用户名: 密码: 验证码:
反义RNA抑制番茄DHS基因表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱氧羟腐胺赖氨酸合酶(deoxyhypusine synthase, DHS)在植物、哺乳动物和酵母细胞中普遍存在,参与真核翻译起始因子eIF-5A (eukaryotic initiationfactor-5A)的翻译后活化。DHS负责将亚精胺的丁胺基团转移到eIF-5A前体的第50位保守赖氨酸残基上,产生稀有氨基酸-脱氧羟腐胺赖氨酸(deoxyhypusine),然后通过脱氧羟腐胺赖氨酸羟化酶(deoxyhypusine hydroxylase,DHH)的作用,将外来的丁胺基团羟化,形成羟腐胺赖氨酸(hypusine)。eIF-5A前体经羟腐胺赖氨酸修饰变成有活性的蛋白。eIF-5A是DHS惟一已知底物,是迄今为止惟一发现的含稀有氨基酸羟腐胺赖氨酸残基的蛋白质。植物、哺乳动物和酵母中的研究表明eIF-5A与细胞增殖及衰老关系密切。抑制DHS基因的表达,可以阻止eIF-5A的翻译后活化,从而产生促进细胞增殖,延缓衰老等效应。
     本研究以基因工程模式作物番茄作为试验材料,通过RT-PCR、构建反义表达载体、农杆菌侵染等实验方法,利用反义RNA技术抑制番茄DHS基因的表达,实时荧光定量PCR检测结果表明,DHS基因表达被抑制,而且DHS基因抑制型番茄的叶片叶绿素含量增加,衰老得到延缓。从而为深入研究农作物、药用植物和名贵花卉的衰老延缓以及植物的遗传改良奠定了基础。
Senescence is closely related to biological development and metabolism. On one hand ,the accumulated material in plant leaves that include nitrogen, organic carbon and mineral is broken down and transported to the other parts of growing strongly.On the other hand, the decline of the various functions of plant caused by the senescence limites the production of crops.So the mechanisms of plant senescence and its regulation should be studied and the senescence of plant should be delayed by biotechnology in order to make secondary metabolites to be accumulated, improve the resistance of crop and extend the green period of plant,which will have great significance in agriculture, forestry, horticulture and grass industry.
     DHS (deoxyhypusine synthase) exists in mammalian and plant cells, and even in yeast. It mediates the addition of butylamine derived from spermidine to a highly conserved lysine of inactive eukaryotic initiation factor 5A (eIF-5A), giving rise to the unusual amino acid dexyhypusine. This intermediate form of eIF-5A-containing deoxyhupusine is then acted upon by a second enzyme, DHH(deoxyhypusine hydroxylase), which converts deoxyhypusine to hypusine. eIF-5A is the only known substrate of DHS and the only protein in which the unusual amino acid hypusine has been detected to date. It is apparent from pervious studies with plant, mammalia and yeast that eIF-5A is essential for cell proliferation and apoptosis. Inhibition of DHS and ,as a consequence, inhibition of post-translation activation of eIF-5A may facilitate cell proliferation and delay cell senescence.
     In this paper, we have inhibited the expression of DHS gene by antisense expression, which includes cloning of full-length tomato cDNA encoding DHS obtained by RT-PCR from the tomato (big yellow 188), the construction of the antisense expression vector of DHS gene of the tomato, and agrobacterium infection. Several progress have been obtained:
     1. The amplified fragment of DHS gene has been produced by RT—PCR, and cloned to pMD19-T vector.
     2. Construct the antisense expression vector. Then the amplified fragment was cut by restriction enzymes and inserted in reverse orientation into expression vector pCAMBIA1302,which provide the foundation of DHS suppression in the tomato.
     3. Transport the antisense expression vector of DHS gene to agrobacterium tumefaciens,DHS gene expression inhibited tomato was obtained by agrobacterium infection and tissue culture.
     4. The results of realtime-PCR tests indicate that the expression of DHS gene have been inhibited. The suppression of DHS results in the enhanced growth of transgene tomato and the increase in leaf chlorophyll content. So these works provide the foundation of delay the senescence of crop, green plants and rare flowers. Inhibition of DHS expression may be a new way to modify genetic trait in plants.
引文
[1]陆金春,黄宇烽,张锡然,等.英汉细胞与分子生物学词典[M].上海:第二军医大学出版社,2004:10.
    [2]Ober D, Hartmann T. Deoxyhypusine synthase from tobacco. cDNA isolation, characterization, and bacterial expression of an enzyme with extended substrate specificity[J]. Biol Chem, 1999, 274: 32040-32047.
    [3]Wang T W, Lu L, Wang D, et al. Isolation and characterization of senescence-induced cDNAs encoding deoxyhypusine synthase and eucaryotic translation initiation factor 5A from tomato[J]. Biol Chem, 2001, 276: 17541-17549.
