用户名: 密码: 验证码:
新型非病毒基因给药载体聚阳离子脂质体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因治疗为遗传性疾病,传染病和癌症等的治疗提供了良好的前景,而研制安全有效的基因传递系统将成为基因治疗成功的最重要因素之一。本课题结合阳离子聚合物和脂质体两种常用的非病毒基因载体的优点,构建了一种新型的聚阳离子脂质体,对其性质、细胞毒性、摄取和体外转染效率进行了探讨,并研究了该载体的细胞摄取机制,细胞摄取动力学、胞内分布以及携载端粒酶抑制剂后的体外细胞药效学。本课题在此研究基础上构建聚阳离子脂质体-鱼精蛋白-DNA复合载体,研究了鱼精蛋白对聚阳离子脂质体转染的促进作用和细胞核的靶向作用。最后考察了聚阳离子脂质体和复合载体介导的IL-12质粒对荷瘤小鼠的抑瘤作用。
     本课题首先采用低分子量聚乙烯亚胺和酰氯胆固醇合成了PEI 800-Chol,经~1H-NMR和红外光谱鉴定,胆固醇分子共价结合到聚乙烯亚胺骨架上。PEI 800-Chol分子具有两亲性,亲水端为聚乙烯亚胺骨架,亲脂端是胆固醇分子,荧光探针法测得该化合物的临界胶团浓度为0.1012 mg/ml。这一性质为下一步的脂质体表面修饰提供了有利条件,胆固醇分子能够插入到脂质体双分子层,使得阳离子的聚乙烯亚胺覆盖于脂质体表面,从而使脂质体带正电荷。
     本课题以大豆磷脂、胆固醇和PEI 800-Chol或DOPE和PEI 800-Chol为脂质膜材,采用薄膜分散法制备了两种聚阳离子脂质体(PCLs-S和PCLs-D)。聚阳离子脂质体的平均粒径为133 nm,表面电荷50.1±2.6 mV,具有较强的DNA压缩能力。两种聚阳离子脂质体在N/P大于2时都能结合大部分DNA,而PCLs-S的结合能力大于PCLs-D。PCLs-S的细胞毒性与普通脂质体相当,HeLa细胞的IC_(50)为603.19μg/ml,细胞毒性明显小于商品化试剂Lipofectamine~(TM)2000(48μg/ml)。PCLs-S表面的正电荷能够促进HeLa细胞对ODN的摄取,并保护其在细胞内不被降解。与普通脂质体相比,由于表面PEI分子的存在,使得PCLs-S保持了一定的缓冲能力,大大增加了脂质体的内体逃逸能力,有助于提高转染效率。当N/P为10时,PCLs-S/DNA复合物的转染效率最高,与Lipofectamine~(TM)2000转染能力相当。与Lipofectamine~(TM)2000不同的是在血清存在条件下,PCLs-S的转染效率不受影响,而更高N/P比时,血清的存在增加了绿色荧光蛋白的表达。亲水性的PEI层可能有助于保持复合物在血清中的稳定性,提高转染效率。利用DOPE和PEI800-Chol制备的PCLs-D具有膜融合及“质子泵”缓冲的双重内体逃逸能力,该聚阳离子脂质体介导的绿色荧光蛋白表达率高达68%,显著高于PCLs-S和Lipofectamine~(TM)2000(~44%)。
     本课题初步研究了聚阳离子脂质体的细胞摄取机制、细胞内的分布和细胞摄取动力学。细胞摄取聚阳离子脂质体的能力和途径与最终的转染效率有一定的联系,而不同细胞株的摄取机制也存在差异。内吞抑制剂氯丙嗪(特异性抑制网格蛋白介导的内吞)作用A549细胞后,能够抑制聚阳离子脂质体的摄取和转染(大于97%),激光扫描共聚焦显微镜观察,FAM标记的ODN集中于细胞周围,PCLs-D/ODN复合物尤为明显,说明A549细胞摄取聚阳离子脂质体以网格蛋白介导的内吞途径占主导。MCF-7细胞的摄取方式相对复杂,除了非网格蛋白介导的内吞途径外还存在一些非能量依赖的内化方式。细胞摄取动力学研究表明,A549细胞对游离ODN、PCLs-S/ODN复合物和PCLs-D/ODN复合物的摄取在4 h后趋于稳态,PCLs-S和PCLs-D能够分别提高ODN的细胞摄取速度2.20倍和5.45倍,此外PCLs-D还能降低细胞对ODN的消除,增加ODN在胞内的滞留时间。
     基于聚阳离子脂质体理化性质和转染能力的研究,本课题以hTERT为靶点的ASODN为治疗基因,比较了传统阳离子脂质体与聚阳离子脂质体的体外细胞药效学。CLs能够显著增加ASODN的肿瘤细胞抑制作用,ASODN经CLs介导后IC_(50)从153.9μmol/L下降至1.28μmol/L。CLs还能提高ASODN在胞内的稳定性,实现了一次给药后120 h内持续抑制肿瘤细胞的生长。PCLs同样能够提高ASODN的细胞抑制作用,而且细胞毒性更小,更有利于体内给药研究。
     质粒DNA进入细胞核是限制基因转染的关键步骤之一,在成功解决载体内体逃逸之后,本课题又对PCLs-D进行了修饰,通过加入鱼精蛋白增加DNA的入核能力,构建聚阳离子脂质体-鱼精蛋白-DNA复合载体。采用“Pre-mixed”和“Post-mixed”两种方法制备的复合载体均显著提高了质粒DNA的转染效率,分别是PCLs-D/DNA复合物转染能力的85倍和12倍,而鱼精蛋白-DNA纳米粒没有转染能力;其他无细胞核靶向能力的阳离子聚合物如壳聚糖和PEI 25k经同样方法制备得到的复合载体没有表现出与鱼精蛋白相同的效果,说明鱼精蛋白的细胞核靶向能力对复合载体的转染起了很大的作用,而这一促进作用需要内体逃逸能力为前提条件。激光扫描共聚焦显微术也验证了复合载体传递的基因在细胞内的核靶向能力。鱼精蛋白不仅能增加质粒DNA进入细胞核的数量,经超声破坏实验显示,鱼精蛋白与DNA形成的纳米结构能够很好地保护质粒DNA的完整性,使质粒DNA在细胞内具有长时间转染能力,细胞转染72 h后仍有较高水平的基因表达。
     经过一系列的体外研究,本课题最后选用IL-12质粒为治疗基因,考察了PCLs-D及其复合载体瘤内直接注射后对荷瘤小鼠的抑瘤效果。结果发现,实验浓度裸IL-12质粒没有抗肿瘤效果,且外周血清中IFN-γ水平较低。经两种载体介导后,均表现出对肿瘤生长的抑制作用,IFN-γ水平也进一步提高。IL-12质粒为5μg时,复合载体组的肿瘤抑制率达到65.8%,为PCLs-D组的两倍。通过PCLs-D和复合载体介导IL-12质粒治疗小鼠腹水肿瘤,在获得高效抑制率的同时也降低了体内直接应用重组IL-12蛋白所带来的副作用。本研究的结果为合理设计非病毒基因载体提供了新方法,也为进一步的体内外研究和应用奠定了一定的基础。
