K, Bothast R J. Pectin-rich residues generated by processing of citrus fruits, apples, and sugar beets: enzymatic hydrolysis and biological conversion to value-added products [J]. ACS symposium series, 1994, 566: 372-390.
    Gubitz G M, Hayn M, Sommerauer M, Steiner W. Mannan-degrading enzymes from Sclerotium rolfsii: characterization and synergism of two endoβ-mannanases and a β-mannosidase [J]. Biore Technol, 1996, 58: 127-135.
    Gullon B, Garrote G, Alonso J L, et al. Production of L-lactic acid and oligomeric compounds from apple pomace by simultaneous saccharification and fermentation: a response surface methodology assessment [J]. Journal of Agricultural and Food Chemistry, 2007, 55 (14): 5580-5587.
    Hang Y D. Utilization of apple pomace for microbial production of citric acid [J]. Special report - New York State Agricultural Experiment Station, Geneva. 1985, (57): 8-14.
    Hang Y D, Woodams E E. A process of leaching citric acid from apple pomace fermented with Aspergillus niger in solid-state culture [J]. MIRCEN journal of applied microbiology and biotechnology, 1989, 5 (3): 379-382.
    Hang Y D, Woodams E E. Apple pomace: a potential substrate for production of beta-glucosidase by Aspergillus foetidus [J]. Food science technology, 1994. 27 (6): 587-589.
    Hang Y D, Woodams E E. Apple pomace: a potential substrate for citric acid production by Aspergillus niger [J]. Biotechnology letters, 1984, 6 (11): 763-764.
    Hang Y D, Woodams E E. Solid state fermentation of apple pomace for citric acid production [J]. MIRCEN journal of applied microbiology and biotechnology, 1986. 2 (2): 283-287.
    Hashimoto Y, Fukumoto J. Studies on the enzyme treatment of coffee beans. Purification of mannanase from Rhyzopus niveus and its action on coffee mannan [J]. Nippon Nogeikagaku Kaishi, 1996, 43: 317-322.
    Henrik S, Matti S, Maija T, Liisa V. Purification and characterization of twoβ-mannanases from Trichoderma reesei [J]. J Biotechnol, 1992, 29 (3): 229-242.
    Herman R L. Effects of gossypol on rainbow trout,Salmo gairdneri Richardson [J]. J. FishBiol., 1970, 2 (4): 293-304.
    Hours R A, Massucco A E, Ertola R J. Microbial biomass product from apple pomace in batch and fed batch cultures [J]. Applied microbiology and biotechnology, 1985, 23 (1): 33-37.
    Hours R A, Voget C E, Ertola R J. Apple pomace as raw material for pectinases production in solid state culture [J]. Biological wastes, 1988, 23 (3): 221-228.
    Huang Y D. Effect of degossypolized cottonseed meal by microbial method on the performance of layers [J]. J. Anim. Sci., 1994, 30: 3–6.
    Hwang J K, Choi J S, Kim C J, et al. Solubilization of apple pomace by extrusion [J]. Journal of Food Processing and Preservation, 1998, 22 (6): 477-491.
    Irwin D, Jung E D, Wilson D B. Characterization and sequence of a Thermomonospora fusca xylanase [J]. Appl. Environ. Microbiol, 1994, 60 (3): 763-770.
    Jain A. Production of xylanase by thermophilic Melanocarpus albomyces PS-68 [J]. Process Biochem, 1995, 30: 705-709.
    Jin Zhou, Wang Y H, Chu J, et al. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14 [J]. Biore Technol, 2008, 99 (15): 6826–6833.
    Johnson K G, Ross N W. Enzymic properties ofβ-mannanase from Polyporus versicolor [J]. Enzyme and Microbial Technol, 1990, 12 (12): 960-964.
    Johnson L A. Pilot plant studies on extracting cottonseed with meth lenechloride [J]. JAOCS,1986, 63 (2): 56-58.
    Jose C. The state of the art in textile biotechnology [J]. J Society Dyers Colourists, 1996, 112 (11): 326-329.
    Joshi V K, Mukesh Parmar Rana N S. Pectin esterase production from apple pomace in solid-state and submerged fermentations. (Special issue: Food enzymes and additives. Part 1: Enzymes and organic acids for food application. ) [J]. Food Technology and Biotechnology, 2006, 44 (2): 253-256.
    Joshi V K, Devender A. Solid state fermentation of apple pomace for the production of value added products [J]. Natural Product Radiance, 2006, 5 (4): 289-296.