    [4]Park M H, Wolff E C, Folk J E. Hypusine: Its posttranslational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation[J]. BioFactors, 1993, 4(2): 95-104.
    [5]Park M H, Lee Y B, Joe Y A. Hypusine is essential for eukaryotic cell proliferation[J]. Biol Signals, 1997, 6: 115-123.
    [6]Kemper W M, Berry K W, Merrick W C. Purification and proper-ties of rabbit reticulocyte protein synthesis initiation factors M2Bαand M2Bβ[J]. Biol Chem, 1976, 251(18): 5551-5557.
    [7]Caraglia M,Marra M,Giuberti G,et al.The role of eukaryotic initiation factor 5A in the control of cell proliferation and apoptosis[J].Amino Acids,2001,20:92-104.
    [8]Chen K Y,Liu AY. Differences in polyamine metabolism of differentiated and undifferentiated neuroblastoma cells.Metabolic labeling of an18,000-M(r)protein by[14C]putrescine and conversion of putrescine to GABA[J].FEBS lett,1981,134(1):71-74.
    [9]Park M H, Joe Y A, Kang K R. Deoxyhypusine synthase activity is essential for cell viability in yeast Saccharomyces cerevisiae[J]. Biol Chem, 1998, 273: 1677-1683.
    [10]Dorian B, Herbert J, Martin O, et al. Induced gene expression of the hypusine-containing protein eukaryotic initiation factor 5A in activate human T lymphocytes[J]. Science, 1996, 271(5257): 1858-1860.
    [11]Wang T W, Lu L, Zhang C G, et al. Pleiotropic effects of sup-pressing deoxyhypusine synthase expression in Arabidopsis thaliana[J]. Plant Mol Biol, 2003, 52: 1223-1235.
    [12]Young Bok LEE, Young Ae JOE, Edith C,et al.Complex formation between deoxyhypusine synthase and its protein substrate, the eukaryotic translation initiation factor 5A (eIF5A) precursor[J].Biochem, 340: 273-281
    [13]Paul M. J. Clement1, C. Allen Henderson, Zandra A. Jenkins, et al. Identification and characterization of eukaryotic initiation factor 5A-2[J].Eur.Biochem,2003,270: 4254-4263.
    [14]Smit-Mcbride Z. Smit-Mcbride, T.E. Dever, J.W.B. Hershey and W.C. Merrick, Sequence determination and cDNA cloning of eukaryotic initiation factor 4D, the hypusine-containing protein[J]. Biol. Chem.1989. 264: 1578–1583.
    [15]Schnier J, Schwelberger HG, Smit-McBride Z,et al.Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae[J].Mol Cell Biol. 1991 June; 11(6): 3105-3114.
    [16]Joe Y A,Park M H .Structural Features of the eIF-5A Precursor Required for Posttranslational Synthesis of Deoxyhypusine[J].The Journal Of Biological Chemistry ,1994,41:25916-25921.
    [17]Magdolen, V, et al. & Lottspeich, F. The function of the hypusine-containing proteins of yeast and other eukaryotes is well conserved[J]. Mol. Gen. Genet. 1994,244:646-652.
    [18]C.M. Costa-Neto et al.Molecular modeling of the human eukaryotic translation initiation factor 5A (eIF5A) based on spectroscopic and computational analyses [J].Biochemical and Biophysical Research Communications,2006,347:634–640.
    [19]Park M H.The Post-Translational Synthesis of a Polyamine-Derived Amino Acid, Hypusine, in the Eukaryotic Translation Initiation Factor 5A (eIF5A)[J]. J. Biochem,2006,139:161–169 .
    [20]Mehta, K.D., Leung, D., Lefebvre, L., and Smith, M. (1990) The ANB1 locus of Saccharomyces cerevisiae encodes the protein synthesis initiation factor eIF-4D[J]. J. Biol. Chem. 65:8802–8807.
    [21]Koettnitz, K., Wo¨hl, T., Kappel, B., Lottspeich, F., Hauber, J. & Bevec, D. Identification of a newme mber of the human eIF-5A gene family[J]. Gene,1995, 159:283–284.
    [22]Jenkins, Z.A., Haag, P.G. & Johansson, H.E. Human EIF5A2 on chromosome 3q25-q27, is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression [J]. Genomics,2001, 71, 101–109.
    [23]Guan, X.Y., Sham, J.S., Tang, T.C., Fang, Y., Huo, K.K., and Yang, J.M. Isolation of a novel candidate oncogene within a frequently amplified region at 3q26 in ovariancancer[J].Cancer Res,2001,61:3806–3809.