Gene therapy provides great opportunities for treating diseases from genetic disorders, infections and cancer.The development of efficient and safe gene transfer systems could be one of the most important factors for successful gene therapy.This study constructed a novel non-vrial gene delivery vector,polycation liposomes(PCLs),which combined the advantage of two widely used gene delivery systems,cationic polymers and cationic lipids.The character of PCLs,cytotoxicity,cellular uptake and transfection efficiency in vitro were studied.Then the mechanism of PCLs intemalization,kinetics of cellular uptake,intraceular distribution and the tumor cells inhibition by telomerase inhibitor transferred by PCLs were also investigated.Furthermore,we designed combined vectors,PCLs/protamine/DNA complexes,for increasing transfection efficiency,and then the tumor growth inhibition of PCLs-D/pCMV-IL-12 complexes and PCLs-D/protamine/pCMV-IL-12 complexes were studied.
     In this work,the compound PEI 800-Chol was synthesized using PEI with low molecular weight and Cholesteryl chloroformate.The NMR and IR results indicated that cholesterol was covalently conjugated to the backbone of PEI.PEI 800-Chol was a amphiphilic compound with hydrophilic part PEI 800 and hydrophobic Chol.The apparent CMC of PEI 800-Chol was 0.1012 mg/ml,determined with a fluorescence probe technique using pyrene,which was very useful for PEI 800-Chol to modified the surface of liposomes.Chol part anchor to bilayer of liposomes and PEI 800 part bring the liposomes positive charge.
     PCLs-S(SPL,Chol and PEI 800-Chol)and PCLs-D(DOPE and PEI 800-Chol)were prepared using film hydration method.The mean particle size of PCLs was 133 nm and the zeta potential was 50.1±2.6 mV which resulted to high DNA condensing ability. When the N/P ratio larger than 2,both PCLs-S and PCLs-D could bind most part DNA, while the former was prefer.Little difference was found between the cytotoxicity of PCLs-S and convention liposomes.The IC_(50)value of PCLs-S against HeLa cells was 603.19μg/ml which notablely higher than that of LipofectamineTM 2000(48μg/ml). Positive charge of PCLs-S could improve ODN internalization by HeLa cells and protect from degradation.Due to PEI anchord onto the surface of liposomes, considerable buffering capacity of PCLs-S was observed,which enhanced the endosomal escape ability of liposomes and increased the transfection efficiency.At N/P ratio 10,the highest transfection efficiency of PCLs-S/DNA complexes was obtained, having the equivalent transfection activity with Lipofectamine~(TM)2000.Interestingly,the transfection activity of PCLs-S was not influenced in the presence of serum,even improved GFP expression at highr N/P ratios.Hydrophilic PEI layer might be helpful for remaining stability of complexes in the presence of serum and increasing transfection efficiency.PCLs-D composed of DOPE and PEI 800-Chol has two endosomal escape abilitys,membrane destabilization and protonation.The GFP expression percentage of PCLs-D(68%)was significantly increased in comparison with that of PCLs-S and Lipofectamine~(TM)2000(~44%).
