用户名: 密码: 验证码:
过程控制操作员生理信号分析及功能状态建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,随着自动控制技术的蓬勃发展,人类逐渐成为自动控制系统的监督者和决策者。相应地,人类操作员拥有了更高的权限并担负了更重的责任。在高安全性要求的自动控制系统中,特别是交通运输(民航、铁路、船运等)和过程工业(核电厂、化工厂等),操作员的失误可能会引起严重的事故。为了避免此类安全事故,研究者们提出了根据操作员功能状态(OFS)调整系统控制策略的方法,即自适应自动控制。通过操作员功能状态估计,可以预测操作员的脆弱或有风险的工作时刻,从而利用自适应辅助系统提醒系统或操作员采取相应措施,避免事故发生。因此,准确的估计操作员功能状态是成功运用自适应自动控制的关键。本文针对操作员功能状态估计问题,首先设计了过程控制实验环境,并采集了单任务多级任务负荷状态下的操作员生理电信号;针对操作员脑电和心电信号的特点,进行了去干扰处理并提取了特征信号,找出了与操作员功能状态显著相关的特征;最后采用智能建模与优化方法,建立了操作员功能状态模型。本文的主要研究成果如下:
     (1)目前对操作员功能状态的研究主要集中于航空、航海、汽车驾驶等应用领域,对过程控制操作员的功能状态研究较少。本文采用密闭舱空气管理系统软件模拟过程控制环境,设计了单一任务类型,任务难度变化的操作员功能状态的研究实验。通过日本光电公司EEG1100型生物电信号采集仪,采集了实验过程中被试的脑电、心电和眼电信号。采用视觉模拟尺度方法,记录了被试的疲劳程度、紧张程度和努力程度等主观脑力负荷评价。而被试任务性能数据由密闭舱空气管理系统软件自动记录。
     (2)脑电信号是反映操作员功能状态变化最重要的生理电信号。脑电信号很容易受到各种噪声和伪迹信号的干扰,其中眼电伪迹的干扰尤为突出。因此,本文提出了一种自动眼电去除方法。首先采用独立成份分析分离原始脑电信号,计算了独立成份的多种特征,并运用模糊c均值识别脑电成份和眼电成份,最终得到了去眼电干扰后的脑电信号。结果表明,该方法能够消除个体差异性,正确去除了每位被试脑电信号中的眼电伪迹,是一种有效的自动眼电伪迹去除方法。
     (3)研究者们对脑电信号的研究主要集中于频域分析,通常计算脑电信号的功率谱,然后采用传统的频域设置划分四个基本节律。但这种频域划分是人为设定的,并不符合基本节律的频率分布情况。因此,本文采用经验模态分解方法,将脑电信号按照不同的时间特征尺度从高频到低频逐渐分离成与基本节律频域相对应的本征模态分量。随后,对本征模态分量进行功率谱分析,计算出本征模态分量的频率和能量特征。最后,定量分析了这些特征与操作员功能状态之间的关系,选取出了反映OFS变化的显著特征。分析结果表明,基于经验模态分解的脑电信号分析方法是行之有效的。
     (4)采用小波包分解方法,对多任务OFS实验中过程控制操作员的心率变异性(HRV)进行分析,研究了操作员HRV的低频、中频、高频能量、中高频能量比和小波包熵等五项特征的变化,分析了这些特征与操作员任务性能评价、主观测量评价以及任务负荷之间的相关性,从而找出了能够反映被试功能状态的HRV特征。研究结果表明,由于个体差异性,不同被试的5项HRV特征中与操作员的主、客观性能评价之间具有显著相关性的特征不同,可针对不同被试选择相应的特征作为描述操作员功能状态的指标。
     (5)为了准确估计操作员功能状态,采用自适应模糊神经网络模型(ANFIS)建立了操作员功能状态模型,并提出了一种交叉粒子群优化算法(PSOC)来优化ANFIS的参数。在PSOC算法中,原种群在每次迭代结束后与一个增加的辅助种群进行交叉操作,以维持原种群的多样性,从而提高了算法的寻优能力,避免了早熟收敛。实验结果表明,基于PSOC-ANFIS的操作员功能状态模型能够较好的描述操作员生理变量与功能状态之间的复杂非线性关系。
     (6)在基本差分进化算法中引入蚁群觅食过程中正反馈的思想,提出了一种控制参数自适应选择的差分进化算法—蚁群搜索差分进化算法(DEACS)。在DEACS算法中,每个个体变异、交叉时的控制参数都是由上一次迭代的寻优性能决定。典型测试函数结果表明,提出的DEACS算法寻优性能优于其它3种方法,其收敛速度更快。将提出的DEACS算法用于OFS模型的参数优化,由仿真结果可知,DEACS能够有效降低算法控制参数的设置对不同被试模型精度的影响,并且所建立的OFS模型能够很好的反映过程操作员的心理负荷,适用于操作员功能状态的实时在线估计。
During the booming development of automation technique in decades, human becomes the monitor and decision maker in the automatic system. Consequently, it brings higher authority and broader ranges of responsibilities to individuals. The operator's performance degradation may be the reason of some serious disasters, particularly in safety-critical applications such as public transportation (aviation, railway, shipping, etc) and manufacturing industries (nuclear and chemical plants). In order to solve the above problems, researchers proposed adaptive automation in which the control tasks can be relocated according to the operator functional state (OFS). The assessment of OFS would help predict the operator's periods of high operational risk. And then the adaptive aiding is applied so as to avoid disasters which are caused by operator performance degradation. Therefore, the accurate assessement of OFS is the key to apply adaptive automation successfully. In the dissertation, the experimental environment of process control is designed, and the psychophysiological measurements of operators under multi-level of task loads are sampled. According to the characteristics of electroencephalogram (EEG) and electrocardiogram (ECG), the author eliminates the artifacts of EEG, extracts EEG and ECG features, and indicates the salience features significantly correlating to OFS. Subsequently, intelligent modeling and optimization methods are used to establish the corresponding OFS models. The main results in this dissertation can be summarized as follows:
     (1) Currently, the operator functional state is studied in the applications cases, such as the aviation, navigation, driving, etc, but rarely in the process control. An Automation-enhanced Cabin Air Management System (AutoCAMS) is used to simulate the process control environment, and the multi-level taskload experiment with single task is designed on this environment. The EEG, ECG and electrooculagram (EOG) signals of the subjects are recorded by EEG 1100. The visual analogue scale method is adopted to measure the subjective evaluations on fatigue, anxiety and effort while the task performance data are automatically recorded by AutoCAMS.
