用户名: 密码: 验证码:
微分方程的精确解、群与群不变解的分类问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以数学机械化思想和AC=BD模式为指导,研究具有任意阶非线性项的非线性偏微分方程的精确求解,微分差分方程的群分类和超对称方程的群不变解的分类问题.
     第一章介绍数学机械化、孤立子理论、数学物理方程的精确求解、对称分析、群分类、超对称和超对称方程的历史发展和研究现状,并介绍本文的选题及主要工作.
     第二章介绍微分方程变换的机械化构造的AC=BD理论和C-D对理论的基本内容和思想.
     第三章基于将非线性发展方程精确求解代数化、算法化、机械化的指导思想和AC=BD理论,改进广义Riccati方程有理展开法,并推广Sub-ODE方法,进而给出带有任意阶非线性项的非线性发展方程更多的精确解.
     第四章利用Zhdanov和Lahno给出的求解偏微分方程群分类的方法研究非线性微分差分方程(?)_n=F_n(t,u_(n-1),u_n,u_(n+1))在李代数下不变的群分类.
     第五章给出超对称二玻色子方程的李超代数的伴随表示关系及其在这种关系下一维子代数的共轭类,进一步计算群不变解的初步分类,并得到超对称二玻色子方程的指数函数解、三角函数解和有理解.
In this dissertation, some topics axe studied with the idea of mathematical mechanizationand AC=BD model, including exact solutions of nonlinear partial differential equations with nonlinear terms of any order, group classification of differential-difference equations and classification of the group-invariant solutions of supersymmetric equations.
     In Chapter 1, we introduce the history and development of mathematical mechanization,soliton theory, solutions of the mathematical and physical equations, symmetry analysis, group classification, supersymmetry and supersymmetric equations, as well as the main work of this dissertation.
     In Chapter 2, the main content and idea of AC = BD model theory and C-D pair, according to the mechanized construction of transformation of differential equations are presented.
     In Chapter 3, based on the idea of solving nonlinear evolution equations, algebraic method, algorithm reality, mechanization, we improve the generalized Riccati equation rational expansion method and extend the Sub-ODE method. Furthermore, more exact solutions of nonlinear evolution equations with nonlinear terms of any order are obtained.
     In Chapter 4, we solve the problem of the group classification of the nonlinear differential-difference equation of the form (?)_n = F_n(t,u_(n-1),u_n,u_(n+1)) invariant under Lie algebras through the method of the group classification of differential equations given by Zhdanov and Lahno.
     In Chapter 5, for supersymmetric two bosons equations, we compute the adjoint representation of Lie superalgebra and conjugate classes of one-dimensional subalgebras. Then we find the preliminary classification of the group-invariant solutions and obtain rational solutions, exponential function solutions and trigonometric function solutions.
引文
[1] 吴文俊.吴文俊论数学机械化[M].山东:山东教育出版社,1996.
    [2] 高小山.数学机械化进展综述[J].数学进展,2001,30(5):385-404.
    [3] 石赫.机械化数学引论[M].湖南:湖南教育出版社,1998.
    [4] 吴文俊.几何定理机器证明的基本原理[M].北京:科学出版社,1984.
    [5] WU W T. On the decision problem and the mechanization of theorem-proving in elementary geometry[J]. Sci. Sinica, 1978, 21(2): 159-172.
    [6] RITT J F. Differential Algebra[M]. New York: American mathematical Society, 1950.
    [7] WU W T. On the foundation of algebraic differential geometry[J]. Systems Sci. Math. Sci.,1989, 2(4): 289-312.
    [8] GAO X S, ZHANG J Z, CHOU S C. Geometry Expert (in Chinese) [M]. Taiwan: Nine Chapters Pub, 1998.
    [9] CHOU S C, GAO X S, ZHANG J Z. Machine Proofs in Geometry[M]. Singapore: World Scientific, 1994.
    [10] CHOU S C, GAO X S. Automated reasoning in differential geometry and mechanics using the characteristic set method. I. An improved version of Ritt-Wu's decomposition algorithm[J].J. Automat. Reason., 1993, 10(2): 161-172.