     The mechanism of PCLs internalization,kinetics of cellular uptake and intraceular distribution were investigated.The relationship between internalization pathway and final transfection efficiency might be exited,while different internalization mechanism among various cell lines.When A549 cells were pre-treated by chloropromazine(CPZ), which could specifically inhibit clathin-dependent uptake,the ODN uptake and transfection activity were decreased and fluorescence was concentrated on cell membrane comparing with that CPZ non-treatd determined by laser scanning confocal microscope.The result indicated that the dominance internalization of PCLs in A549 cells was clathin-dependent uptake,while in MCF-7 cells the mean of internalization was more multiple,combining with nonclathin-dependent and nonengery-dependent process.The kinetics of cellular uptake results shown that the cellular uptake of free ODN,PCLs-S/ODN complexes and PCLs-D/ODN complexes trend to saturation after 4 h incubation.PCLs-S and PCLs-D could increase uptake rate by 2.20-fold and 5.45-fold, respectively.Additionally,the eliminate rate of ODN could be decreased by PCLs-D, resulting to longer intracellular retain time.
     According to the study of PCLs character and transfection activity,tumor cells inhibition of ASODN against hTERT mediated by Cls and PCLs was compared.The results indicated that CLs could significantly increase the inhibition effect of ASODN and the IC_(50)value was decreased from 153.9μmol/L to 1.28μmol/L.Cls could also improve the intracellular stability of ASODN,achive continued tumor cell groth inhibition during 120 h.PCLs had the same enhancement effect to ASODN with the lower cytotoxicity,which might be more useful for in vivo study.
     Plasmid DNA nuclear entry was one of the committed steps for gene transfection. This study increased the nuclear targeting ability of PCLs-D by adding protamin and formed PCLs-D/protamine/DNA complexes.The combined vectors prepared using“Pre-mixed”and“Post-mixed”methods could both improve transfection efficiency obviously,85-fold and 12-fold higher than that of PCLs-D/DNA complexes;however, no transfection activity was found when protamine-DNA nanpartilces used.Though using the same method to prepare combined vectors,other cationic polymers without nuclear targeting such as chitosan and PEI 25k,didn't shown the same effect as protamine.These results suggested nuclear targeting ability was very important in non-viral vectors,while endosomal escape was precondition.Laser scanning confocal microscope confirmed ODN could be carried into nucleus by combined vectors.The protamine-DNA nanoparticles could well protect the integrity of plasmid DNA under ultrasonic condition and might retain transcriptional activity.A549 cells transferred by combined vectors kept high transgene expression during 72 h.
     At last,pCMV-IL-12 was used as therapic gene and the tumor growth inhibition of PCLs-D/pCMV-IL-12 complexes and PCLs-D/protamine/pCMV-IL-12 complexes were investigated.No antitumor effect was observed after intratumor injection of naked pCMV-IL-12 at different concentration and the IFN-γlevel in serum was low.When pCMV-IL-12 transferred by two vectors,tumor inhibition effect was appeared and IFN-γlevel increased too.Tumor inhibition rate of the group PCLs-D/protamine/pCMV-IL-12(5μg)reached to 65.8%,doubled than group PCLs-D/pCMV-IL-12(5μg).Intratumor injection of pCMV-IL-12 mediated by PCLs-D and combined vectors for antitumor treating in vivo could obtain high tumor inhibition rate as well as avoid the side effect of recombinate IL-12 protein direct incection.In conclusion,the results of our work provid new methods for reasonable design of non-viral gene vectors and some experimental proofs for further in vitro and in vivo application of non-viral gene delivery systems.
引文
1.Raju TN.The Nobel chronicles.1958:George Wells Beadle(1903-89),Edward Lawrie Tatum(1909-75) and Joshua Lederberg(b 1925).Lancet 1999;353:2082.
    2.Verma IM,Somia N.Gene therapy--promises,problems and prospects.Nature 1997;389:239-242.
    3.Vectors used in gene therapy clinical trials.http://www.wiley.co.uk/genetherapy/clinical/.2008.Ref Type:Electronic Citation
    4.Richardson TP,Murphy WL,Mooney DJ.Polymeric delivery of proteins and plasmid DNA for tissue engineering and gene therapy.Crit Rev.Eukaryot.Gene Expr.2001;11:47-58.
    5.Zhang S,Zhao B,Jiang H,Wang B,Ma B.Cationic lipids and polymers mediated vectors for delivery of siRNA.J.Control Release 2007;123:1-10.
    6.Godbey WT,Mikos AG.Recent progress in gene delivery using non-viral transfer complexes.J.Control Release 2001;72:115-125.
    7.Pun SH,Bellocq NC,Liu Aet al.Cyclodextrin-modified polyethylenimine polymers for gene delivery.Bioconjug.Chem.2004;15:831-840.
    8.Rungsardthong U,Deshpande M,Bailey L et al.Copolymers of amine methacrylate with poly(ethylene glycol)as vectors for gene therapy.J.Control Release 2001;73:359-380.
    9.Lambert G.,Fattal E,Couvreur P.Nanoparticulate systems for the delivery of antisense oligonucleotides.Adv.Drug Deliv.Rev.2001;47:99-112.