    [24]Clement, P.C., Henderson, C.A., Jenkins, Z.A.,et al. Identification and characterization of eukaryotic initiation factor 5A-2[J]. Eur. J. Biochem,2003,147:4254-4263.
    [25]Guan, X.Y., Fung, J.M., Ma, N.F., et al. Oncogenic role of eIF-5A2 in the development of ovarian cancer[J].Cancer Res,2004, 64:4197–4200.
    [26]Thompson J E, Hopkins M T, Taylor C, et al. Regulation of senescence by eukaryotic translation initiation factor 5A:implications for plant growth and development[J]. Trends in Plant Science,2004,4:174-179
    [27]Tzann-Wei Wang, Lily Lu, Denis Wang,et al.Isolation and Characterization of Senescence-induced cDNAs Encoding Deoxyhypusine Synthase and Eucaryotic Translation Initiation Factor 5A from Tomato[J].THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2001,276(20):17541–17549.
    [28]Benne R. , Hershey JWB. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes[J]. J. Biol. Chem,1978, 253: 3078-3087.
    [29]Benne R, Brown-Luedi ML, Hershey JWB . Purification and characterization of protein synthesis initiation factors eIF-1, eIF-4C, eIF-4D, and eIF-5 from rabbit reticulocytes[J].Journal of Biological Chemistry, 1978,253:3070-3077.
    [30]Hanauske-Abel H M, Slowinska H, Zagulska S, et al. Detection of a sub-set of polysomal mRNAs associated with modulation of hypusine formation at the G1-S boundary Proposal of a role for eIF-5A in onset of DNA replication[J].FEBS Lett ,1995,2 (3):92-98.
    [31]Byers, T.L., Lakanen, J.R., Coward, J.K., and Pegg, A.E. The role of hypusine depletion in cytostasis induced by S-adenosyl-L-methionine decarboxylase inhibition: new evidence provided by 1-methylspermidine and 1,12-dimethylspermine[J]. Biochem.,1994, 303: 363–368.
    [32]Nishimura K, Murozumi K, Shirahata A, et al.Independent roles of eIF5A and polyamines in cell proliferation[J].Biochemical Journal,2005,385:779–785.
    [33]靳宝锋,何昆,胡美茹,等.真核起始因子5A与细胞周期G1-S调控的研究[J].中国实验血液学杂志,Journal ofExperimental Hematology,2003,11(4):325-328.
    [34]Tome ME, Gerner EW . Cellular eukaryotic initiation factor 5A content as a mediator of polyamine effects on growth and apoptosis[J]. Biol Signals,1997a, 6: 150–156.
    [35]Tome ME, Fiser SM, Payne CM, Gerner EW. Excess putrescine accumulation inhibits the formation of modified eukaryotic initiation factor 5A (eIF-5A) and induces apoptosis[J]. Biochem,1997b,328: 847–854.
    [36]Takeuchi K,Nakamura K,Fujimoto M,et al.Heat stress-induced loss of eukaryotic initiation factor 5A(eIF-5A)in a human pancreatic cancer cell line,MIA PaCa-2,analyzed by two-dimensional gel electrophoresis[J].electrophoresis,2002,23(4):662-669.
    [37]Lee Y, Kim H K, Park H E, et al. Effect of N1-guanyl-l,7-diaminoheptane, an inhibitor of deoxyhypusine synthase, on endothelial cell growth,differentiation and apoptosis[J]. Mol Cell Biochem,2002,1 (2):69-76.
    [38]Johnson TS, Knight CR, el-Alaoui S, et al. Transfection of tissue transglutaminase into a highly malignant hamster fibrosarcoma leads to a reduced incidence of primary tumour growth. Oncogene,1994, 9: 2935–2942.
    [39]Nakaoka H, Perez DM, Baek KJ, Das T, et al. Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function[J]. Science,1994,264: 1593–1596.
    [40]Fesus L,Thomazy V.Searching for the function of tissue transglutaminase: its possible involvement in the biochemical pathway of programmed cell death[J]. Adv Exp Med Biol. 1988, 231:119-134.
    [41]Singh US, Li Q, Cerione R. Identification of the eukaryotic initiation factor 5A as a retinoic acid-stimulated cellular binding partner for tissue transglutaminase II[J]. J Biol Chem,1998,255: 3695–3700.
    [42]Beninati S, Gentile V, Caraglia M, Lentini A, Tagliaferri P, Abbruzzese A. Tissue transglutaminase expression affects hypusine metabolism in BALB-C 3T3 cells[J]. FEBS Letters,1998,437: 34–38.
    [43]Caraglia M, Marra M, Giuberti G,et al .The role of eukaryotic initiation factor 5A in the control of cell proliferation and apoptosis[J]. Amino Acids,2001, 20(2):91-104.