    Joshi V K, Gupta K, Devrajan A, et al. Production and evaluation of fermented apple pomace in the feed of broilers [J]. Journal of Food Science and Technology, 2000, 37: 609–612.
    Joshi V K, Jaiswal S, Kaushal B B L. Apple pomace: effect of sulphur dioxide and temperature on its preservation and medium optimization for yeast biomass production [J]. Journal of Scientific and Industrial Research, 1998, 57: 692–697.
    Kenar J A. Reaction chemistry of gossypol and its derivatives [J]. JAOCS, 2006, 83 (4): 269–302
    Kim T J, Ow S, Eom T J. In Procedings of Tappi Pulping Conference. Atlanta: Tappi Press, 1991, 2: 1023-1030
    K?nig J, Grasser R, Pikor H, et al. Determination of xylanase, ?-glucanase, and cellulase activity [J]. Anal. Bioanal. Chem., 2002, 374, 80–87.
    Kulkami N, Shendye A, Rao M. Molecular and biotechnological aspects of xylanase [J]. FFMS Microbiol Rev, 1999, 23: 411-456.
    Kuo T M, et al. Content of raffinose oligosaccharides and sucrose in various plant seeds [J]. J Agricul Food Chem, 1998, 36: 32-36
    Li X, Gao P. CMC-liquefying enzyme, a low responsible for framentation from Streptomyces sp. LX [J]. J Appl Microb, 1997, 83: 59-66.
    Liener I E. Factors affecting the nutritional quality of soy products [J]. J Am Oil Chem Soc, 1981, 58: 406-415
    Lin S B, Stutzenberger F J. Purification and characterization of the major beta-1, 4-endoglucanase from Thermomonospora curvata [J]. J Appl Bacteriol, 1995, 79: 447-453.
    Lin T C, Chen C. Enhanced mannanase production by submerged culture of Aspergillus niger NCH-189 using defatted copra based media [J]. Process Biochem, 2004, 39: 1103-1109.
    Maldonado M C, et a1. Current Microbiology, 1989, 18: 303-306
    Marquie Aymard C, Cuq C, Guilbert J L. Biodegradable packaging made from cottonseed flour: formation and improvement by chemical treatments with gossypol, formaldehyde, and glutaraldehyde [J]. J. Agric. Food Chem., 1995, 43: 2762–2767.
    Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal Chem, 1959, 31 (3): 426-428.
    Monica H, Cristina R M, Carmen B. Effect of different carbohydrases on fresh bread texture and breadstaling [J]. Eur Food Res Technol, 2002, 215: 425-430.
    Nagalakshmi D, Sastry V R B, Agrawal D K. Detoxification of undecorticated cottonseed meal by various physical and chemical methods [J]. Anim. Nutr. Feed Technol., 2002, 2: 117–126.
    Nagalakshmi D, Sastry V R B, Pawde A. Rumen fermentation patterns and nutrient digestion in lambs fed cottonseed meal supplemental diets [J]. Anim. Feed Sci. Technol., 2003, 103: 1–4.
    Ngadi M O, Correia L R. Solid state ethanol fermentation of apple pomace as affected by moisture and bioreactor mixing speed [J]. Journal of Food Science: 1992a, 57 (3): 667-670.
    Ngadi M O, Correia L R. Kinetics of solid-state ethanol fermentation from apple pomace [J]. Journal of food engineering, 1992b, 17 (2): 97-116.
    Orskov F, Orskov I. Serotyping of Escherichia coli. Methods Microbiol, 1984, 14: 43-112.
    Panagiotou G, Kekos D, Macris B J, et al. Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation [J]. Ind Crops Products, 2003, 18: 37-45.
    Park Y S, Kang S W, Lee J S, et al. Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs [J]. Appl Microbiol Biotechnol, 2002, 58: 761-766.
    Pericin D, Jarak M, Antov M, et al. Effect of inorganic phosphate on the secretion of pectinolytic enzymes by Aspergillus niger [J]. Letters in applied microbiology, 1992, 14 (6): 275-278.
    Piccoli-valle, et al. Journal of Basic Microbiology, 1995, 35 (3): 189-193. Plackett R L, Burman J P. The design of optimum multifactorial experiments [J]. Biometrika, 1946, 33: 305–325.