    10.Nishikawa M,Huang L.Nonviral vectors in the new millennium:Delivery barriers in gene transfer.Human Gene Therapy 2001;12:861-870.
    11.Lechardeur D,Lukacs GL.Intracellular barriers to non-viral gene transfer.Current Gene Therapy 2002;2:183-194.
    12.Conner SD,Schmid SL.Regulated portals of entry into the cell.Nature 2003;422:37-44.
    13.Rejman J,Bragonzi A,Conese M.Role of clathrin-and caveolae-mediated endocytosis in gene transfer mediated by lipo-and polyplexes.Molecular Therapy 2005;12:468-474.
    14.Belting M,Sandgren S,Wittrup A.Nuclear delivery of macromolecules:barriers and carriers.Adv.Drug Deliv.Rev.2005;57:505-527.
    15.Hafez IM,Maurer N,Cullis PR.On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids.Gene Ther.2001;8:1188-1196.
    16.Sonawane ND,Szoka FC.,Jr.,Verkman AS.Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes.J.Biol.Chem.2003;278:44826-44831.
    17.Capecchi MR.High efficiency transformation by direct microinjection of DNA into cultured mammalian cells.Cell 1980;22:479-488.
    18.Harel A,Forbes DJ.Welcome to the nucleus:CAN I take your coat? Nat.Cell Biol.2001;3:E267-E269.
    19.Sebestyen MG.,Ludtke JJ,Bassik MC et al.DNA vector chemistry:the covalent attachment of signal peptides to plasmid DNA.Nat.Biotechnol.1998;16:80-85.
    20.Sorgi FL,Bhattacharya S,Huang L.Protamine sulfate enhances lipid-mediated gene transfer.Gene Therapy 1997;4:961-968.
    21.Tseng WC.,Tang CH,Fang TY,Su LY.Using disaccharides to enhance in vitro and in vivo transgene expression mediated by a lipid-based gene delivery system.J.Gene Med.2007;9:659-667.
    22.Gao X,Huang L.A novel cationic liposome reagent for efficient transfection of mammalian cells.Biochemical and Biophysical Research Communications 1991;179:280-285.
    23.Vigneron JP,Oudrhiri N,Fauquet M et al.Guanidinium-cholesterol cationic lipids:efficient vectors for the transfection of eukaryotic cells.Proc.Natl.Acad.Sci.U.S.A 1996;93:9682-9686.
    24.Noguchi A,Hirashima N,Nakanishi M.Cationic cholesterol promotes gene transfection using the nuclear localization signal in protamine.Pharmaceutical Research 2002;19:933-938.
    25.Lee M,Rentz J,Han SO,Bull DA,Kim SW.Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium.Gene Ther.2003;10:585-593.
    26.Han S,Mahato RI,Kim SW.Water-soluble lipopolymer for gene delivery.Bioconjug.Chem.2001;12:337-345.
    27.Boussif O,Lezoualc'h F,Zanta MA et al.A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo:polyethylenimine.Proc.Natl.Acad.Sci.U.S.A 1995;92:7297-7301.
    28.Nimesh S,Goyal A,Pawar V et al.Polyethylenimine nanoparticles as efficient transfecting agents for mammalian cells.J.Control Release 2006;110:457-468.
    29.Oku N,Yamazaki Y,Matsuura M et al.A novel non-viral gene transfer system,polycation liposomes.Adv.Drug Deliv.Rev.2001;52:209-218.
    30.Lee M,Rentz J,Han SO,Bull DA,Kim SW.Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium.Gene Ther.2003;10:585-593.
    31.Tang GP,Guo HY,Alexis F et al.Low molecular weight polyethylenimines linked by beta-cyclodextrin for gene transfer into the nervous system.J.Gene Med.2006;8:736-744.
    32.Zhang X,Pan SR,Hu HM et al.Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery:effects of PEG molecular weight and PEGylation degree.J.Biomed.Mater.Res.A 2008;84:795-804.
    33.Lou YL,Peng YS,Chen BH,Wang LF,Leong KW.Poly(ethylene imine)-g-chitosan using EX-810 as a spacer for nonviral gene delivery vectors.J.Biomed.Mater.Res.A2009;88:1058-1068.
    34.Han SO,Mahato RI,Kim SW.Water-soluble lipopolymer for gene delivery.Bioconjugate Chemistry 2001;12:337-345.
    35.Shim WS,Kim SW,Choi EK et al.Novel pH sensitive block copolymer micelles for solvent free drug loading.Macromolecular Bioscience 2006;6:179-186.
    36.Ray GB,Chakraborty I,Moulik SR Pyrene absorption can be a convenient method for probing critical micellar concentration(cmc)and indexing micellar polarity.Journal of Colloid and Interface Science 2006;294:248-254.
    37.Yamazaki Y,Nango M,Matsuura M et al.Polycation liposomes,a novel nonviral gene transfer system,constructed from cetylated polyethylenimine.Gene Therapy 2000;7:1148-1155.
    38.El-Aneed A.An overview of current delivery systems in cancer gene therapy.Journal of Controlled Release 2004;94:1-14.