     (2) EEG is the most important psychophysiological signal that reflects the operator functional state. But EEG signal is easily interfered by noises and artifacts, especially by ocular artifact. An automatic ocular artifact suppression method is proposed. Independent component analysis is used to separate the original EEG signals first. Then, five features of independent components are calculated. EEG and ocular artifact components are recognized through fuzzy c-means clustering and finally clean EEG are obtained. The result shows that the method can remove the ocular artifact from EEG signal effectively and is a reliable ocular artifact suppression method.
     (3) The empirical mode decomposition (EMD) which is developed specially for analyzing nonlinear and nonstationary signals is employed for EEG signal analysis. The segmented EEG data are analyzed via EMD. The Welch method is applied to estimate power spectrum density of intrinsic mode functions (IMFs), whose features including peak power, peak frequency, gravity frequency, absolute power and relative power are calculated. Then the correlations between EEG features and OFS are analyzed. Finally, the salience features for each subject are obtained.
     (4) Wavelet packet transform is introduced to analyze the heart rate variability (HRV) of process control operator in the multi-task OFS experiment. Five features, including the energy of low frequency (LF), mid-frequency (MF), high frequency (HF), MF/HF ratio and wavelet packet entropy, are investigated. Through the study of their correlations with the operator's primary task performance, subjective measurement and task load, the HRV features that can be used to assess the operator's mental load are obtained. The results indicate that some of the five features have significant correlations with the operator functional state and can be adopted as important indices for representing OFS.
     (5) In order to estimate and predict OFS, adaptive network based fuzzy inference system (ANFIS) is employed to build up the operator functional state model, whose parameters are optimized by using a proposed particle swarm optimization with crossover (PSOC). In the PSOC algorithm, the original swarm implements the crossover with an introduced auxiliary population after each iteration so as to preserve the diversity of the original swarm. The operation improves the optimizing capability and avoids premature convergence. The empirical results illustrate that PSOC-ANFIS based OFS model can describe the complicated nolinear relationship between the psychophysiological variables and the functional state of operators.
     (6) Based on the idea of positive feedback in the foraging process of ant colony, a novel differential evolution algorithm with ant colony search (DEACS) is proposed, whose control parameters are selected adaptively. When mutation and crossover, these control parameters for each individual are determined according to the optimization performance at the last iteration. The results of typical benchmark functions show that the proposed DEACS algorithm outperforms three other algorithms and converges more rapidly. The DEACS is applied in optimizing the parameters of OFS model. It is indicated by the simulation results that DEACS can reduce the influence of the parameter settings on the model accuracy of different subjects. The OFS model can provide good representation of the mental load and is applicable of realtime online assessment of OFS.
引文
[1]Anthony W. K. Fatigue assessment and performance protection [M]. In:Hockey G. R. J., Gaillard A. W. K., Burov O. (Eds). Operator Functional State:The Assessment and Prediction of Human Performance Degradation in Complex Tasks,. Amsterdam:IOS Press,2003:24-35.
    [2]Byrne E. A., Parasuraman R. Psychophysiology and adaptive automation [J]. Biological Psychology,1996,42:249-268.
    [3]Parasuraman R. Human-computer monitoring [J]. Human Factors,1987,29:695-706.
    [4]Wickens C. D., Hollands J. G. Engineering Psychology and Human Performance [M]. Third ed., Prentice Hall, New Jersey,1999.
    [5]Parasuraman R., Bahri T., Deaton J. E., et al. Theory and design of adaptive automation in aviation systems. Progress Report. No. NAWCADWAR-92033-60. Warminster, PA: Naval Air Warfare Center, Aircraft Division.1992.
    [6]Rouse W. B. Adaptive aiding for human/computer control [J]. Human Factors,1988,30: 431-443.
    [7]Scerbo M. W. Implementing adaptive automation in aviation:the pilot-cockpit team [M]. In:Mouloua M., Parasuraman R. (Eds). Human Performance in Automated Systems: Current Research and Trends, Hillsdale, NJ:Earlbaum,1994.