    [44]Chen C, Gharib T G, Thomas D G et al. Proteomic analysis of eIF-5A in lung adenocarcinomas[J]. Proteomics, 2003, 3(4):496-504.
    [45]Li A L, Li H Y, Jin B F, et al. A novel eIF5A complex functions as a regulator of p53 and p53-dependent apoptosis[J]. J Biol chem,2004, 279(47):49231-49258.
    [46]Moyle R, Fairbairn D J,Ripi J,et al.Developing pineapple fruit has a small transcriptome dominated by metallothionein[J].Journal of experimental Botany ,2005,409:101-112.
    [47]Wang T W, Lu L, Zhang C G, et al. Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana[J]. Plant Mol Bio1,2003,6:1223-1235.
    [48]Xu A, Jao D L, Chen K Y. Identification of mRNA that binds to eukaryotic initiation 5A by affinity co-purification and differential display[J] .Biochem J,2004,84(3):585-590.
    [49]Thompson J E, Hpokins M T, Taylor C, et al. Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development[J]. Trends Plant Sci, 2004, 9(4):174-179.
    [50]Jin, B.F. et al. Proteomic analysis of ubiquitin–proteasome effects: insight into the function of eukaryotic tor 5A[J].Oncogene,2003,22: 4819–4830.
    [51]Ruhl M, Himmelspach M, Bahr GM, et al. Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating traps-activation[J]. J Cell Biol., 1993, 123(6):1308-1320.
    [52]Elfgang C, Rosorius O, Hofer L, et a1. Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals[J]. Proc. Natl. Acad. Sci. U. S. A., 1999, 96: 6229-6234.
    [53]Bevec D,Jaksche H,Oft M,et al.Inhibition of HIV-1 replication in lymphocytes by mutants of the Rev cofactor EiF-5A[J].J Cell Biol,1993,271(5257):1858-1860.
    [54]Hofmann W, Reichart B, Ewald A, et al. Cofactor requirements for nuclear export of Rev response element (RRE)-and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin[J]. J. Cell Biol., 2001, 152: 895-910.
    [55]Liu Y P, Nemeroff M, Yan Y P, et al.Interaction of eukaryotic initiation factor 5A with the human immunodeficiency virus type 1 Rev response element RNA and U6 snRNA requires deoxyhypusine or hypusine modification[J].Biol Signals,1997,3:166-174.
    [56]Zuk D, Jacobson A. A single amino acid substitution in yeast eIF-SA results in mRNA stabilization[J]. EMBO J,1998, 17 (10):2914-2925.
    [57]Valentini S R, Casolari J M, Oliveira C C, et al.Genetic interactions of yeast eukaryotic translation initiation factor 5A (eIF5A) reveal connections to poly(A)-binding protein and protein kinase C signaling[J]. Genetics,2002,160(2):393-405.
    [58] Xu A, Jao D L, Chen K Y. Identification of mRNA that binds to eukaryotic initiation 5A by affinity co purification and differential display[J].Biochem J,2004,3 84:585-590.
    [59]Rosorius O, Reichart B, Kratzer F, et al. Nuclear pore localization and nucleocytoplasmic transport of e1F-5A: evidence for direct interaction with the export receptor CRM1[J].J. Cell Sci., 1999, 112:2369-2380.
    [60]Shi X P, Yn K C, Waxman L. Effects of inhibitors of RNA and protein synthesis on the subcellular distribution of the eukaryotic translation initiation factor, eIF-5A, and the HIV 1 Rev protein[J]. Biol Signals,1997, 6(3):143-149.
    [61]何昆,周涛,靳宝锋,等.eIF-5A的亚细胞定位研究.军事医学科学院院刊,2003,27: 330-333.
    [62]Xu A G,Chen K Y. Hypusine is required for a sequence-specific interaction of eukaryotic initiation factor 5A with postsystematic evolution of ligands by exponential enrichment RNA[J].Biological Cheznistry,2001, 4: 2555-2561.
    [63]Liu Y P, Nemeroff M, Yan Y P, et al.Interaction of eukaryotic initiation factor 5A with the human immunodeficiency virus type 1 Rev response element RNA and U6 snRNA requires deoxyhypusine or hypusine modification[J].Biol Signals,1997,3:166-174.
    [64]Peat T S, Newman J, Waldo GS ,et al.Structure of translation initiation factor 5A from Pyrobaculum aerophilum at 1.75 resolution[J]. Structure. 1998,6(9):1207–1214.
    [65]Park, J.H., Wolff, E.C., Folk, J.E., and Park, M.H. (2003)Reversal of the deoxyhypusine synthesis reaction. Generation of spermidine or homospermidine from deoxyhypusine by deoxyhypusine synthase[J]. J. Biol. Chem. 278, 32683–32691.