    39.Harashima H,Shinohara Y,Kiwada H.Intracellular control of gene trafficking using liposomes as drug carriers.European Journal of Pharmaceutical Sciences 2001;13:85-89.
    40.Zhang SB,Xu YM,Wang B et al.Cationic compounds used in lipoplexes and polypi exes for gene delivery.Journal of Controlled Release 2004;100:165-180.
    41.Chen JL,Wang H,Gao JQ,Chen HL,Liang WQ.Liposomes modified with polycation used for gene delivery:Preparation,characterization and transfection in vitro.International Journal of Pharmaceutics 2007;343:255-261.
    42.Skehan P,Storeng R,Scudiero D et al.New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening.Journal of the National Cancer Institute 1990;82:1107-1112.
    43.Akinc A,Thomas M,Klibanov AM,Langer R.Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis.Journal of Gene Medicine 2005;7:657-663.
    44.Wang DA,Narang AS,Kotb M et al.Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery.Biomacromolecules 2002;3:1197-1207.
    45.Lungwitz U,Breunig M,Blunk T,Gopferich A.Polyethylenimine-based non-viral gene delivery systems.European Journal of Pharmaceutics and Biopharmaceutics 2005;60:247-266.
    46.Bertschinger M,Backliwal G.,Schertenleib A et al.Disassembly of polyethylenimine-DNA particles in vitro:Implications for polyethylenimine-mediated DNA delivery.Journal of Controlled Release 2006;116:96-104.
    47.Kubota T,Takahara T,Nagata M et al.Colorimetric Chemosensitivity Testing Using Sulforhodamine-B.Journal of Surgical Oncology 1993;52:83-88.
    48.Papazisis KT,Geromichalos GD,Dimitriadis KA,Kortsaris AH.Optimization of the sulforhodamine B colorimetric assay.Journal of Immunological Methods 1997;208:151-158.
    49.Peng Q,Zhong ZL,Zhuo RX.Disulfide cross-linked polyethylenimines(PEI)prepared via thiolation of low molecular weight PEI as highly efficient gene vectors.Bioconjugate Chemistry 2008;19:499-506.
    50.De Smedt SC.,Remaut K,Lucas B et al.Studying biophysical barriers to DNA delivery by advanced light microscopy.Advanced Drug Delivery Reviews 2005;57:191-210.
    51.Nicolazzi C.,Garinot M,Mignet N,Scherman D,Bessodes M.Cationic lipids for transfection.Current Medicinal Chemistry 2003;10:1263-1277.
    52.De Smedt SC.,Demeester J,Hennink WE.Cationic polymer based gene delivery systems.Pharmaceutical Research 2000;17:113-126.
    53.Gao X,Huang L.Potentiation of cationic liposome-mediated gene delivery by polycations.Biochemistry 1996;35:1027-1036.
    54.Garcia L,Bunuales M,Duzgunes N,de Ilarduya CT.Serum-resistant lipopolyplexes for gene delivery to liver tumour cells.European Journal of Pharmaceutics and Biopharmaceutics 2007;67:58-66.
    55.Singh RS,Gonxalves C.,Sandrin P et al.On the Gene Delivery Efficacies of pH-Sensitive Cationic Lipids via Endosomal Protonation:A Chemical Biology Investigation.Chemistry & Biology 2004;11:883.
    56.Pack DW,Hoffman AS,Pun S,Stayton PS.Design and development of polymers for gene delivery.Nature Reviews Drug Discovery 2005;4:581-593.
    57.Almofti MR,Harashima H,Shinohara Y et al.Cationic liposome-mediated gene delivery:Biophysical study and mechanism of internalization.Archives of Biochemistry and Biophysics 2003;410:246-253.
    58.Clark PR,Hersh EM.Cationic lipid-mediated gene transfer:Current concepts.Current Opinion in Molecular Therapeutics 1999;1:158-176.
    59.Rejman J,Oberle V,Zuhorn IS,Hoekstra D.Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis.Biochemical Journal 2004;377:159-169.
    60.Douglas KL,Piccirillo CA,Tabrizian M.Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors.Eur.J.Pharm.Biopharm.2008;68:676-687.
    61.Weigel PH,Oka J A.Temperature-Dependence of Endocytosis Mediated by the Asialoglycoprotein Receptor in Isolated Rat Hepatocytes-Evidence for 2 Potentially Rate-Limiting Steps.Journal of Biological Chemistry 1981;256:2615-2617.
    62.Dastan T,Turan K.In vitro characterization and delivery of chitosan-DNA microparticles into mammalian cells.Journal of Pharmacy and Pharmaceutical Sciences 2004;7:205-214.
    63.Kim NW,Piatyszek MA,Prowse KR et al.Specific Association of Human Telomerase Activity with Immortal Cells and Cancer.Science 1994;266:2011-2015.
    64.Yang YH,Chen YH,Zhang CY,Huang H,Weissman SM.Nucleolar localization of hTERT protein is associated with telomerase function.Experimental Cell Research 2002;277:201-209.
    65.Meeker AK,De Marzo AM.Recent advances in telomere biology:implications for human cancer.Current Opinion in Oncology 2004;16:32-38.
    66.Pirollo KF,Rait A,Sleer LS,Chang EH.Antisense therapeutics:from theory to clinical practice.Pharmacology & Therapeutics 2003;99:55-77.
