用户名: 密码: 验证码:
慢性应激对大鼠脑内NMDAR1蛋白表达及NO含量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     抑郁症病因未明,具有较高的发病率和复发率,并给社会带来了沉重的疾病负担。现有的抗抑郁药物起效较慢、疗效有限;而且,有的药物对神经递质的作用机制相反却同样能产生抗抑郁效果,这些临床矛盾现象很难用单胺理论来解释。近年来,国内外研究人员利用各种抑郁模型作了大量有关神经生物和精神药理方面的研究。鉴于应激与抑郁发病的密切关系,应激模型在抑郁发病机理的研究和抗抑郁药的筛选中应用最为普遍。越来越多的证据表明抑郁的发生以及抗抑郁药物的作用机制相当复杂,涉及到脑内多种物质和通路的异常,但仍未找到最后通路。
     谷氨酸是脑内重要的兴奋性神经递质,大量研究显示,该通路中的N-甲基-D-天冬氨酸(N-Methyl-D-Aspartate,NMDA)受体参与了兴奋性突触传递、神经可塑性、神经发育与老化、学习和记忆等重要生理过程。目前,谷氨酸的兴奋性毒性作用也被认为与一些神经精神疾病如脑血管疾病、创伤、癫痫、精神分裂症的病理机制相关。有关NMDA受体与焦虑抑郁障碍的研究较少,但体外实验已提示某些抗抑郁药物能够直接阻断NMDA受体通路与一氧化氮合酶(Nitric oxide synthesis,NOS)的表达和活性;而一些NMDA受体拮抗剂或NOS抑制
    
     浙江大李硕士学位论文
    剂可能具有类似的抗抑郁作用。有关慢性应激抑郁模型脑内NMDA受体主亚基
    蛋白NRI的表达情况国内外尚未见报道。
     目的
     本研究拟采用慢性轻度应激和分养两种经典模型结合的方式,利用长期不可
    预见性的轻度应激来建立大鼠抑郁模型,结合大鼠体质量及行为学变化,分别
    采用分光光度法和免疫印迹技术检测抑郁大鼠前额叶、海马区一氧化氮(Nitric
    ox记e,NO)含量和NMDA受体主亚基蛋白(NRI)表达的变化,旨在揭示慢
    性应激对谷氨酸一NMDA受体一NO通路的影响,探讨抑郁发生的可能机制,
    为抗抑郁药物的研制与开发提供线索。
     方法
     将16只成年雄性SPrague一Dawley大鼠随机分为对照组和慢性应激模型组,
    采用变换饲养环境、昼夜节律以及调整饮食和供水等多种慢性轻度不可预见性
    应激建立大鼠抑郁模型,以体质量及行为学改变来确保模型的可靠性。在建立
    模型的基础上采用分光光度法检测大鼠前额叶和海马区 NO含量的变化;免疫
    印迹法分析相应脑区NRI的表达情况。
     结果
     1.模型组大鼠体重增长缓慢,活动能力下降,兴趣丧失,成功模拟了临床
    抑郁症的精神抑制症状。到建模结束时,对照组和模型组的体重增加量分别为
     (128.19士18.22)g和(80.75士13.38)g,两组间差异具有显著统计学意义
     (P=0.OOO);在敞箱实验中,模型组大鼠活动量(22.62士12.26)明显少于对照
    组(43.75士19.88),差异具有统计学意义(P=0.023):模型组大鼠应激前后的绝
    对蔗糖消耗量分别为(82.31士10.08)g和(70.81士13.59)g,后者少于前者,但
    差异未达到统计学意义护匕0.060),而相应的相对蔗糖消耗量(绝对量/体重)
    分别为(0.28士0.03)和(0.19士0.04),差异具有显著统计学意义(P=0.001)。
     2.长期轻度应激后,大鼠前额叶和海马区NO的含量均明显增加,对照组
    与模型组大鼠前额叶区No含量分别为(26.97士1 .38)runoUmg·pro和(31.00士2.55)
    爹
    