    [66]Umland T C, Wolff E C, Park M H, et al. A new crystal structure of deoxyhypusine synthase reveals the configuration of the active enzyme and of an enzyme NAD inhibitor ternary complex[J]. J Biol Chem 2004;279:28697–28705.
    [67]Ober D, Harms R, Witte L, Hartmann T. Molecular evolution by change of function. Alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein[J].J Biol Chem 2003,278:12805–12812.
    [68]Wolff E C,Kang K R,Kim Y S,et al.Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification[J].Amino Acids. 2007,8,33(2): 341–350.
    [69]Lee CH, Um PY, Park MH. Structure-function studies of human deoxyhypusine synthase: identification of amino acid residues critical for the binding of spermidine and NAD[J]. Biochem J,2001,355:841–849.
    [70]Jakus, J., Wolff, E.C., Park, M.H., and Folk, J.E. Features of the spermidine-binding site of deoxyhypusine synthase as derived from inhibition studies. Effective inhibition by bis- and mono- guanylated diamines and polyamines[J].J.Biol.Chem.1993,268: 13151–13159.
    [71]Park, M.H., Wolff, E.C., Lee, Y.B., and Folk, J.E. Antiproliferative effects of inhibitors of deoxyhypusine synthase:inhibition of growth of Chinese hamster ovary cells by guanyl diamines[J]. J. Biol. Chem,1994,269, 27827–27832.
    [72]Lee, Y.B. and Folk, J.E. Branched-chain and unsaturated 1,7-diaminoheptane derivatives as deoxyhypusine synthase inhibitors. Bioorg[J]. Med. Chem,1998,6:253–270.
    [73]王宏芝,马荣才,李瑞芬,等.病毒诱导的烟草DHS基因的沉默.科学通报,2005,50 (21):2359-2364.
    [74]Wang T W, Zhang C G, Wu W, et al. Antisense suppression of deoxyhypusine synthase in delays fruit softening and alters growth and development. Plant Physio1,2005 3:1372-1382.
    [75]陈章良.植物基因工程研究[M],北京:北京大学出版社,1992:153-160.
    [76]Zamecnik P C, Stephenson M L: Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide[J].Proc Natl Acad Sci USA 1978, 75:280-284.
    [77]Li Kim Lee, and Charles M Roth. Antisense technology in molecular and cellular bioengineering[J]. Current Opinion in Biotechnology 2003,14:505–511
    [78]3Dias N, Stein CA: Antisense oligonucleotides: basic concepts and mechanisms[J]. Mol Cancer Ther,2002, 1:347-355.
    [79]Sohail M: Antisense technology: inaccessibility and nonspecificity[J].Drug Discov Today,2001, 6:1260-1261.
    [80]Kurreck J, Wyszko E, Gillen C, Erdmann VA: Design of antisense oligonucleotides stabilized by locked nucleic acids[J]. Nucleic Acids Res,2002, 30:1911-1918.
    [81]Roth CM, Yarmush ML: Nucleic acid biotechnology[J]. Annu Rev Biomed Eng,1999, 1:265-297.
    [82]Song LY, Ahkong QF, Rong Q, Wang Z, Ansell S, Hope M J, Mui B.Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes[J]. Biochim Biophys Acta,2002, 1558:1-13.
    [83]Gonzalez Ferreiro M, Tillman LG, Hardee G, Bodmeier R: Alginate/poly-L-lysine microparticles for the intestinal delivery of antisense oligonucleotides[J]. Pharm Res,2002, 19:755-764.
    [84]Cohen-Sacks H, Najajreh Y, Tchaikovski V, Gao G, Elazer V, Dahan R, Gati I, Kmaan M, Waltenberger J, Golomb G: Novel PDGFbR antisense encapsulated in polymeric nanospheres for the treatment of restenosis[J]. Gene Ther,2002, 9:1607-1616.
    [85]Yoo H, Juliano RL: Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers[J]. Nucleic Acids Res,2000, 28:4225-4231.
    [86]Dias N, Stein CA: Antisense oligonucleotides: basic concepts and mechanisms[J]. Mol Cancer Ther,2002, 1:347-355.
    [87]Li Kim Lee, and Charles M Roth. Antisense technology in molecular and cellular bioengineering[J]. Current Opinion in Biotechnology,2003, 14:505–511.
    [88]Ferrari J, Gunson J, Lofgren J, Krummen L, Warner TG: Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid[J]. Biotechnol Bioeng,1998, 60:589-595.
    [89]Dellambra E, Golisano O, Bondanza S, Siviero E, Lacal P, Molinari M, D’Atri S, De Luca M: Downregulation of 14-3-3r prevents clonal evolution and leads to immortalization of primary human keratinocytes[J]. J Cell Biol,2000, 149:1117-1130.