    67.Gao X,Huang L.A novel cationic liposome reagent for efficient transfection of mammalian cells.Biochemical and Biophysical Research Communications 1991;179:280-285.
    68.White LK,Wright WE,Shay JW.Telomerase inhibitors.Trends in Biotechnology 2001;19:114-120.
    69.Kraemer K,Fuessel S,Schmidt U et al.Antisense-mediated hTERT inhibition specifically reduces the growth of human bladder cancer cells.Clinical Cancer Research 2003;9:3794-3800.
    70.Lechardeur D,Verkman AS,Lukacs GL.Intracellular routing of plasmid DNA during non-viral gene transfer.Advanced Drug Delivery Reviews 2005;57:755-767.
    71.Zabner J,Fasbender AJ,Moninger T,Poellinger KA,Welsh MJ.Cellular and Molecular Barriers to Gene-Transfer by A Cationic Lipid.Journal of Biological Chemistry 1995;270:18997-19007.
    72.Luhmann T,Rimann M,Bitterman AG.,Hall H.Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles.Bioconjugate Chemistry 2008;19:1907-1916.
    73.Xu ZH,Gu WW,Chen LL et al.A Smart Nanoassembly Consisting of Acid-Labile Vinyl Ether PEG-DOPE and Protamine for Gene Delivery:Preparation and in Vitro Transfection.Biomacromolecules 2008;9:3119-3126.
    74.Meistrich ML,Mohapatra B,Shirley CR,Zhao M.Roles of transition nuclear proteins in spermiogenesis.Chromosoma 2003;111:483-488.
    75.Reynolds F,Weissleder R,Josephson L.Protamine as an efficient membrane-translocating peptide.Bioconjugate Chemistry 2005;16:1240-1245.
    76.Ye JS,Wang AH,Liu CX,Chen ZJ,Zhang N.Anionic solid lipid nanoparticles supported on protamine/DNA complexes.Nanotechnology 2008;19:
    77.Warrant RW,Kim SH.Alpha-Helix Double Helix Interaction Shown in Structure of A Protamine-Transfer-Rna Complex and A Nucleoprotamine Model.Nature 1978;271:130-135.
    78.Werth S,Urban-Klein B,Dai L et al.A low molecular weight fraction of polyethylenimine(PEI)displays increased transfection efficiency of DNA and siRNAin fresh or lyophilized complexes.J.Control Release 2006;112:257-270.
    79.Douglas KL,Piccirillo CA,Tabrizian M.Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors.Eur.J.Pharm.Biopharm.2008;68:676-687.
    80.Radler JO,Koltover I,Salditt T,Safinya CR.Structure of DNA-cationic liposome complexes:DNA intercalation in multilamellar membranes in distinct interhelical packing regimes.Science 1997;275:810-814.
    81.Matsuura M,Yamazaki Y,Sugiyama M et al.Polycation liposome-mediated gene transfer in vivo.Biochimica et Biophysica Acta-Biomembranes 2003;1612:136-143.
    82.Junghans M,Loitsch SM,Steiniger SCJ,Kreuter J,Zimmer A.Cationic lipid-protamine-DNA(LPD)complexes for delivery of antisense c-myc oligonucleotides.European Journal of Pharmaceutics and Biopharmaceutics 2005;60:287-294.
    83.Li S,Huang L.Nonviral gene therapy:promises and challenges.Gene Therapy 2000;7:31-34.
    84.Li S,Huang L.In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA(LPD)complexes.Gene Therapy 1997;4:891-900.
    85.Gately MK,Renzetti LM,Magram J et al.The interleukin-12/interleukin-12-receptor system:Role in normal and pathologic immune responses.Annual Review of Immunology 1998;16:495-521.
    86.Trinchieri G.,Scott P.Interleukin-12:Basic principles and clinical applications.Redirection of Thl and Th2 Responses 1999;238:57-78.
    87.Albini A,Fassina G.,Nicolo M et al.Inhibition of a vascular ocular tumor growth by IL-12 gene transfer.Clinical & Experimental Metastasis 2007;24:485-493.
    88.Diez S,Navarro G.,de ILarduya CT.In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma.Journal of Gene Medicine 2009;11:38-45.
    89.Shi FS,Rakhmilevich AL,Heise CP et al.Intratumoral injection of interleukin-12 plasmid DNA,either naked or in complex with cationic lipid,results in similar tumor regression in a murine model.Molecular Cancer Therapeutics 2002;1:949-957.
    90.Iwasaki Y,Ueda M,Yamada T et al.Gene therapy of liver tumors with human liver-specific nanoparticles.Cancer Gene Therapy 2007;14:74-81.
    91.Egilmez NK,Cuenca R,Yokota SJ,Sorgi F,Bankert RB.In vivo cytokine gene therapy of human tumor xenografts in SCID mice by liposome-mediated DNA delivery.Gene Therapy 1996;3:607-614.
    92.Kawakami S,Higuchi Y,Hashida M.Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide.Journal of Pharmaceutical Sciences 2008;97:726-745.