    [8]Hockey G. R. J. Introduction:operator functional state in the analysis of complex performance [M]. In:Hockey G. R. J., Gaillard A. W. K., Burov O. (Eds). Operator Functional State:The Assessment and Prediction of Human Performance Degradation in Complex Tasks, Amsterdam:IOS Press,2003:3-7.
    [9]Schlegel R. E., Gailard A. W. K. Methods for assessing operator functional state [M]. In: Hockey G. R. J., Gaillard A. W. K., Burov O. (Eds). Operator Functional State:The Assessment and Prediction of Human Performance Degradation in Complex Tasks, Amsterdam:IOS Press,2003:356-362.
    [10]Gailard A. W. K., Kramer A. F. Theoretical and methodological issues in psychophysiological research:Issues and applications [M]. In:Backs R. W., Boucsein W. (Eds). Engineering psychophysiology, Mahwah, NJ:Erlbaum,2000:31-58.
    [11]Sellers E. W., Donchin E. A P300-based brain-computer interface:Initial tests by ALS patients [J]. Clinical Neurophysiology.2006,117(3):538-548.
    [12]Wilson G. F., Fisher F. The use of cardiac and eye blink measures to determine flight segment in F4 crews [J]. Aviation, Space and Environmental Medicine,1991,62(10): 959-961.
    [13]Wilson G. F., Fisher F. Cognitive task classification based upon topographic EEG data [J]. Biological Psychology,1995,40(1-2):239-250.
    [14]Henelius A., Hirvonen K., Holm A., et al. Mental workload classification using heart rate metrics [C]. In:the 31st Annual International Conference of the IEEE EMBS, Minneaplois, USA,2009:1836-1839.
    [15]Gevins A., Smith M. E., Leong H., et al. Monitoring working memory load during computer-based tasks with EEG pattern recognition methods [J]. Human Factors,1998, 40:79-91.
    [16]Allison B. Z., Polich J. Workload assessment of computer gaming using a single stimulus event-related potential paradigm [J]. Biological Psychology,2008,77(3):277-283.
    [17]Schacter D. L. EEG theta waves and psychological phenomena:a review and analysis [J]. Biological Psychology,1977,5(1):47-82.
    [18]Daniel R. S. Alpha and theta EEG in vigilance [J]. Perceptual and Motor Skills,1967,25: 697-703.
    [19]Pennekamp P., Bosel R., Mecklinger A., et al. Differences in EEG-theta for responded and omitted targets in a sustained attention task [J]. Journal of Psychophysiology,1994, 8(2):131-141.
    [20]Makeig S., Inlow M. Lapses in alertness:coherence of fluctuations in performance and EEG spectrum [J]. Electroencephalography & Clinical Neurophysiology,1993,86: 23-35.
    [21]Makeig S., Jung T. Changes in alertness are a principal component of variance in the EEG spectrum [J]. Neuroreport,1995,7:213-216.
    [22]Barcelo F., Gale A., Hall M. Multichannel EEG power reflects information processing and attentional demands during visual orienting [J]. Journal of Psychophysiology,1995, 9:32-44.
    [23]Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance:a review and analysis [J]. Brain Research Reviews,1999,29(2-3): 169-195.
    [24]Harmony T., Fernandez T., Silva J., et al. EEG delta activity:An indicator of attention to internal processing during performance of mental tasks [J]. International Journal of Psychophysiology,1996,24(1-2):161-171.
    [25]Vogel W., Broverman D. M., Klaiber E. L. EEG and mental abilities [J]. Electroencephalography & Clinical Neurophysiology,1968,24:166-175.
    [26]Fernandez T., Harmony T., Rodriguez M., et al. EEG activation patterns during the performance of tasks involving different components of mental calculation [J]. Electroencephalography & Clinical Neurophysiology,1995,94:175-182.
    [27]Ray W. J., Cole H. W. EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes [J]. Science,1985,228:750-752.
    [28]Brookings J. B., Wilson G. F., Swain C. R. Psychophysiological responses to changes in workload during simulated air traffic control [J]. Biological Psychology,1996,42, 361-377.
    [29]Fahrenberg J., Wientjes C. J. E. Recording methods in applied environments [M]. In: Backs R. W., Boucsein W. Engineering Psychology:Issues and Applications, London: Lawrence Erlbaum Associates,2000:111-136.
    [30]Aasman J., Mulder G., Mulder L. J. Operator effort and the measurement of heart-rate variability [J]. Human Factors,1987,29(2):161-170.
    [31]Allen J. J. B., Chambers A. S., Towers D. N. The many metrics of cardiac chronotropy:a pragmatic primer and a brief comparison of metrics [J]. Biological Psychology,2007, 74(2):243-262.
    [32]Sammer G. Heart period variability and respiratory changes associated with physical and mental load:non-linear analysis [J]. Ergonomics,1998,41:746-755.
    [33]Yao Y. J., Chang Y. M., Xie X. P. Heart rate and respiration responses to real traffic pattern flight [J]. Applied Psychophysiology and Biofeedback,2008,33:203-209.
    [34]Wilson G. F. Measurement of operator workload with the neurophysiological workload test battery [J]. Human Mental Workload,1998.