    Poutanen K, Tenkanen M, Korte H. Accessory enzymes involved in the hydrolysis of xylan [M]. In: Leatham G F, Himmel M E, eds. Enzymes in biomass conversion. ACS Symp. Washington: American Cheml Society, 1991, 460: 426-436.
    Prince M L, Butler L G. Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain [J]. J. Agric. Food Chem., 1977, 25: 1268-1273.
    Puchar V, Katapodis P, Biely P, et al. Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus [J]. Enzyme Microbial Technol, 1999, 24: 355-361.
    Rahma E H, Narasingo Rao M S. Gossypol removal and functional properties of protein produced by extraction of glanded cottonseed with different solvents [J]. J. Food Sci., 1984, 49: 1057–1060.
    Rahmat H, Hodge R A, Manderson G J, et al. Solid-substrate fermentation of Kloeckera apiculata and Candida utilis on apple pomace to produce an improved stock-feed [J]. World journal of microbiology & biotechnology, 1995, 11 (2): 168-170.
    Rajarathnam S, Shashirekha M N, Bano Z. Biodegradation of gossypol by the white oyster mushroom, Pleurotus florida, during culturing on rice straw growth substrate, supplemented with cottonseed powder [J]. World J. Microbiol. Biotechnol., 2001, 17: 221–227.
    Robinson P H, Getachew G, De Peters E J, et al. Influence of variety and Storage for up to 22 Days on Nutrient Composition and Gossypol level of Pm a Cottonseed (Gossypium spp) [J]. Animal Feed Science and Technology, 2001, 61: 146-156.
    Ruiz-Aguilar G M L, R?os-Leal E, Tomasini-Campocosio A, et al. Effect of Culture Parameters on the Degradation of Hydrolyzable Tannin Extracted from Cascalote by Aspergillus niger [J]. Bull. Environ. Contam. Toxicol, 2004, 73: 45–52.
    Rulquin H. The determination of certain limiting amino acids in the dairy cow by post-ruminaladministration [J]. Reprod Nutr Dev, 1987, 27: 299.
    Saeki K, Miyashita Y. Purification and properties of mannanase from Oerskovia xanthineolytica [J]. J Fermentation Bioengine, 1990, 70 (4): 215-221.
    Sandhu D K, Joshi V K. Solid-state fermentation of apple pomace for concomitant production of ethanol and animal feed [J]. Journal of Scientific and Industrial Research, 1997, 56 (2): 86-90.
    Saract-pereira. Production of pectin lyase by Penicillium griseoroseum culture on sucrise and yeast extract for dugumming of natural fibres [J]. Lett. Appl. Microbiol, 1994, 18 (3): 127-129
    Schwab M E. Regeneration of lesioned CNS axons by neutralization of neurite growth inhibitors: a short review [J]. J Neurotrauma, 1992, 9: 219-21.
    Sebastián F C, Jorge A, Roque A H. Pectinase production profile of in solid state cultures at different acidities [J]. Biotechnology Letters . 1996, 18 (3): 51-256
    Seyis I, Aksoz N. Effect of carbon and nitrogen sources on xylanase production by Trichoderma harzianum 1073 D3 [J]. Int Biodeterior Biodegrad, 2005, 55: 115-119.
    Shashirekha M N, Rajarathnam S, Bano Z. Enhancement of bioconversion efficiency and chemistry of the mushroom, Pleurotus sajor-caju (Berk and Br. ) Sacc. produced on spent rice straw substrate, supplemented with oil seed cakes [J]. Food chem., 2002, 76: 27–31.
    Shojaosadati S A, Babaeipour V. Citric acid production from apple pomace in multi-layer packed bed solid-state bioreactor [J]. Process biochemistry. 2002, 37 (8): 909-914.
    Silva D, Tokuioshi K, Martins E D S, et al. Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3 [J]. Process Biochem, 2005, (40): 2885–2889.
    Singh S, Madlala A M, Prior B A. Thermomyces lanuginosus: properties of strains and their hemicellulases [J]. FEMS Microbiol Reviews, 2003, 27, 3-16.
    Sirotekl K, Slova kova L, Kopecny J, et al. Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rabbit caecal bacterium Bacteroides caccae. Letters in Applied Microbiology, 2004, 38: 327–332.
    Smogyi M. Notes on sugar determination [J]. J. Biol. Chem. 1952, 195 (1): 19–23.
    Stredansky M, Conti E, Stredanska S, Zanetti F. gamma-Linolenic acid production with Thamnidium elegans by solid-state fermentation on apple pomace [J]. Bioresource technology, 2000, 73 (1): 41-45.