     浙江大学硕士学位论文
    nmoUmg·pro(P=0.0o2),相应海马区的NO含量分别为(36.06士0.87)nmo枷g·pro
    和(38.11士1.73)nlno饰g.pro(P=0.010)。相关分析显示,抑郁模型大鼠海马区
    NO含量与大鼠的自发活动量呈负相关(:二一0.755,尸二0.031)。
     3.免疫印迹分析提示,慢性应激会增加大鼠海马区NRI的表达(P=0.004),
    而前额叶区的NRI表达却未见有明显变化(作0.659)。抑郁大鼠海马区NRI的表
    达量与活动量具有相关性(r=一0.719,尸=0.045)。
     结论
     1.研究将慢性轻度应激和分养两种经典模型结合,利用长期不可预见性的
    轻度应激,成功建立了较为理想的抑郁动物模型,这为深入研究抑郁发病机理
    提供了实验平台。
     2.慢性应激可促进前额叶、海马区NO的合成;同时可增加海马区NRI的
    表达;海马区的这些变化与大鼠的自发活动量密切相关。结果提示脑内特定部
    位NO含量和NRI亚单位蛋白表达的可塑性变化可能参与了大鼠慢性应激抑郁
    模型的发生过程,对NMDA受体一NO通路的干预将为抗抑郁药的研制和临床
    抑郁症的治疗提供新的思路。
Background
    Major depression is a common, severe and chronic psychiatric disorder with high rates of prevalence and relapse, suicide is also very common; it represents heavy burden of disease on society and is considered a significant public health concern. Though available antidepressant medications may be efficacious in most patients, there is a delayed onset in relief of symptoms and a larger number of individuals fail to respond or only partial respond to treatment. Furthermore, among available antidepressants, selective serotonin reuptake inhibitors and enhancer tianeptine both play a positive role in medication. In the light of the above clinical paradox, which is difficult to be explained by monoamine hypothesis, numerous studies are conducted on different animal models of depression indicating psychobiology and psychopharmacology. As we all know, stress contributes to depression, thus stress related animal models are quite universal in researches on depression and antidepressants. More and more evidence indicate
    d that depression is a complex disorder; its mechanism may be related to many neurotransmitter systems in the brain.
    
    
    Thus the radical reason and last pathway of antidepressant medication is also unknown.
    Glutamate is the most important excitory neurotransmitter. Numerous studies indicate that glutamate N-Methyl-D-Aspartate (NMDA) receptor contributes to excitatory synaptic transduction, neuroplasticity, brain development, learning and memory as well. Recent researches indicated that glutamatergic dysfunction also participate in the pathophysiology of some neuro- and psycho-diseases such as cerebral vascular disease, trauma, epilepsy and schizophrenia. Few literatures is related to anxiety and depression disorder. Evidence indicates that some antidepressant drugs interact directly with NMDA receptor complex and nitric oxide synthesis activity in vitro. In addition, several NMDA receptor antagonists or nitric oxide synthesis inhibitor show a neuroproctive role and have beneficial effects on relieving depression symptoms. While relation between NMDA essential receptor expression and depression rat of chronic mild stress has not yet been performed.
    Objective
    The first purpose of the present study was to establish an animal model of depression; single raise and chronic mild stress were combined in this model. On the basis of depression model, study was designed to determine whether nitric oxide production and NMDA essential receptor expression level changed within prefrontal cortex and hippocampus in chronic mild stress rat brain. Results may also be helpful to explore mechanism of depression and develop newer generation antidepressant.
    Methods
    After seven days accommodation, sixteen adult male Sprague-Dawley rats were allocated into control group and model group randomly; model rats were exposed to a variety of mild stressors sequentially, which include period changes of environment, light/dark rhythm, deprivation of food or water etc. Weight gain, open field test and
    