    [35]Hart S. G., Wichens C. Workload assessment and prediction [J].1990.
    [36]Tattersall A. J., Hockey G. R. J. Level of operator control and changes in heart rate variability during simulated flight maintenance [J]. Human Factors,1995,37:682-698.
    [37]Veltman J. A., Gaillard A. W. K. Physiological indices of workload in a simulated flight task [J]. Biological Psychology,1996,42:323-342.
    [38]Fournier L. R., Wilson G. F., Swain C. R. Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks:manipulations of task difficulty and training [J]. International Journal of Psychophysiology,1999,31:129-145.
    [39]李增勇,焦昆,陈铭,等.汽车驾驶员模拟精神负荷与心率变异性的相关性分析[J].北京生物医学工程,2002,3:190-193.
    [40]Brookhuisa K. A., Waard D. Monitoring drivers'mental workload in driving simulators using physiological measures [J]. Accident Analysis and Prevention,2010,42:898-903.
    [41]Wilson G. F., Russell C. A. Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding [J]. Human Factors,2007,49(6): 1005-1018.
    [42]Doughty M. J. Further assessment of gender- and blink patternrelated differences in the spontaneous eyeblink activity in primary gaze in young adult humans [J]. Optometry and Vision Science,2002,79:439-447.
    [43]Kaufman P. L. Adler's physiology of the eye:clinical application [J].2003.
    [44]Recarte M. A., Nunes L. M. Mental workload while driving:effects on visual search, discrimination, and decision making [J]. Journal of Experimental Psychology:Applied, 2003,9(2):119-137.
    [45]Saroj K. L., Ashley C. Driver fatigue:electroencephalography and psychological assessment [J]. Psychophysiology,2002,39(3):313-321.
    [46]Khezri M., Jahed M. Real-time intelligent pattern recognition algorithm for surface EMG signals [J]. Biomedical Engineering Online,2007,6:45.
    [47]Schvaneveldt R. W., Gomez R. L. Reid G. B. Modling mental workload [J].1997.
    [48]Wilson G. F., Fisher F. Cognitive task classification based upon topographic EEG data. Biological Psychology,1995,40:239-250.
    [49]Gevins A., Smith M. E., Leong H., et al. Monitoring working memory load during computer-based tasks with EEG pattern recognition methods. Human Factors,1998,40: 79-91.
    [50]Gevins A., Smith M. E. Detecting transient cognitive impairment with EEG pattern recognition methods. Aviation, Space, and Enviromental Medicine,1999,70: 1018-1024.
    [51]Nikolaev A. R., Ivanitskii G. A., Ivanitskii A. M. Reproducible EEG apha-patterns in psychological task solving. Human Physiology,1998,24:261-268.
    [52]Wilson G. F., Russell C. A. Operator functional state classification using neural networks with combined physiological and performance features [J]. Human Factors and Ergonomics Society Annual Meeting,1999,27:1099-1102.
    [53]Laine T. I., Bauer K. W., Lanning J. W., et al. Selection of input features across subjects for classifying crewmember workload using artificial neural networks [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2002, 32(6):691-704.
    [54]Wilson G. F., Russell C. A. Operator functional state classification using multiple psychophysiological features in an air traffic control task [J]. Human Factors:The Journal of Human Factors and Ergonomics Society Fall,2003,45(3):381-389.
    [55]Wilson G. F., Russell C. A. Real-time assessment of mental workload using psychophysiological measures and artificial neural networks [J]. Human Factors,2003, 45:635-643.
    [56]Wilson G. F., Russell C. A. Psychophysiologically determined adaptive aiding in a simulated UCAV task [M]. In:Vicenzi D. A., Mouloua M., Hancock P. A., Eds. Human Performance, Situation Awareness and Automation:Current Research and Trends, Mahwah, NJ:Erlbaum,2004:200-204.
    [57]Wilson G. F., Russell C. A. Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding [J]. Human Factors,2007,49(6): 1005-1018.
    [58]Hope R. M., Wang Z. H., Wang Z. G., et al. Workload classification across subjects using EEG. In:Proceedings of the Human Factors and Ergonomics Society Annual Meeting,2011,55(1):202-206
    [59]Wu C., Liu Y. Queuing network modeling of a real-time psychophysiological index of mental workload—P300 in event-related potential (ERP) [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans,2008,38(5):1068-1084.
    [60]Zhang J. H. Wang X. Y. Mahfouf M., et al. Fuzzy logic based identification of operator functional states using multiple physiological and performance measures [C]. In:2008 International Conference on BioMedical Engineering and Informatics,2008:570-574.
    [61]Ting C. H., Mahfouf M., Linkens D. A., et al. Real-time adaptive automation for performance enhancement of operators in a human-machine system [C]. In:16th Mediterranean Conference on Control and Automation Congress Centre, Ajaccio, France, 2008:552-557.
    [62]Hockey G. R. J., Wastell D. G., Sauer J. Effects of sleep deprivation and user-interface on complex performance:a multilevel analysis of compensatory control [J]. Human Factors,1998,40:233-253.
    [63]Lorenz B., Parasuraman R. Human operator functional state in automated systems:the role of compensatory control strategies [M]. In:Hockey G. R. J., Gaillard A. W. K., Burov O., (Eds). Operator functional state:the assessment and prediction of human performance degradation in complex tasks, Amsterdam:IOS Press,2003:224-237.