    [11] WANG D M, GAO X S. Geometry theorems proved mechanically using Wu's method-Part on Euclidean geometry[J]. Math. Mech. Res. Preprints, 1987, 2: 75-106.
    [12] LIN D D, LIU Z J. Some Results on Theorem Proving in Finite Geometry[C]. IWMM'1992,Beijing, China, 1992: 222.
    [13] WU J Z, LIU Z J. On first-order theorem proving using generalized odd-superpositions Ⅱ[J].Sci. China Ser. E, 1996, 39(6): 608-619.
    [14] KAPUR D, WAN H K. Refutational proofs of geometry theorems via characteristic sets[C].Proc of ISSAC-90, Tokyo, Japan, 1990: 277-284.
    [15] LI H B, CHENG M T. Proving theorems in elementary geometry with Clifford algebraic method[J]. Adv. in Math. (China), 1997, 26(4): 357-371.
    [16] LI H B, CHENG M T. Clifford algebraic reduction method for mechanical theorem proving in differential geometry[J]. J. Auto. Reasoning, 1998, 21: 1-21.
    [17] WANG D M. Clifford algebraic calculus for geometric reasoning with applications to computer vision[M]. In: WANG D. Automated Deduction in geometry LNAI. 1996, 1360: 115.
    [18] SHI H. On Solving the Yang-Baxter Equations[C]. The International Workshop on Mathematics Mechanization, Beijing, China, 1992: 79.
    [19] WANG S K, WU K, SUN X D. Solutions of Yang-Baxter equation with spectral parameters for a six-vertex model[J]. Acta Phys. Sinica(Chinese), 1995, 44(1): 1-8.
    [20] SUN X D, WANG S K, WU K. Classification of six-vertex-type solutions of the colored Yang-Baxter equation[J]. J. Math. Phys. 1995, 36(10): 6043-6063.
    [21] LI Z B, WANG M L. Travelling wave solutions to the two-dimensional KdV-Burgers equation[J]. J. Phys. A, 1993, 26(21): 6027-6031.
    [22] 李志斌,张善卿.非线性波方程准确孤立波解的符号计算[J].数学物理学报,1997,17(1):81-89.
    [23] LI Z B. Analytical Solitary Wave Slutions for the Nonlinear Schrodinger Equation Coupled To the Kortewegde Vrise Equation[C]. Proceedings of ASCM'98, Lanzhou University, 1998:155.
    [24] 李志斌.非线性数学物理方程的行波解[M].北京:科学出版社,2007.
    [25] LI Z B, LIU Y P. RATH: A Maple package forfinding travelling solitary wave solutions to nonlinear evolution equations[J]. Comput. Phys. Comm., 2002, 148(2): 256-266.
    [26] FAN E G, ZHANG H Q. Backlund transformation and exact solutions for Whitham-Broer-Kaup equations in shallow water[J]. Appl. Math. Mech., 1998, 19: 713-716.
    [27] YAN Z Y, ZHANG H Q. New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water[J]. Phys. Lett. A, 2001, 285: 355-260.
    [28] 梅建琴.微分方程组精确解及其解的规模的机械化算法[D].大连:大连理工大学,2006.
    [29] 范恩贵.可积系统与计算机代数[M].北京:科学出版社,2004.
    [30] 闫振亚.非线性波与可积系统[D].大连:大连理工大学,2002.
    [31] 朝鲁.吴微分特征列法及其在PDEs对称和力学中的应用[D].大连:大连理工大学,1997.
    [32] 陈勇.孤立子理论中的若干问题的研究及机械化实现[D].大连:大连理工大学,2003.
    [33] 谢福鼎.Wu-Ritt消元法在偏微分代数方程中的应用[D].大连:大连理工大学,2002.
    [34] 李彪.孤立子理论中若干精确求解方法的研究及应用[D].大连:大连理工大学,2005.
    [35] RUSSELL J S. Report on waves, Fourteen meeting of the British association for the advancement of science[C]. John Murray, London, 1844: 311-390.
    [36] BOUSSINESQ J. Theorie des ondes et de remous qui se propagent[J]. J. Math. Pure Appl.,1972, 17: 55-108.