    [90]Abogadie FC, Bron R, Marsh SJ, Drew LJ, Haley JE, Buckley NJ, Brown DA, Delmas P: Adenovirus-mediated Gaq-proteinantisense transfer in neurons replicates Gaq gene knockout strategies[J]. Neuropharmacol,2002, 42:950-957.
    [91]Sapoli C, Lemieux C, Jorgensen R A. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans[J].Plant Cell,1990,2(4):279-289.
    [92]Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., and Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabdits elegans[J].Nature,1998,391: 806-811.
    [93]Sohail M. Antisense technology[J]. Drug Discovery Today, 2001, 6:1260-1261.
    [94]Paul A.RNA-denpendent RNA polymerases viruses, and RNA silencing[J].Science,2002,296:1270-1273.
    [95]Nelson A,Roth K A,Ohnson J D.Tobacco mosaic virus in fection of transgenic Nicotiana tabacum plantis inhibited by antisense constructs directed at the 5’region of viral RNA[J].Gene,1993;127(2):227-232.
    [96]Yang W D,Wang S Y,Liu W P et al.Inhibition of replication of ric dwarf virus in transgenic rice plant expressing antisense ribozyme gene[J].Virologica sinica,1996(11):277-283.
    [97]Wagner E G,Nordstrom K.Control of replication of Plasmid R1:kinetics of in vitro interaction between the antisense RNA,CopA,and its target,CopT[J].EMBO J,1988,7:3279.
    [98]Visser R G F,Somhorst I,Kuipers G J.et al.Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense con tructs.[J].Mlo Gen Genet,1991,225:289-296.
    [99]Salehuzzaman SNIM,Jacobsen E,Visser R G F.Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassva and its antisense expression inpotato[J].Plant Mol Bio,1993,23:947-962.
    [100]Hofvander P,Persson P T Tallberg A.Genetically engineered modification of potato to from amylode type starch[P].PCt Int Appl,WO9211375,1992:1-19.
    [101]Knutzon D S,Thompson G A,Rsadke S E.Modification of Brassica seed oil by antisense expression of a stearoylacyl carrier protein desaturase gene[J].Proc Natl Acad Sci USA,1992(89):2524-2638.
    [102]Van der Krol A R,Mur L A,de Lange L P,et al. Antisense chalcone synthase genes in petunia:Visualization of variable transgene expression[J]Mol Gen Genet ,1990 ,(220) :204-212.
    [103]Aida R,Yoshida K,Kondo T,et al.Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonoll-4-reductase gene [J]. Plant Sci,2000,160:49-56.
    [104]王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002:95-98.
    [105]Hamilton A J, Lvcett G W and Grierson D. Antisensegene that inhihits synthesis of the homone ethylene intransgenic plant[J]. Nature,1990, 346:2841.
    [106]Oeller P W,Lu M W,Tanlor M L et al. Reversible inhibition of tomato fruit senescence by antlsense RNA[J]. Science,1991;254:437-439.
    [107]Zhang H ,Goodman H M,Janssons,et a1.Antisense inhibition of the photosystem I antenna protein Lhca4 in Arabidopsis thaliana[J].Plant Physio1,1997 ,115:1525-1531.
    [108]Bird C R ,Ray J A ,Fletcher J D , et al.Using antisense RNA to study gene function:inhibition of carotenoid biosynthesis in transgenic tomatoes[J] BioTechnolohy ,1991,(9)635-639.
    [109]Van der Meer ,Stan M E ,Tunen A J V,et al.Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility [J].Plant Cell,1992 ,4:253-262.
    [110]Day A G,Bejarano E R ,Buck K W Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virustomato golden mosaic virus[J].Proc Nat Acad Sci USA,1991,88 :6721-6725.
    [111]魏建华,赵华燕,张景显,等.毛白杨CcoAOMT cDNA片段的克与转基因杨木质素含量的调控[J],植物学报,2001,43(11):1179-1183.
    [112]Smith N A, Singh S P,Wang M B, Stoutjesdijk P A,Green A G, and Waterhouse P M. Total silencing by intron-spliced hairpin RNAs[J]. Nature,2000,407:319-320.
    [113]Schweizer P., Pokorny J., Schulze-Lefert P., and Dudler R. Technical advance. Doubie-stranded RNA knterferes with gene function at the single-cell level in cereais[J].Plant J,2000, 24: 895-903.
    [114]Miki D, Shimamoto K. Simple RNAi vectors for stable and transiet suppression of gene function in rice[J]. Plant Cell Physiol, 2004, 45(4):490-495.
    [115]Guo S, Kempheus K J. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr Kinase that is asymmetrically distributed[J]. Cell, 1995, 81(4): 611-620 .