    [64]Manzey D., Bleil M. Bahner-Heyne J. E. AutoCAMS 2.0 manual.2008.
    [65]Hart S. G., Staveland L. E. Development of NASA-TLX (task load index):result of empirical and theoretical research [J]. Advances in Psychology,1988,52:139-183.
    [66]Moroney W. F., Biers D. W., Eggemeier F. T. Some measurement and methodological considerations in the application of subjective workload measurement techniques [J]. International Journal of Aviation Psychology,1995,5(1):87-106.
    [67]Nygren T. E. Psychometric properties of subjective workload measurement techniques: implications for their use in the assessment of perceived mental workload [J]. Human Factors,1991,33(1):17-33.
    [68]Noyes J. M., Bruneau D. P. J. A self-analysis of the NASA-TLX workload measure [J]. Ergonomics,2007,50:514-519.
    [69]Dussault C., Jouanin J. C., Philippe M., et al, EEG and ECG changes during simulator operation reflect mental workload and vigilance [J]. Aviation, Space and Environmental Medicine,2005,76(4):344-351.
    [70]Croft R. J., Barry R. J. Removal of ocular artfifact from the EEG:a review [J]. Clinical Neurophysiology,2000,30:5-19.
    [71]Woestenburg J. C., Verbaten M. N., Slangen J. L. The removal of the eye movement artifact from the EEG by regression analysis in the frequency domain [J]. Biological Psychology,1983,16:127-147.
    [72]Lins O. G., Picton T. W., Berg P., et al. Ocular artifacts in recording EEG and event-related potentials Ⅱ:source dipoles and source components [J]. Brain Topography, 1993,6(1):65-78.
    [73]Jung T. P., Makerg S., Westerfield M., et al, Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects [J]. Clinical Neurophysiology, 2000,111:1745-1758.
    [74]Castellaanos N. P., Makarov V. A. Recovering EEG brain signals:artifact suppression with wavelet enhanced independent component analysis [J]. Journal of Neuroscience Methods,2006,158:300-312.
    [75]李婷,邱天爽.基于带参考信号的ICA算法的脑电信号眨眼伪差的分离研究[J].中国生物医学工程学报,25(3):296-299,2006.
    [76]Joyce C. A., Gorodnitsky I. F., Kutas M. Automatic removal of eye movement and blink artifacts from EEG data using blind component separation [J]. Psychophysiology,2004, 41.
    [77]Ghandeharion H., Erfanian A., A fully automatic ocular artifact suppression from EEG data using higher order statistics:improved performance by wavelet analysis [J]. Medical Engineering & Physics,2010,32:720-729.
    [78]Levan P., Urrestarazu E., Gotman J. A system for automatic artifact removal in ictal scalp EEG based on independent component analysis and bayesian classification [J]. Clinical Neurophysiology,2006,117:912-927.
    [79]Comon P. Independent component analysis, a new concept? [J]. Signal Processing,1994, 36:287-314.
    [80]Cichocki A., Amari S. Adaptive blind signal and image processing learning algorithms and applications [M]. John Wiley & Sons,2002.
    [81]Amari S. I., Cichocki A. Adaptive blind signal processing-neural network approaches [C]. Proceedings of the IEEE,1998,86 (10):2026-2046.
    [82]Bell A., Sejnowski T. J., An information-maximization approach to blind separation and blind deconvolution [J]. Neural Compution,1995,7(6):1129-1159.
    [83]Lee T. W., Girolami M., Sejnowski T. J., Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources [J]. Neural computation,1999,11(2):417-441.
    [84]Delorme A., Makeig S. EEGLAB:an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [J]. Journal of Neuroscience Methods,2004,134:9-21.
    [85]Makeig S., Bell A. J., Jung T. P., et al. Independent component analysis of electro-encephalographic data [M]. In:Touretaky D. S., Mozer M. C., Hasselmo M. E. (Eds). Adavances in neural information processing systems, MIT Press, Cambridge MA,1996: 145-151.
    [86]Bezdek J. C. Pattern recognition with fuzzy objective function algorithms [M]. New York:Plenum Press,1981
    [87]曹细武,邓亲恺.心电图各波的频率分析[J].中国医学物理学杂志,2001,18(1):46-48.
    [88]Huang N. E., Long S. R., Shen Z. The mechanism for frequency downshift in nonlinear wave evolution [J]. Adavances in Applied Mechanics,1996,32:59-117.
    [89]Huang N. E., Shen Z., Long S. R., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [C]. In: Proceedings of the Royal Society, Mathematical, Physical and Engineering Sciences, 1998,454:903-995.
    [90]Rilling G., Flandrin P. On the influence of sampling on the empirical mode decomposition [C]. In:the 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse,2006,444-447.
    [91]Flandrin P., Rilling G., Goncalves P. Empirical mode decomposition as a filter bank [J]. Signal Processing Letters,2004,11(2):112-114.
    [92]Cheng J., Yu D., Yang Y. Research on the intrinsic mode function (IMF) criterion in EMD method [J]. Machanical Systems and Signal Processing,2006,20:817-824.
    [93]Blanco-Velasco M., Weng B., Barner K. E. ECG signal denoising and baseline wander correction based on the empirical mode decomposition [J]. Computers in Biology and Medicine,2008,38:1-13.