    [37] KORTEWEG D J, DE VRIES G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves [J]. Phil. Mag., 1895, 39(5):422-433.
    [38] FERMI A, PASTA J, ULAM S. Studies of Nonlinear Problems[R]. I. Los Alamos report LA-1940, 1955.
    [39] PERRING J K, SKYRME T H R. A model unified field equation[J]. Nuclear Phys., 1962,31: 550-555.
    [40] ZABUSKY N J, KRUSKAL M D. Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States[J]. Phys. Rev. Lett., 1965, 15(6): 240-243.
    [41] ABLOWITZ M J, CLARKSON P A. Solitons, nonlinear evolution equations and inverse scattering[M]. Cambridge: Cambridge University Press, 1991.
    [42] NEWELL A C. Soliton in mathematics and physics[M]. Philadelphia: SIAM, 1985.
    [43] FADDEEV L D, TAKHTAJAN L A. Hamiltonian method in the theory of solitons[M].Berlin: Springer-Verlag, 1987.
    [44] MATVEEV V B, SALLE M A. Darboux transformation and Solitons[M]. Berlin: Springer,1991.
    [45] 郭柏灵,庞小峰.孤立子[M].北京:科学出版社,1987.
    [46] 谷超豪等.孤立子理论与应用[M].杭州:浙江科技出版社,1990.
    [47] 谷超豪等.孤立子理论中的Darboux变换及其几何应用[M].上海:上海科技出版社,1999.
    [48] 李翊神.孤子与可积系统[M].上海:上海科技出版社,1999.
    [49] 陈登远.孤子引论[M].北京:科学出版社,2006.
    [50] HIROTA R. The direct method in soliton theory[M]. New York: Cambridge University Press,2004.
    [51] ROGERS C, SHADWICK W R. Backhand transformations and their application[M]. New York: Academic Press, 1982.
    [52] WAHLQUIST H D, ESTABROOK F B. Backlund transformations for solitons of the Korteweg-de Vriu equation [J]. Phys. Rev Lett., 1973, 31: 1386-1390.
    [53] WAHLQUIST H D, ESTABROOK F B. Prolongation structures and nonlinear evolution equations [J]. J.Math.Phys., 1975, 17: 1403-1411.
    [54] DARBOUX G. Sur une Proposition Relative aux (?)quations Lin(?)aires[J]. C. R. Acad. Sci.Paris, 1882, 94: 1456-1459.
    [55] KONNO K, WADATI M. Simple derivation of Backlund transformation from Riccati form of inverse method[J]. Prog. Theor. Phys., 1975, 53(6): 1652-1656.
    [56] GU C H. A unified explicit form of Backlund transformations for generalized hierarchies of KdV equations[J]. Lett. Math. Phys., 1986, 11: 325-335.
    [57] GU C H, ZHOU Z X. On the Darboux matrices of Backlund transformationsfor AKNS systems[J]. Lett.Phys Phys., 1987, 13: 179-187.
    [58] ZENG Y B,ZHU Y, XIAO T. Canonical explicit Backlund transformations with spectrality for constrained flows of soliton hierarchies [J]. Physica A, 2002, 303: 321-338.
    [59] 胡星标,李勇.DJKM方程的Backlund变换及非线性叠加公式[J].数学物理学报,1991,11:164-172.
    [60] HU X B, CLARKSON P A. Backlund transformations and nonlinear superposition formulae of a differential-difference KdV equation[J]. J.Phys. A., 1998, 31: 1405-1414.
    [61] ROGERS C, SCHIEF W K. Backlund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory[M]. Cambridge: Cambridge University Press, 2002.
    [62] GARDNER C S, GREENE C S, KRUSKAL M D, etal. Method for solving the Korteweg-deVries equation[J]. Phys. Rev. Lett., 1967, 19: 1095-1097.
    [63] LAX P D. Integrals of nonlinear equations of evolution and solitary waves [J]. Commun. Pure Appl. Math., 1968, 21: 467-490.