    93.Goto T,Nishi T,Kobayashi O et al.Combination electro-gene therapy using herpes virus thymidine kinase and interleukin-12 expression plasmids is highly efficient against murine carcinomas in vivo.Molecular Therapy 2004;10:929-937.
    94.Rakhmilevich AL,Hooper AT,Hicklin DJ,Sondel PM.Treatment of experimental breast cancer using interleukin-12 gene therapy combined with anti-vascular endothelial growth factor receptor-2 antibody.Molecular Cancer Therapeutics 2004;3:969-976.
    95.Ehtesham M,Kabos P,Kabosova A et al.The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma.Cancer Research 2002;62:5657-5663.
    1.Park TG.,Jeong JH,Kim SW.Current status of polymeric gene delivery systems.Adv.Drug Deliv.Rev.2006;58:467-486.
    2.Boussif O,Lezoualc'h F,Zanta MA et al.A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo:polyethylenimine.Proc.Natl.Acad.Sci.U.S.A 1995;92:7297-7301.
    3.Godbey WT,Wu KK,Mikos AG Poly(ethylenimine)and its role in gene delivery.J.Control Release 1999;60:149-160.
    4.Huh SH,Do HJ,Lim HY et al.Optimization of 25 kDa linear polyethylenimine for efficient gene delivery.Biologicals 2007;35:165-171.
    5.Lin C.,Zhong Z,Lok MC et al.Linear poly(amido amine)s with secondary and tertiary amino groups and variable amounts of disulfide linkages:synthesis and in vitro gene transfer properties.J.Control Release 2006;116:130-137.
    6.Kircheis R,Wightman L,Wagner E.Design and gene delivery activity of modified polyethylenimines.Adv.Drug Deliv.Rev.2001;53:341-358.
    7.Kurosaki T,Kitahara T,Fumoto S et al.Ternary complexes of pDNA,polyethylenimine,and gamma-polyglutamic acid for gene delivery systems.Biomaterials 2009;30:2846-2853.
    8.Qtaishat M,Rana D,Khayet M,Matsuura T.Preparation and characterization of novel hydrophobic/hydrophilic polyetherimide composite membranes for desalination by direct contact membrane distillation.Journal of Membrane Science 2009;327:264-273.
    9.Moore NM,Sheppard CL,Sakiyama-Elbert SE.Characterization of a multifunctional PEG-based gene delivery system containing nuclear localization signals and endosomal escape peptides.Acta Biomaterialia 2009;5:854-864.
    10.Petersen H,Fechner PM,Martin AL et al.Polyethylenimine-graft-poly(ethylene glycol)copolymers:influence of copolymer block structure on DNA complexation and biological activities as gene delivery system.Bioconjug.Chem.2002;13:845-854.
    11.Lee H,Jeong JH,Park TG A new gene delivery formulation of polyethylenimine/DNA complexes coated with PEG conjugated fusogenic peptide.J.Control Release 2001;76:183-192.
    12.Mishra S,Webster P,Davis ME.PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles.Eur.J.Cell Biol.2004;83:97-111.
    13.Shi L,Tang GP,Gao SJ et al.Repeated intrathecal administration of plasmid DNA complexed with polyethylene glycol-grafted polyethylenimine led to prolonged transgene expression in the spinal cord.Gene Ther. 2003;10:1179-1188.
    14.Cheng H,Zhu JL,Zeng X et al.Targeted Gene Delivery Mediated by Folate-polyethylenimine-block-poly(ethylene glycol)with Receptor Selectivity.Bioconjugate Chemistry 2009;20:481-487.
    15.Kichler A,Chillon M,Leborgne C.,Danos O,Frisch B.Intranasal gene delivery with a polyethylenimine-PEG conjugate.J.Control Release 2002;81:379-388.
    16.Roques C.,Fattal E,Fromes Y.Comparison of toxicity and transfection efficiency of amphiphilic block copolymers and polycationic polymers in striated muscles.Journal of Gene Medicine 2009;11:240-249.
    17.Kabanov AV,Batrakova EV,Sriadibhatla S et al.Polymer genomics:shifting the gene and drug delivery paradigms.J.Control Release 2005;101:259-271.
    18.varez-Lorenzo C.,Barreiro-Iglesias R,Concheiro A et al.Biophysical characterization of complexation of DNA with block copolymers of poly(2-dimethylaminoethyl)methacrylate,poly(ethylene oxide),and poly(propylene oxide).Langmuir 2005;21:5142-5148.
    19.Ochietti B,Guerin N,Vinogradov SV et al.Altered organ accumulation of oligonucleotides using polyethyleneimine grafted with poly(ethylene oxide)or pluronic as carriers.Journal ofDrug Targeting 2002;10:113-121.
    20.Bromberg L,Alakhov VY,Hatton TA.Self-assembling Pluronic(R)-modified polycations in gene delivery.Current Opinion in Colloid & Interface Science 2006;11:217-223.
    21.Jiang HL,Kim YK,Arote R et al.Chitosan-graft-polyethylenimine as a gene carrier.Journal of Controlled Release 2007;117:273-280.
    22.Fischer D,Bieber T,Li YX,Elsasser HP,Kissel T.A novel non-viral vector for DNA delivery based on low molecular weight,branched polyethylenimine:Effect of molecular weight on transfection efficiency and cytotoxicity.Pharmaceutical Research 1999;16:1273-1279.