    [116]Kumagai M.H., Donson J., Della-Cioppa G., Harvey D., Hanley K., and Grill L.K. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA[J]. Proc. Natl Acad. Sci,1995,92: 1679-1683.
    [117]Kjemtrup S., Sampson K.S., Peele C.G., Nguyen L.V., and Conkling M.A. Gene silencing from plant DNA carried by a geminivirus[J]. Plant J,1998, 14: 91-100.
    [118]Ruiz M.T., Voinnet O., and Baulcombe D.C. Initiation and maintenance of virus-induced gene silencing[J]. Plant Cell,1998,10: 937-946.
    [119]Ratcliff F.,Martin-Hernandez A.M., and Baulcombe D.C. Tobacco rattle virus as a vector for analysis of gene function by silencing[J]. Plant J,2001, 25: 237-245.
    [120]Liu Y., Schiff M., Marathe R., and Dinesh-Kumar S.P. 2002b. Tobacco Rarl, EDSI and NPRI/NIMl like genes are required for N-mediated resistance to tobacco mosaic virus[J].Plant J,2002,30: 415-429.
    [121]Liu Y., Schiff M., and Dinesh-Kumar S P. Virus-induced gene silencing in tomato[J]. Plant J,2002a,31: 777-786.
    [122]Holzberg S.,Brosio P., Gross C., and Pogue G.P. Barley stripe mosaic virus-induced gene silencing in a monocot plant[J]. Plant J,2002, 30:315-327
    [123]Gossele V.V,.Fache I.I., Meulewaeter F., Cornellssen M., and Metzlaff M. SVISS-A novel transient gene silencing system for. gene function discovery and validation in tobacco[J]. Plant J,2002,32:859-866.
    [124]马中良,杨怀义,王荣,,田波.利用转hpRNA基因水稻抗水稻矮缩病毒[J].植物学报,2004,46(3):332-336.
    [125]Pinto Y M., Kok R A., and Bandcombe D C. Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYMV transgenes[J]. Nat. Biotechnol.,1999,17 (7): 702-707.
    [126]Waterhouse P.M., Graham M.W., and Wang M.B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA[J]. Proc. Natl. Acad. Sci. USA,1998,95(23): 13959-13964.
    [127]赵明敏,安德荣,黄广华,何祖华,陈江野.瞬时表达靶向TMV外壳蛋白基因的siRNA能干扰病毒侵染[J].植物病理学报,1998,36(1):35-40.
    [128]Coetzer C., Corsini D., Love S., Pavek J., and Tumer N. Control of enzymatic browning in potato (Solanum tuberosumL.) by sense and antisense RNA from tomato polyphenoloxidase[J], J. Agric. Food Chem,2001, 49(2): 652-657.
    [129]曹艳红,章镇,姚泉洪,彭日荷,熊爱生,李贤.苹果多酚氧化酶双链RNA干扰(RNAi)研究[J].实验生物学报,2004,37(6):487-493).
    [130]Jorgensen K., Bak S., Busk P.K., et al.Cassava plants with adepleted cyanogenic glucoside content in leaves and tubers, distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology[J]. Plant Physiol.,2005,139: 363-374.
    [131]Ogita S., Uefuji H., Yamaguchi Y.,et al.Producing decaffeinated coffee plants[J].Nature,2003,423 (6942): 823.
    [132]Segal G., Song R., and Messing J. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene[J]. Genetics,2003, 165(1): 387-397.
    [133]Gupta R., Ting J.T., Sokolov L.N., Johnson S.A., and Luan S. A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis[J]. Plant Cell,2002,14 (10): 2495-2507
    [134]Lee S., Kim J., Han J.J., Han M.J., and An G. Functional analyses of the flowering time gene OsMADS50, the putative suppressor of over expression of CO 1/AGAMOUS- LIKE 20 (SOC1/AGL20) ortholog in rice[J]. Plant J.,2004,38(5): 754-764.
    [135]Liu Y., Schiff M., and Dinesh-Kumar S.P. Virus-induced gene silencing in tomato[J]. Plant J.,2002, 31: 777-786.
    [136]Larry D.Nooden, Juan J.Guiamet and Isaac John.Senescence mechanisms [J].Physiologia Plantarum, 1997,101:746~753.
    [137]Delorme V G R, McCabe P F, Kim D J, Leaver C J. A matrix metaloproteinases gene is expressed at the boundary of senescence and programmed cell death in cucumber[J]. Plant Physiol,2000,123: 917-927
    [138]Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D. The molecular ananlysis of leaf senescence—a genomics approach[J]. Plant Biotech J.,2003, 1 : 3-22
    [139]Pennel R I, Lamb C. Programmed cell death in plants[J]. Plant Cell,1997,9: 1157~1168
    [140]Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D. Themolecular ananlysis of leaf senescence—a genomics approach[J]. Plant Biotech J.,2003,1: 3-22.