    [64] ZABUSKY N J, KRUSKAL M D. Interaction of solitons in a collisionless plasma and the recurrence of initial states[J]. Phys. Rev. Lett., 1965, 15: 240-243.
    [65] Wadati M. The modified Korteweg-de Vries equation[J]. J. Phys. Soc. Japan, 1973, 34:1289-1296.
    [66] ABLOWITZ M J, KAUP Z J, NEWELL A C, etal. Nonlinear-evolution equations of physical significance[J], Phys.Rev.Lett.,1973,31: 125-127.
    [67] WAHLQUIST H D, ESTABROOK F B. Prolongation structures of nonlinear evolution equations[J]. J. Math. Phys., 1975, 16: 1-7.
    [68] 曹策问.孤立子与反散射[M].郑州:郑州大学出版社,1983.
    [69] HU X B. Rational solutions of integrable equations via nonlinear superposition formulae [J].J. Phys. A: Math. Gen., 1997, 30: 8225-8240.
    [70] HU X B, ZHU Z N. Some new results on the Blaszak-Marciniak lattice:Backlund transformation and nonlinear superposition formula[J]. J. Math. Phys., 1998, 39: 4766-4772.
    [71] HU X B, WANG D L, TAM H W. Lax pairs and Backlund transformations for a coupled Ramani equation and its related system[J]. Appl. Math. Lett., 2000, 13: 45-48.
    [72] BOITI M, LEON J J P, MANNA M, etal. On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions [J]. Inv. Probl., 1986, 2: 271-280.
    [73] RADHA R, LAKSHMANAN M. Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations [J]. J. Math. Phys., 1994, 35:4746-4756.
    [74] LOU S Y. Generalized dromion solutions of the (2+1)-dimensional KdV equation[J]. J. Phys.A: Math. Gen., 1995, 28: 7227-7232.
    [75] ZHANG J F. Abundant dromion-like structures to the (2+1) dimensional KdV equation[J].Chin. Phys., 2000, 9: 1-4.
    [76] LIU Q P, HU X B, ZHANG M X. Supersymmetric modified Korteweg-de Vries equation:bilinear approach[J]. Nonlinearity, 2005, 18: 1597-1603.
    [77] LIU Q P, HU X B. Bilinearization of N = 1 supersymmetric Korteweg-de Vries equation revisited[J]. J. Phys. A: Math. Gen., 2005, 38: 6371-6378.
    [78] CHEN D Y, ZHANG D J, DENG S F. The novel multisoliton solutions of the mKdV sinegordon equation[J]. J. Phys. Soc. Japan, 2002, 71: 658-659.
    [79] NING T K, ZHANG D J, CHEN D Y, DENG S F. Exact solutions and conservation laws for a nonisospectral sine-Gordon equation[J]. Chaos, Solitons and Fractals, 2005, 25: 611-620.
    [80] ZHANG D J, CHEN D Y. Negatons, positons, rational-like solutions and conservation laws of the Korteweg-de Vries equation with loss and non-uniformity terms [J]. J. Phys. A: Math.Gen., 2003, 36: 1-15.
    [81] MIURA R M. Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation [J]. J. Math. Phys., 1968, 9: 1202-1204.
    [82] ABLOWITZ M J, KRUSKAL M D, SEGUR H. A note on Miura's transformation[J]. J.Math. Phys., 1979, 20: 991-1003.
    [83] WANG M L. Solitary wave solutions for variant Boussinesq equations[J]. Phys. Lett. A,1995, 199: 169-172.
    [84] LOU S Y, RUAN H Y, HUANG G X. Exact solitary waves in a converting fluid[J]. J. Phys.A, 1991, 24: 587-590.
    [85] CONTE R, MUSETTE M. Link between solitary waves and projective Riccati equations[J].J. Phys. A: Math. Gen., 1992, 25: 5609-5623.
    [86] LIU S K, FU Z T, LIU S D, etal. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J]. Phys. Lett. A, 2001, 289: 69-74.
    [87] FAN E G. Extended tanh-function method and its applications to nonlinear equations [J].Phys. Lett. A, 2000, 277: 212-218.
    [88] YAN C T. A simple transformation for nonlinear waves[J]. Phys. Lett. A, 1996, 224: 77-84.