    [94]Wu C. H., Chang H. C., Lee P. L., et al. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing [J]. Journal of Neuroscience Methods,2011,196:170-181.
    [95]Carson J. R., Fry T. C. Variable frequency electric circuit theory with application to the theory of frequency modulation [J]. Bell System Tech,1937,16:513-540.
    [96]Gabor D. Theory of communication [J]. Journal of the Institution of Electrical Engineers-Part Ⅲ:Radio and Comunication Engineering,1946,93(26):429-441.
    [97]任龙涛.EMD时频分析的理论与应用研究[D].硕士学位论文.哈尔滨工业大学.2009.
    [98]Rilling G., Flandrin P., Gonalves P., et al. Bivariate Empirical Mode Decomposition [J]. Signal Processing Letters,2007,14(12):936-939.
    [99]Rilling G., Flandrin P., Goncalves P. On empirical mode decomposition and its algorithms [J]. IEEEURASIP workshop on nonlinear signal and image processing NSIP03 Grado I,2003,3:8-11.
    [100]Einthoven W. Ein neues Galvanometer [J]. Annalen der Physik,1903,317(13): 1059-1071.
    [101]Einthoven W. The different forms of the human electrocardiogram and their signification [J]. The Lancet,1912,179:853-861.
    [102]van Ravenswaaij-Arts C. M., Kollee L. A. A., Hopman J. C. W., et al. Heart rate variability [J]. Annals of Internal medicine,1993,118(6):436-447.
    [103]Ashkenazy Y., Lewkowicz M., Levitan J., et al. Discrimination of the healthy and sick cardiac autonomic nervous system by a new wavelet analysis of heartbeat intervals [J]. Fractals,1998,6(3):197-203.
    [104]Thurner S., Feurstein M. C., Teich M. C. Multiresolution wavelet analysis of heartbeat intervals discriminates healthy patients from those with cardiac pathology [J]. Physical Review Letters,1998,80:1544-1547.
    [105]Garde A. H., Laursen B., Jorgensen A. H., et al. Effect of mental and physical demands on heart rate variability during computer work [J]. European Journal of Applied Physiology,2002,87:456-461.
    [106]Hjortskov N., Rissen D., Blangsted A. K., et al. The effect of mental stress on heart rate variability and blood pressure during computer work [J]. European Journal of Applied Physiology,2004,92:84-89.
    [107]闫春红.心率变异性非动力学分析的研究[D].硕士学位论文.重庆大学.2004.
    [108]Hjortskov N., Rissen D., Katrine A., et al. The effect of mental stress on heart rate variability and blood pressure during computer work [J]. European Journal of Applied Physiology,2004,6:84-89.
    [109]Garde A., Laursen B., Jorgensen A.,et al. Effect of mental and physical demands on heart rate variability during computer work [J]. European Journal of Applied Physiology, 2002,12:456-461.
    [110]Kumar M., Weippert M., Vilbrandt R., et al. Fuzzy evaluation of heart rate signals for mental stress assessment [J]. IEEE Transactions on Fuzzy Systems,2007,15(5): 791:808.
    [111]Zhang J. H., Wang X. Y., Mahfouf M., et al. Use of heart rate variability analysis for quantitatively assessing operator's mental workload [C]. In:BMEI' 08 Proceeding of the 2008 International Conference on BioMedical Engineering and Informatics,2008: 668-672.
    [112]Bilgin S., Colak O.H., Polat O., et al. Evaluation of sub-Frequency regions of heart rate variability in supraventricular tachyarrhythmia patients [J]. Computers in Cardiology, 2008,35:125-128.
    [113]Bilgin S., Colak O. H., Koklukaya E., et al. Efficient solution for frequency band decomposition problem using wavelet packet in HRV [J]. Digital Signal Processing, 2008,18:892-899.
    [114]Toledo E., Gurevitz O., Hod H., et al. Wavelet analysis of instantaneous heart rate:a study of autonomic control during thrombolysis [J]. The American Physiological Society,2003,284:1079-1091.
    [115]Morlet J., Arens G., Fourgeau E., et al. Wave propagation and sampling theory:Part II, sampling theory and complex waves [J]. Geophysics,1982,47(2):222-236.
    [116]潘泉,张磊,孟普丽,张洪才.小波滤波方法及应用[M].清华大学出版社,2005.
    [117]Coifman R. R., Wickerhauser M. V. Entropy-based algorithm for best basis selection [J]. IEEE Transactions on information theory,1992,38(2):713-718.
    [118]Wickerhauser M. V. Lectures on wavelet packet algorithms. Technical report, Washington University,1991.
    [119]杨福生.小波变换的工程分析与应用[M].科学出版社,1999.
    [120]Kostka P., Tkacz E. J. An improvement of unsupervised biomedical signal classifiers by optimal feature extraction in system preliminary layer [J]. In:Engineering in Medicine and Biology Society, IEMBS'04.26th Annual International Conference of the IEEE, 2004:279-282.
    [121]Jang J. S. R. ANFIS:adaptive-network-based fuzzy inference system [J]. IEEE Transactions on Systems, Man, and Cybernetics,1993,23(3):665-685.