    sucrose solution consumption were investigated before and after procedure; spectrophotometric assays and immunoblot techniques were employed to determine nitric oxide production and NMDA essential receptor expression changed within rat prefrontal cortex and hippocampus.
    Results
    1. Over eighteen days mild stress, rats showed decreased locomotion, loss of interest, anhedonia and less weight gain which simulated clinical depressive features. At the endpoint of stress, model group had less weight gain (80.75卤13.38) g than control group (128.19+18.22) g, and less spontaneous locomotor activity (22.62卤12.26 vs 43.75119.88) in open field test, these differences between the two groups reach statistical significant. There is no significance in absolute sucrose assumption before and after stress (/M).060). While relative sucrose assumption (absolute value/weight) is lesser after stress (0.28卤0.03 vs 0.19 0.04, /MX001).
    2. Nitric oxide production increased in both prefrontal cortex and hippocampus aft
引文
1. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 1997; 349(9064): 1498-504
    2. Nestler EJ, Barrot M, DiLeone RJ, et al. Neurobiology of depression. Neuron 2002; 34(1):13-25
    3. Caspi A, Sugden K, Moffitt TE, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301(5631):386-9
    4. Osvath P, Voros V, Fekete S. Life events and psychopathology in a group of suicide attempters. Psychopathology 2004; 37(1):36-40
    5. Katz RJ, Roth KA, Carroll BJ. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev 1981; 5(2):247-51
    6. Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 1992; 16(4):525-34
    7. Cheeta S, Ruigt G, van Proosdij J, et al. Changes in sleep architecture following chronic mild stress. Biol Psychiatry 1997; 41(4):419-27
    8. Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Curt Opin Neurobiol 2001; 11(3):327-35
    9. Bashir ZI, Alford S, Davies SN, et al. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 1991; 349(6305): 156-8
    10. Scheetz AJ, Nairn AC, Constantine-Paton M. NMDA receptor-mediated control of protein synthesis at developing synapses. Nat Neurosei 2000; 3(3):211-6
    
    
    11.罗建红,朱丽君,郑功,等.在发育过程中小鼠脑N-甲基-D-门冬氨酸受体亚单位蛋白的表达.解剖学报1998;29(4):383-6
    12. Magnusson KR, Nelson SE, Young AB. Age-related changes in the protein expression of subunits of the NMDA receptor. Brain Res Mol Brain Res 2002; 99(1):40-5
    13. Ontl T, Xing Y, Bai L, et al. Development and aging of N-methyl-D-aspartate receptor expression in the prefrontal/frontal cortex of mice. Neuroscience 2004; 123(2):467-79
    14. Mishizen-Eberz AJ, Rissman RA, Carter TL, et al. Biochemical and molecular studies of NMDA receptor subunits NR1/2A/2B in hippocampal subregions throughout progression of Alzheimer's disease pathology. Neurobiol Dis 2004; 15(1):80-92
    15. Bliss TV, Richter-Levin G. Spatial learning and the saturation of long-term potentiation. Hippocampus 1993; 3(2): 123-5
    16.徐淑君,沈海清,陈忠,等.大鼠海马NMDA受体NR1亚单位蛋白的基础表达量与学习记忆相关.浙江大学学报(医学版)2003;32(6):465-9
    17.陈怀红,耿昱,朱丽君,等.大鼠大脑中动脉闭塞后基底节NR1和NR2A及NR2B的表达.浙江大学学报(医学版)2001;30(3):100-2
    18. Reynolds IJ, Miller RJ. Tricyclic antidepressants block N-methyl-D-aspartate receptors: similarities to the action of zinc. Br J Pharmacol 1988; 95(1):95-102
    19. Popik P, Wrobel M, Nowak G.Chronic treatment with antidepressants affects glycine/NMDA receptor function: behavioral evidence. Neuropharmacology 2000; 39(12):2278-87
    20. Wegener G, Volke V, Harvey BH, et al. Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activity. Brain Res 2003; 959(1): 128-34
    