    [89] YAN Z Y, ZHANG H Q. New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics[J]. Phys. Lett. A, 1999, 252: 291-296.
    [90] TIAN B, GAO Y T. Variable-coefficient balancing-act method and variable-coefficient KdV equation from fluid dynamics and plasma physics[J]. Eur. Phys. J. B, 2001, 22: 351-360.
    [91] GAO Y T, TIAN B. New families of exact solutions to the integrable dispersive long wave equations in (2+1)-dimensional spaces[J]. J. Phys. A, 1996, 29: 2895-2903.
    [92] BARNETT M P, CAPITANI J F, VON ZUR GATHEN J, etal. Symbolic calculation in chemistry: Selected examples [J]. Int. J. Quantum Chem., 2004, 100: 80-104.
    [93] 张鸿庆.弹性力学方程组一般解的统一理论[J].大连理工大学学报,1978,18:23-47.
    [94] 张鸿庆,王震宇.胡海昌解的完备性和逼近性[J].科学通报,1986,30:342-344.
    [95] 张鸿庆,吴方向.一类偏微分方程组的一般解及其在壳体理论中的应用[J].力学学报,1992,24:700-707.
    [96] 张鸿庆,冯红.构造弹性力学位移函数的机械化算法[J]_应用数学和力学,1995,16:315-322.
    [97] 张鸿庆.偏微分方程组的一般解与完备性[J].现代数学与力学,1991,Ⅳ.
    [98] ZHANG H Q, CHEN Y F. The Compatible Conditions of System u = cv, dv = 0[C].Proceedings of ASCM'98, Lanzhou, China, 1998: 147.
    [99] ZHANG H Q. C-D integrable system and computer aided solver for differential equations[C].The Fifth Asian Symposium on Computer Mathematics, Matsuyama, Japan, 2001: 221-226.
    [100] OLVER P J. Application of Lie groups to differential equations[M]. New York: Springer-Verlag, 1986.
    [101] BLUMAN G W, KUMEI S. Symmetries and differential equations[M]. New York: Springer-Verlag, 1989.
    [102] CLARKSON P A, KRUSKAL M D. New similarity reductions of the Boussinesq equationl J].J. Math. Phys., 1989, 30: 2201-2213.
    [103] ZAKHAROV V E, SHABAT A B. Integrable system of nonlinear equations in mathematical physics [J]. Funct. Anal. Appl., 1974, 8: 43-53.
    [104] DOLYE P W. Separation of variables for scalar evolution equations in one space dimension[J]. J. Phys. A, 1996, 29: 7581-7595.
    [105] CONTE R. The Painlev(?) property one century later[M]. New York: Springer-Verlag, 1999.
    [106] GENG X G, WU Y T, CAO C W. Quasi-periodic solutions of the modified Kadomtsev-Petviashvili equation[J]. J. Phys. A, 1999, 32: 3733-3742.
    [107] CHENG Y, LI Y S. The constraint of the Kadomtsev-Petviashvili equation and its special solutions [J]. Phys. Lett. A, 1991, 157: 22-26.
    [108] QU C Z, ZHANG S L, LIU R C. . Separation of variables and exact solutions to quasilinear diffusion equations with the nonlinear source[J]. Phys. D, 2000, 44: 97-123.
    [109] 楼森岳,唐晓艳.非线性数学物理方法[M].北京:科学出版社,2006.
    [110] ZENG Y B, LI Y S. Integrable Hamiltonian systems related to the polynomial eigenvalue problem[J]. J. Math. Phys., 1990, 31: 2835-2839.
    [111] LIE S. On integration of a Class of Linear Partial Differential Equations by Means of Definite Integrals [M]. In: CRC Handbook of Lie Group Analysis of Differential Equations: 473-508.
    [112] LIE S. Classification und Integration von gewohnlichen Differentialgleichungen zwischenxy,die eine Gruppe von Transformationen gestatten: Die nachstehende Arbeit erschien zum ersten Male im Pr(?)hling 1883 im norwegischen Archiv[J]. Math. Ann. 1908, 32: 213-281.