    [122]Jang J. S. R. Input selection for ANFIS learning [C]. In:Proceedings of the Fifth IEEE International Conference on Fuzzy Systems,1996:1493-1499.
    [123]Shoorehdeli M. A., Teshnehlab M., Sedigh A. K. A novel training algorithm in ANFIS structure [C]. In:Proceeding of the 2006 American Control Conference, Minnesota, USA,2006,:5059-5064.
    [124]Fraile-Ardanuy J., Zufiria P. J. Design and comparison of adaptive power system stabilizers based on neural fuzzy networks and genetic algorithms [J]. Neurocomputing, 2007,70:2902-2912.
    [125]Vairappan C., Tamura H., Gao S., et al. Batch type local search-based adaptive neuro-fuzzy inference system (ANFIS) with self-feedbacks for time-series prediction [J]. Neurocomputing,2009,72:1870-1877.
    [126]Reynolds C. W. Flocks, herds, and schools:a distributed behavioral model [J]. Computer Graphics,1987,21(4):25-34.
    [127]Heppner F., Grenander U. A stochastic nonlinear model for coordinated bird flocks [M]. In Krasner S, ed., The Ubiquity of Chaos, AAAS Publications, Washington, DC,1990.
    [128]Kennedy J., Eberhart R. Particle swarm optimization [C]. In:IEEE International Conference on Neural Networks, Washington, USA,1995,4:1942-1948.
    [129]Shi Y., Eberhart R.C. A modified particle swarm optimizer [C]. In Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, Alaska,1998, 69-73.
    [130]Shi Y., Eberhart R.C. Parameter selection in particle swarm optimization [J]. Lecture Notes in Computer Science,1998,1447:591-600.
    [131]Eberhart R. C., Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization [C]. In:Proceeding of the 2000 Congress on Evolutionary Computaion,2000,1:84-88.
    [132]Shi Y., Eberhart R.C. Empirical study of particle swarm optimization [C]. In: Proceeding of the Congress on Evolutionary Computaion, Washington,1999, 1945-1950.
    [133]Suganthan P. N. Particle swarm optimizer with neighborhood operator [C]. In: Proceeding of the Congress on Evolutionary Computaion, Washington,1999, 1958-1962.
    [134]Zheng Y., Ma L., Zhang L., et al. On the convergence analysis an parameter selection in particle swarm optimization [C]. In:The 2003 International Conference on Machine Learning and Cybernetics,2003,3:1802-1807.
    [135]Shi Y., Eberhart R.C. Fuzzy adaptive particle swarm optimization [C]. In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea,2001,1: 101-106.
    [136]Kennedy J. The particle swarm:social adaptation of knowledge [C]. In:the IEEE International Congress on Evolutionary Computation, Indianapolis, USA,1997: 303-308.
    [137]Clerc M., Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactionis on Evolutionary Computation, 2002,6(1):58-73.
    [138]Ratnaweera A., Halgamuge S.K. and Watson H.C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation,2004,8(3):240-255.
    [139]He S., Wu Q. H., Wen J. Y., et al. A particle swarm optimizer with passive congregation [J]. BioSystems,2004,78(1-3):135-147.
    [140]Angline P. J. Using selection to improve particle swarm optimization [C]. In:The 1998 IEEE International Conference on Evolutionary Computation, Anchorage, USA,1998: 84-89.
    [141]潘峰,涂序彦,陈杰.协调粒子群优化算法——HPSO [J]计算机工程,2005,5:169-171.
    [142]Robinson J., Sinton S., and Rahmat-Sami Y. Particle swarm, genetic algorithm, and their hybrids:optimization of a profiled corrugated horn antenna [C]. In Antennas and Propagation Society International Symposium,2002,1:314-317.
    [143]Shelokar P. S., Siarry P., Jayaraman V. K., et al. Particle swarm and ant colony algorithms hybridized for improved continuous optimization [J]. Applied Mathematics and Computation,2007,188(1):129-142.
    [144]Dong C., Qiu Z. Particle swarm optimization algorithm based on the idea of simulated annealing [J]. International Journal of Computer and Network Security,2006,6(10): 152-157.
    [145]Liu B., Wang L., Jin Y. H., et al. Improved particle swarm optimization combined with chaos [J]. Chaos, Solitons and Fractals,2005,25(5):1261-1271.
    [146]Kennedy J., Eberhart R. C. A discrete binary version of the particle swarm algorithm [C]. In 1997 IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, Oct.12-15,1997,5:4104-4108.
    [147]Van den Bergh F., Engelbrecht A.P. Training product unit networks using cooperative particle swarm optimizers [C]. In Proceedings of International Joint Conference on Neural Networks, Washington DC, July 15-19,2001,1:126-131.
    [148]Kennedy J., Mendes R. Population structure and particle swarm performance [C]. In: the 2002 Congress on Evolutionary Computation, Washington DC,2002:1671-1676.
    [149]刘金洋,郭茂祖,邓超.基于雁群启示的粒子群优化算法[J].计算机科学,2006,33(11):166-168.
    [150]Kennedy J. Bare bones particle swarms [C]. In:the 2003 IEEE Swarm Intelligence Symposium,2003:80-87.
    [151]Blackwell T. M., Bentley P. Don't push me! Collision-avoiding swarms [C]. In:the 2002 Congress on Evolutionary Computation, Honolulu, USA,2002:1691-1696.