    Tabatabai F, Golian A, Salarmoeini M. Determination and detoxification methods of cottonseed meal gossypol for broiler chicken rations [J]. Agric. Sci. Technol., 2002, 16: 3–15.
    Terebiznik M R, Pilosof A M R. Biomass estimation in SSF by modeling dry matter weight loss [J]. Biotechnol. Tech., 1999, 13: 215–219.
    Vaccarino G. A New Industrial process for cottonseed [J]. A. O. C. S., 1961, 38 (3): 143-147
    Villas-B?as S G, Elisa Esposito, Margarida Matos de Mendon?a. Bioconversion of apple pomace into a nutritionally enriched substrate by Candida utilis and Pleurotus ostreatus [J]. World journal of microbiology & biotechnology, 2003, 19 (5): 461-467.
    Walter R H, Rao M A, Sherman R M. Edible fibers from apple pomace [J]. Journal of Food Science, 1985, 50 (3): 747-749.
    Wang X J, Bai J G, Liang Y X. Optimization of multienzyme production by two mixed strains in solid-state fermentation [J]. Appl Microbiol Biotechnol, 2006, 73 (3): 533-540.
    Weng X Y, Sun J Y. Biodegradation of free gossypol by a new strain of Candida tropicalis under soild-state fermentation: effects of fermentation parameters [J]. Process Biochem., 2006a, 41: 1663–1668.
    Weng X Y, Sun J Y. Kinetics of biodegradation of free gossypol by Candida tropicalis in solid-state fermentation. Biochem. Eng. J., 2006b, 32: 226–232.
    William H, King J, Ames C K, et al. Properties of Ctonseed Meals Prepared with Acetone-petroleum Ether Water Azeotrope [J]. A. O. C. S., 1961, 38:19-31.
    Wilson D B. Biochemistry and genetics of actinomycete cellulases [J]. Crit Rev Biotechnol, 1992, (12): 45-63.
    Wong K K Y, Tan L U L, Saddler J N. Multiplicity ofβ-1, 4-xylanase in microorganisms: function and applications [J]. Microbiol Rev, 1988, 52: 305-317.
    Worrall J J, Yang C S. Shiitake and oyster mushroom production on apple pomace and sawdust [J]. HortScience: a publication of the American Society for Horticultural Science, 1992, 27 (10): 1131-1133.
    Wu M, Li S C, Yao J M, et al. Mutant of a xylanase-producing strain of Aspergillus niger in solid state fermentation by low energy ion implantation [J]. World J Microbiol Biotechnol, 2005, 21: 1045-1049.
    Yang Y H, Wang B C, Wang Q H, et al. Research on solid-state fermentation on rice chaff with a microbial consortium [J]. Colloids and Surfaces B: Biointerfaces, 2004, 34 (1): 1-6.
    Yildirim-Aksoy M, Lim C, Wan P, et al. Effect of natural free gossypol and gossypol-acetic acid on growth performance and resistance of channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri challenge [J]. Aquac. Nutr., 2004, 10: 153–165.
    Yuan K P, Lilian L P. Vrijmoed, et al. Survey of coastal mangrove fungi for xylanase production and optimized culture and assay conditions [J]. Acta Microbiologica Sinica, 2005, 45 (1): 91-96.
    Zakaria M M, Yamamoto S, Yagi T. Purification and characterization of an endo-1, 4-β-mannanase from Bacillus subtilis KU-1FEMS [J]. Microbiol Letters, 1998, 158 (1): 25-31.
    Zhang W J, Xu Z R, Zhao S H, Jiang J F, Wang Y b, Yan X H. Optimization of process parameters for reduction of gossypol levels in cottonseed meal by Candida tropicalis ZD-3 during solid substrate fermentation [J]. Toxicon, 2006, 48: 221–226.
    Zhang W J, Xu Z R, Zhao S H, et al. Development of a microbial fermentation process for detoxification of gossypol in cottonseed meal [J]. Anim. Feed Sci. Technol., 2007, 135: 176–186.
    Zheng Z X, Shetty K. Solid-state production of beneficial fungi on apple processing wastes using glucosamine as the indicator of growth [J]. Journal of agricultural and food chemistry, 1998, 46 (2): 783-787.
    Zheng Z X, Shetty K. Solid state production of polygalacturonase by Lentinus edodes using fruit processing wastes [J]. Process biochemistry, 2000, 35 (8): 825-830.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700