    [113] LIE S. Begriindung einer Invarianten-Theorie der Beruhrungs-Transformationen[J]. Math.Ann., 1874, 8(2): 215-303.
    [114] HEREMAN W. Review of symbolic software for Lie symmetry analysis[J]. Math. Comput.Modelling, 1997, 25: 115-132.
    [115] NOETHER E. Invariant variations problem[J]. Transport Theory Statist. Phys., 1971, 1(3):186-207.
    [116] BLUMAN G, COLE J. The general similarity solution of the heat equation[J]. J. Math.Mech., 1969, 18: 1025-1042.
    [117] BLUMAN G, KUMEI S. On invariance properties of the wave equation[J]. J. Math. Phys.,1987, 28: 307-318.
    [118] GANDARIAS M L. New symmetries for a model of fast diffusion[J]. Phys. Lett. A, 2001,286: 153-160.
    [119] OLVER P J, ROSENAU P. The construction of special solutions to partial differential equations[J]. Phys. Lett. A, 1986, 114(3): 107-112.
    [120] PUCCI E, SACCOMANDI G. On the weak symmetry groups of partial differential equations[J]. J. Math. Anal. Appl., 1992, 163(2): 588-598.
    [121] LIE S. Die theorie der integral invarianten 136 ein korolar der differential invariant[J]. Gesammelte Abhand lungen, 1927, 6: 649-663.
    [122] 李翊神.可积方程新的对称、李代数及谱可变演化方程[J].中国科学A,1987,30:235.
    [123] 田畴.Burgers方程的新的强对称、对称和李代数[J].中国科学A,1987,30:1009.
    [124] LOU S Y. Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation[J]. Phys. Lett. A, 1993, 175: 23-26.
    [125] LOU S Y. Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations[J]. J. Math. Phys., 1994, 35: 2390-2396.
    [126] MAHOMED F M, QU C. Approximate conditional symmetries for partial differential equations[J]. J. Phys. A: Math. Gen., 2000, 33: 343-356.
    [127] CLARKSON P A, KRUSKAL M D. New similarity reductions of the Boussinesq equation[J].J. Math. Phys., 1989, 30: 2201.
    [128] LOU S Y. A note on the new similarity reductions of the Boussinesq equation [J]. Phys. lett.A, 1990, 151(3-4): 133-135.
    [129] LOU S Y, RUAN H Y, CHEN D F. Similarity reductions of the KP equation by a direct method[J]. J. Phys. A: Math. Gen., 1991, 24: 1455-1467.
    [130] PUCCI E. Similarity reductions of partial differential equations[J]. J. Phys. A: Math. Gen.,1992, 25: 2631-2640.
    [131] 范恩贵.齐次平衡法、Weiss-Tabor-Carnevale法及clarkson-Kruskal约化法之间关系[J].物理学报,2000,49(8):1409-1412.
    [132] LOU S Y, TANG X Y, LIN J. Similarity and conditional similarity reductions of a (2 + 1)-dimensional KdV equation via a direct method [J]. J. Math. Phys., 2000, 41(12): 8286-8303.
    [133] SCHWARZ F. Algorithmic Lie Theory for Solving Ordinary Differential Equations[M].Chapman & Hall/CRC, 2007.
    [134] FUSHCHYCH W I, SHTELEN W M, SEROV N I. Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics[M]. Dordrecht: Kluwer, (English transl.) 1993.
    [135] LIE S. Gesammelte Abhandlungen[J]. Leipzig: Teubner, 1924, 5: 767-773.
    [136] OVSIANNIKOV L V. Group analysis of differential equations[M]. New York: Academic Press, 1982.
    [137] IBRAGIMOV N H (Editor). Lie group analysis of differential equations-symmetries, exact solutions and conservation laws[M], V.I. Boca Raton, FL: CRC Press, 1994.
    [138] NIKITIN A G, Popovych R O. Group classification of nonlinear Schrodinger equations [J].Ukr. Math. J., 2001, 53: 1053-1060.