    [141]Smart. C M. Gene expression during leaf senescence[J]. New Phytol, 1994,126: 419-448.
    [142]Gan S, Amasino RM. Making sense of senescence: molecular genetic regulation and manipulation of leaf senescence[J]. Plant Physiol,1997,113: 313-319.
    [143]Larry D.Nooden, Juan J.Guiamet and Isaac John.Senescence mechanisms [J] Physiologia Plantarum, 1997,101:746~753.
    [144]顾红雅,瞿礼嘉,明小天,等.植物基因与分子操作[M].北京:北京大学出版社,1995,4:77-81..
    [145]Skrypina Natalia A., Timofeeva Angelica V., Khaspekov George L., et al., Total rna suitable for molecular biology analysis[J], Journal of Biotechnology, 2003, 105: 1-9.
    [146]王关林.植物基因工程原理与技术[M].北京:科学出版社,1998,481-483.
    [147]Cary A.J., Che P and Howell S.H. Developmental events and shoot meristem gene expression patterns during shoot development in Arabidopsis thaliana[J]. Plant,1998, 32: 867-877.
    [148]Leibfried A., To J. P C., Busch W. et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators[J]. Nature,2005,438:1172-1175.
    [149]De Veylder L., Beeckcman T.,Beemster G.T.S.et al. Control of proliferation,endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor[J]. EMBO,2002, 21:1360-1368.
    [150]Werner T., Motyka V, Laucou V et al. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in theregulation of shoot and root meristem activity[J]. Plant Cell,2003,15: 2532-2550.
    [151]Lara M.E.B.,Garcia M.C.G., Fatima T. et al. Extracellular invertase is an essential component of cytokinin- mediated delay of senescence[J]. Plant Cell,2004,16: 1276-1287.
    [152]Zubo Ya.O.,Selivankina S.Yu.,Yamburenko M.V et al. Cytokinins activate transcription of chloroplast genes. Dokl[J]. Biochem. Biophys,2005, 400: 48-51.
    [153]Huang S., Cerny R.E., Qi Y et al. Transgenic studies on the involvement of cytokinin and gibberellin in male development[J]. Plant Physiol,2003, 131:1270-1282.
    [154]Young T.E.,Giesler-Lee J. and Gallie D.R. Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development[J]. Plant ,2004,38: 910-922.
    [155]Lohar D.P.,Schaff J.E.,Laskey J.G. et al. Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses[J]. Plant,2004, 38: 203-214.
    [156]Mahonen A.P, Bishopp A., Hibuchi M. et al. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development[J].Science,2006,311:95-98.
    [157]Riefler M.,Novak O.,Strnad M.and Schmulling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size,germination, root development, and cytokinin metabolism[J]. Plant Cell,2006,18: 40-54.
    [158]Davies P J.Plant Hormones, Physiology, Biochemistry and Molecular Biology. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1995,649–670.
    [159]Pitts R.J.,Cernac A.and Estelle M. Auxin and ethylene promote root hair elonga,:on in Arabidopsis[J]. Plant J.,1998, 16: 553-560.
    [160]Kerk N.M., Jiang K. and Feldman L.J. Auxin metabolism in the root apical menristem[J].Plant Physiol,2000,122: 925-932.
    [161]Chen R.,Guan C.,Boonsirichai K.,Masson PH. Complex physiological and molecular processes underlying root gravitropism[J]. Plant Mol. Biol.,2002,49: 305-317.
    [162] Aloni R, Pradel KS, Ullrich CI. The three-dimensional structure of vascular tissues in Agrobacterium tumefaciens-induced crown galls and in the host stems of Ricinus communis L. Planta,1995,196:597–605
    [163]Jiang K and Feldman L.J. Regulation of root apical meristem development[J]. Annu. Rev Cell Dev Biol.,2005,21:485-509.
    [164]Coenen C.and Lomax T.L. Auxin-cytokinin interactions in higher plants: old problems and new tools[J].Trends Plant Sci.,1997, 2:351-356.
    [165]Chan C C,Chew E Y,Shen D,et al.Expression of stem cells markers in ocular hemangioblastoma associated with von Hippel-Lindau(VHL)disease[J].Mol Vis.,2005,11:697-704.
    [166]Kenneth J Livak.Thomas D Schmittgen Analysis of relative gone expression data using real time quantitative PCR and the 2- Ct method [J]. Methods,2001, 25(4):402-408.
    [167]Bustin S A.Absolute quantification of tnRNA using real-time reverse transcription polymerase chain reaction[J].Journal of Molecular Endocrinology,2000,25:169-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700