    [152]He S., Wu Q. H., Wen J. Y., et al. A particle swarm optimizer with passive congregation [J]. Biosystems.2004,78(1-3):135-147.
    [153]Krink T., Vesterstrom J. S., Riget J. Particle swarm optimisation with spatial particle extension [C]. In:the 2002 Congress on Evolutionary Computation, Honolulu, USA, 2002:1474-1479.
    [154]Storn R., Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous space. Technical Report, Berkeley:International Computer Science Institute,1995, TR-95-012.
    [155]刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729.
    [156]Chang C. S., Xu D. Y. Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system [C]. In IEE Proceedings-Electric Power Applications,2000,147(3):206-212.
    [157]Fan H. Y., Lampinen J. A trigonometric mutation operation to differential evolution [J]. Journal of Global Optimization,2003,27(1):105-129.
    [158]Liu J., Lampinen J. A fuzzy adaptive differential evolution algorithm [J]. Soft Computing-A Fusion of Foundations, Methodologies and Applications,2005,9(6): 448-462.
    [159]Mendes R., Mohais A. S. DynDE:a differential evolution for dynamic optimization problems [C]. In:The 2005 IEEE Congress on Evolutionary Computation, Edinbrugh, UK,2005:2808-2815.
    [160]Price K. V., Storn R. M., and Lampinen J. A. Differential evolution:a practical approach to global optimization [M]. Berlin Heidelberg, Springer-Verlag,2005.
    [161]Kaelo P., Ali M. M., A numerical study of some modified differential evolution algorithms [J]. European Journal of Operational Research,2006,169(3):1176-1184.
    [162]Chiou J. P., Chang C. Fu., and Su C. T. Ant direction hybrid differential evolution for solving large capacitor placement problems [J]. IEEE Transactions on Power Systems, 2004,19(4):1794-1800.
    [163]Hrstka O., Kucerova A. Improvements of real coded genetic algorithms based on differential operators preventing premature convergence [J]. Adavances in Engineering Software,2004,35(3-4):237-246.
    [164]Yan J. Y., Ling Q., and Sun D. M. A differential evolution with simulated annealing updating method [C]. In 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, Aug.13-16,2006,2103-2106.
    [165]Becerra R. L., Coello C. A. C. Cultured differential evolution for constrained optimization [J]. Computer Methods in Applied Mechanics and Engineering,2006, 195(33-36):4303-4322.
    [166]Coelho Ld. S., Mariani V. C. Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect [J]. IEEE Transactions on Power Systems,2006,21(2):989-996.
    [167]Ali M. M. Differential evolution with preferential crossover [J]. European Journal of Operational Research,2007,181(3):1137-1147.
    [168]Zaharie D. A multipopulation differential evolution algorithm for multimodal optimization [C]. In:The 10th International Conference on Soft Computing. Mendel, 2004:16-18.
    [169]Plagianakos V. P., Vrahatis M. N. Parallel evolutionary training algorithms for "hardware-friendly" neural networks [J]. Natural Computing,2002,1(2-3):307-322.
    [170]Qing A. Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES) [J]. IEEE Transactions on Antennas and Propagation,2004,52(5),1223-1229.
    [171]Tasgetiren M. F., Suganthan P. N. A multi-populated differential evolution algorithm for solving constrained optimization problem [C]. In 2006 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, July 16-21,2006,33-40.
    [172]Colorini A., Dorigo M., Maniezzo V. Distributed optimization by ant colonies [C]. In: European Conference on Artificial Life, Paris, France,1991:134-142.
    [173]Dorigo M., Gambardella L. M. Ant colony system:a cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation, 1997,1(1):53:56.
    [174]Das S., Konar A., Chakraborty U. K. Two improved differential evolution schemes for faster global search [C]. In:ACM-SIGEVO Proceedings of GECCO'2005,2005, 991-998.
    [175]Kumar M., Weippert M., Vilbrandt R., et al. Fuzzy evaluation of heart rate signals for mental stress assessment [J]. IEEE Transactions on Fuzzy System,2007,15:791-808.
    [176]Hjortskov N., Rissen D., Blangsted A. K., et al. The effect of mental stress on heart rate variability and blood pressure during computer work [J]. European Journal of Appllied Physiology,2004,92:84-89.
    [177]Wang R. F., Zhang J. H., Wang X. Y. Process control operator's heart rate variability analysis based on wavelet packet transform [J]. Jounal of Nanjing University of Science and Technology,2009,33:145-151.
    [178]Zhang J. H., Wang X. Y., Mahfouf M., et al. Use of heart rate variability analysis for quantitatively assessing operator's mental workload [C], in:2008 International Conference on BioMedical Engineering and Informatics,2008, pp.668-672.
    [179]Dussault C., Jouanin J. C., Philippe M., et al. EEG and ECG changes during simulator operation reflect mental workload and vigilance [J]. Aviation, Space, and Environmental Medicine,2005,76 (4):344-351.
    [180]Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance:a review and analysis [J]. Brain Research Reviews,1999,29:169-195.
    [181]Gevins A., Smith M. E. Detecting transient cognitive impairment with EEG pattern recognition methods. Aviation, Space, and Environmental Medicine,1999,70: 1018-1024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700