    23.Lou YL,Peng YS,Chen BH,Wang LF,Leong KW.Polyethylene imine)-g-chitosan using EX-810 as a spacer for nonviral gene delivery vectors.Journal of Biomedical Materials Research Part A 2009;8 8 A:105 8-1068.
    24.Patnaik S,Aggarwal A,Nimesh S et al.PEI-alginate nanocomposites as efficient in vitro gene transfection agents.Journal of Controlled Release 2006;114:398-409.
    25.Setty CM,Sahoo SS,Sa B.Alginate-coated alginate-polyethyleneimine beads for prolonged release of furosemide in simulated intestinal fluid.Drug Development and Industrial Pharmacy 2005;31:435-446.
    26.Jiang Q Min SH,Oh EJ,Hahn SK.DNA/PEI/Alginate polyplex as an efficient in vivo gene delivery system.Biotechnology and Bioprocess Engineering 2007;12:684-689.
    27.Jiang,G.,Min,S.H.,Kim,M.N.,Lee,D.C.,Lim,M.J.,and Yeom,Y.I.Alginate/PEI/DN Apolyplexes:a new gene delivery system.41(5),439-445.2006.Ref Type:Generic
    28.Liu Y,Wu DC.,Zhang WD et al.Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA.Angewandte Chemie-International Edition 2005;44:4782-4785.
    29.Kono K,Akiyama H,Takahashi T,Takagishi T,Harada A.Transfection activity of polyamidoamine dendrimers having hydrophobic amino acid residues in the periphery.Bioconjugate Chemistry 2005;16:208-214.
    30.Tian HY,Xiong W,Wei JZ et al.Gene transfection of hyperbranched PEI grafted by hydrophobic amino acid segment PBLG Biomaterials 2007;28:2899-2907.
    31.Swami A,Aggarwal A,Pathak A et al.Imidazolyl-PEI modified nanoparticles for enhanced gene delivery.International Journal of Pharmaceutics 2007;335:180-192.
    32.Neu M,Germershaus O,Mao S et al.Crosslinked nanocarriers based upon poly(ethylene imine)for systemic plasmid delivery:in vitro characterization and in vivo studies in mice.J.Control Release 2007;118:370-380.
    33.Han S,Mahato RI,Kim SW.Water-soluble lipopolymer for gene delivery.Bioconjug.Chem.2001;12:337-345.
    34.Kunath K,von HA,Fischer D et al.Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery:comparison of physicochemical properties,transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine.J.Control Release 2003;89:113-125.
    35.Lee M,Rentz J,Bikram M et al.Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer.Gene Ther.2003;10:1535-1542.
    36.Chen J,Gao XL,Hu KL et al.Galactose-poly(ethylene glycol)-polyethylenimine for improved lung gene transfer.Biochemical and Biophysical Research Communications 2008;375:378-383.
    37.Duchler M,Pengg M,Brunner S et al.Transfection of epithelial cells is enhanced by combined treatment with mannitol and polyethyleneglycol.Journal of Gene Medicine 2001;3:115-124.
    38.Ko YT,Bhattacharya R,Bickel U.Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting.Journal of Controlled Release 2009;133:230-237.
    39.Sakae M,Ito T,Yoshihara C et al.Highly efficient in vivo gene transfection by plasmid/PEI complexes coated by anionic PEG derivatives bearing carboxyl groups and RGD peptide.Biomedicine & Pharmacotherapy 2008;62:448-453.
    40.Liang B,He ML,Xiao ZP et al.Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery.Biochemical and Biophysical Research Communications 2008;367:874-880.
    41.Ogris M,Walker G.,Blessing T et al.Tumor-targeted gene therapy:strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes.J.Control Release 2003;91:173-181.
    42.Jin XY,Zhang LX,Lou M,Xie JF.Hepatocyte targeted DNA carrier-the lactosylated polyethyleneimine and transfection in vitro.Chinese J Exp Clin Virol 2001;15:345-348.
    43.Grosse S,Thevenot G.,Aron Y et al.In vivo gene delivery in the mouse lung with lactosylated polyethylenimine,questioning the relevance of in vitro experiments.Journal of Controlled Release 2008;132:105-112.
    44.Kunath K,von Harpe A,Fischer D,Kissel T.Galactose-PEI-DNA complexes for targeted gene delivery:degree of substitution affects complex size and transfection efficiency.Journal of Controlled Release 2003;88:159-172.
    45.Jeong JH,Kim SW,Park TG Molecular design of functional polymers for gene therapy.Progress in Polymer Science 2007;32:1239-1274.
    46.Liu GH,Ye SN,Yang SH.Transferrin-polythylenimine as a tumor-targeted vector for murine interleukin-12 gene transfer to the mouse osteosarcoma cells.Chin J Exp Surg 2006;23:1519-1521.
    47.Bellocq NC,Pun SH,Jensen GS,Davis ME.Transferrin-containing,cyclodextrin polymer-based particles for tumor-targeted gene delivery.Bioconjugate Chemistry 2003;14:1122-1132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700