    [139] POPOVYCH R 0, CHERNIHA R M. Complete classification of Lie symmetries of systems of two-dimensional Laplace equations [C]. Proceedings of Institute of Mathematics of NAS of Ukraine, 2001, 36: 212-221.
    [140] POPOVYCH R O, IVANOVA N M. New results on group classification of nonlinear diffusion-convection equations [J]. J. Phys. A, 2004, 37(30): 7547-7565.
    [141] IVANOVA N M, SOPHOCLEOUS C. On the group classification of variable coefficient nonlinear diffusion-convection equations [J]. J. Comput. Appl. Math., 2006, 19(2)7: 322-344.
    [142] VASILENKO O F, YEHORCHENKO I A. Group classification of multidimensional nonlinear wave equations[C]. Proceedings of Institute of Mathematics of NAS of Ukraine, 2001,36: 63-66.
    [143] OLVER P J, HEREDERO R H. Classification of invariant wave equations[J]. J. Math. Phys.,1996, 37: 6419-6438.
    [144] GONZ'ALEZ-L'OPEZ A, KAMRAN N, OLVER P J. Quasi-exactly solvable Lie algebras of first order differential operators in two complex variables [J]. J. Phys. A: Math. Gen., 1991,24: 3995-4008.
    [145] GONZ'ALEZ-L'OPEZ A, KAMRAN N, OLVER P J.. Quasi-exact solvability [J]. Commun.Math. Phys., 1994, 159: 503-537.
    [146] AKHATOV I SH, GAZIZOV R K, IBRAGIMOV N KH. Group classification of equation of nonlinear filtration[J]. Dokl. Akad. Nauk SSSR, 1987, 293(5): 1033-1035.
    [147] AKHATOV I SH, GAZIZOV R K, IBRAGIMOV N KH. Nonlocal symmetries. A heuristic approach[J]. Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya, 1989, 34: 3-83.
    [148] TORRISI M, TRACINA R, VALENTI A. A group analysis approach for a nonlinear differential system arising in diffusion phenomena[J]. J. Math. Phys., 1996, 37: 4758-4767.
    [149] TORRISI M and TRACINA R. Equivalence transformations and symmetries for a heat conduction model[J]. Internat. J. Non-Linear Mech., 1998, 33(3): 473-487.
    [150] IBRAGIMOV N H, TORRISI M, VALENTI A. Preliminary group classification of equations v_(tt) = f(x,v_x)v_(xx)+g(x,v_x)[J]. J. Math. Phys., 1991, 32: 2988-2995.
    [151] IBRAGIMOV N H, TORRISI M. A simple method for group analysis and its applications to a model of detonation [J]. J. Math. Phys., 1992, 33: 3931-3937.
    [152] QU C Z. Allowed transformations and symmetry class of variable-coefficient Burgers equations[J]. IMA J. Appl. Math., 1995, 54(3): 203-225.
    [153] QU C Z. Preliminary group classification of equation u_t = f(x,u_x)u_(xx) + g(x,u_x)[J]. Acta Mathematica Scientia, 1997, 17(3): 255-261.
    [154] KINGSTON J G, SOPHOCLEOUS C. On form-preserving point transformations of partial differential equations[J]. J. Phys. A: Math. Gen., 1998, 31: 1597-1619.
    [155] FUSHCHYCH W I, ZHDANOV R Z. Symmetries and Exact Solutions of Nonlinear Dirac Equations[M]. Kyiv: Mathematical Ukraina Publisher, 1997.
    [156] RIDEAU G, WINTERNITZ P. Evolution equations invariant under two-dimensional space-time Schr(?)dinger group[J]. J. Math.Phys., 1993, 34: 558-570.
    [157] ZHDANOV R Z, FUSHCHYCH W I. On new representations of Galilei groups[J]. J. Non.Math. Phys., 1997, 4: 426-435.
    [158] RIDEAU G, WINTERNITZ P. Nonlinear equations invariant under the Poincar, similitude and conformal groups in two-dimensional space-time [J]. J. Math.Phys., 1990, 31: 1095-1105.
    [159] FUSHCHYCH W I, LAHNO V I. On new nonlinear equations invariant under Poincare group in two-dimentional space-times [J]. Proc. Acad. Sci. Ukraine, 1996, 11: 60-65.