    
    21. Papp M, Moryl E. Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur J Pharmacol 1994; 263(1-2): 1-7
    22. Padovan CM, Guimaraes FS. Antidepressant-like effects of NMDA-receptor antagonist injected into the dorsal hippocampus of rats. Pharmacol Biochem Behav 2004; 77(1): 15-9
    23. Salter M, Duffy C, Garthwaite J, et al. Ex vivo measurement of brain tissue nitrite and nitrate accurately reflects nitric oxide synthase activity in vivo. J Neurochem 1996; 66(4): 1683-90
    24. Wang YH, Bosy TZ, Yasuda RP, et al. Characterization of NMDA receptor subunit-specific antibodies: distribution of NR2A and NR2B receptor subunits in rat brain and ontogenic profile in the cerebellum. J Neurochem 1995; 65(1):176-83
    25. Luo J, Bosy TZ, Wang Y, et al. Ontogeny of NMDA R1 subunit protein expression in five regions of rat brain. Brain Res Dev Brain Res 1996; 92(1):10-7
    26. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 1997; 134(4):319-29
    27.许晶,李晓秋.慢性应激抑郁模型的建立及其评价.中国行为医学科学2003;12(1):14-7
    28.马文涛,杨来启,杨喜民,等.急性应激时大鼠脑内一氧化氮及一氧化氮合酶的变化.中国心理卫生杂志2002;16(6):380-1
    29. Moghaddam B. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 1993; 60(5):1650-7
    30.吴东辉,杨权,许崇涛.应激对大鼠海马谷氨酸、天冬氨酸和γ-氨基丁酸
    
    含量的影响.中华精神科杂志2003;36(2):98-100
    31. Olivenza R, Moro MA, Lizasoain I, et al. Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem 2000; 74(2):785-91
    32. Jezova D, Oliver C, Jurcovicova J. Stimulation of adrenocorticotropin but not prolactin and catecholamine release by N-methyl-aspartic acid. Neuroendocrinology 1991; 54(5):488-92
    33. Wuarin JP, Dudek FE. Excitatory amino acid antagonists inhibit synaptic responses in the guinea pig hypothalamic paraventricular nucleus. J Neurophysiol 1991; 65(4):946-51
    34. Bartanusz V, Aubry JM, Pagliusi S, et al. Stress-induced changes in messenger RNA levels of N-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience 1995; 66(2):247-52
    35. Fitzgerald LW, Ortiz J, Hamedani AG, et al. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci 1996; 16(1):274-82
    36. Schwendt M, Jezova D. Gene expression of two glutamate receptor subunits in response to repeated stress exposure in rat hippocampus. Cell Mol Neurobiol 2000; 20(3):319-29
    37. Lee PR, Brady D, Koenig JI. Corticosterone alters N-methyl-D-aspartate receptor subunit mRNA expression before puberty. Brain Res Mol Brain Res 2003; 115(1):55-62
    38. Schwendt M, Jezova D. Gene expression of NMDA receptor subunits in rat adrenals under basal and stress conditions. J Physiol Pharmacol 2001; 52(4 Pt 2):719-27
    
    
    39. Paul IA, Nowak G, Layer RT, et al. Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant treatments. J Pharmacol Exp Ther 1994; 269(1):95-102
    40. Nowak G, Legutko B, Skolnick P, et al. Adaptation of cortical NMDA receptors by chronic treatment with specific serotonin reuptake inhibitors. Eur J Pharmacol 1998; 342(2-3):367-70
    41. Duncko R, Schwendt M, Jezova D. Altered glutamate receptor and corticoliberin gene expression in brain regions related to hedonic behavior in rats. Pharmacol Biochem Behav 2003; 76(1):9-16
    42. Lin HC, Kang BH, Wan FJ, et al. Reciprocal regulation of nitric oxide and glutamate in the nucleus tractus solitarii of rats. Eur J Pharmacol 2000; 407(1-2):83-9
    43. Aoki C, Rhee J, Lubin M, et al. NMDA-R1 subunit of the cerebral cortex co-localizes with neuronal nitric oxide synthase at pre- and postsynaptic sites and in spines. Brain Res 1997; 750(1-2):25-40
    44. Amir S, Rackover M, Funk D. Blockers of nitric oxide synthase inhibit stress activation of c-fos expression in neurons of the hypothalamic paraventricular nucleus in the rat. Neuroscience 1997; 77(3):623-7
    45. Heiberg IL, Wegener G, Rosenberg R. Reduction of cGMP and nitric oxide has antidepressant-like effects in the forced swimming test in rats. Behav Brain Res 2002; 134(1-2):479-84
    46. Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47(4):351-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700