    [160] ZHDANOV R Z, LAHNO V I. Group classification of heat conductivity equations with a nonlinear source[J]. J. Phys. A.: Math. Gen., 1999, 32: 7405-7418.
    [161] BASARAB-HORWTH P, LAHNO V, ZHDANOV R. The structure of Lie algebras and the classification problem for partial differential equations [J]. Acta Applicandae Mathematicae,2001, 69: 43-94.
    [162] LAHNO V I, ZHDANOV R Z. Group classification of nonlinear wave equations[J]. J. Math.Phys., 2005, 46: 053301.
    [163] ZHDANOV R Z, LAHNO V I. Group classification of the general evolution equation: Local and quasilocal symmetries [J]. SIGMA, 2005, 1: 009.
    [164] RAMOND P. Dual Theory for Free Fermions[J]. Phys. Rev. D., 1971, 13: 2415-2418.
    [165] NEVEU A, SCHWARZ J H. Factorizable Dual Model of Pions[J]. Nucl. Phys. B, 1971, 31:86-112.
    [166] GERVAIS J L, SAKITA B. Field Theory Interpretation of Supergauges in Dual Models[J].Nucl. Phys. B, 1971, 34: 632-639.
    [167] GOL'FAND T A, LIKHTMAN E P. Extension of the Algebra of Poincare Group Generators and Violation of P-Invariance[J]. JETP Lett., 1971, 13: 323-326.
    [168] WESS J, ZUMINO B. Supergauge Transformations in Four Dimensions [J]. Nucl. Phys. B,1974, 70: 39-50.
    [169] DI VECCHIA P, FERRARA S. Classical solutions in two-dimensional supersymmetric field theories[J]. Nucl. Phys. B, 1977, 130: 93-104.
    [170] CHAICHAIN M, KULISH P P. On the method of inverse scattering problem and Backlund transformations for supersymmetric equations[J]. Phys. Lett. B, 1978, 78: 413-416.
    [171] FERRARA S, GIRARDELLO L, SCIUTO S. An infinite set of conservation laws of the supersymmetric sine-Gordon theory [J]. Phys. Lett. B, 1978, 76: 303-306.
    [172] ROELOFS G H M, KERSTEN P H M. Supersymmetric extensions of nonlinear SchrSdinger equation: symmetries and coverings[J]. J. Math. Phys., 1992, 33: 2185-2206.
    [173] MANIN YU I, RADUL A. A supersymmetric extension of the Kadomtsev- Petviashvili hierarchy[J]. Commun. Math. Phys., 1985, 98: 65-77.
    [174] RABIN J M. The geometry of the super KP flows[J]. Common. Math. Phys., 1991, 137:533-552.
    [175] MULASE M. A new super KP system and a characterization of the Jacobians of arbitrary algebraic super curves [J]. J. Diff. Geom., 1991, 34: 651-680.
    [176] MATHIEU P. Supersymmetric extension of the Korteweg-de Vries equation[j]. J. Math.Phys., 1988, 29: 2499-2506.
    [177] YUNG C M. The N=2 supersymmetric Boussinesq hierarchies [J]. Phys. Lett. B, 1993, 309:75-84.
    [178] BEUUCCI S, IVANOV E, KRJVONOS S, etal. N = 2 super Boussinesq hierarchy: Lax pairs and conservation laws[J]. Phys. Lett. B, 1993, 312: 463-470.
    [179] OLSHANETSKY M A. Supersymmetric two-dimensional Toda lattice[J]. Commun. Math.Phys., 1983, 88(1): 63-76.
    [180] IKEDA K. A supersymmetric extension of the Toda lattice hierarchy [J]. Lett. Math. Phys.,1987, 14(4): 321-328.
    [181] IKEDA K. The super-Toda lattice hierarchy[J]. Publ. Res. Inst. Math. Sci., 1989, 25(5):829-845.
    [182] LU S Q, HU X B, LIU Q P. A supersymmetric Ito's equation and its soliton solutions[J]. J.Phys. Soc. Japan, 2006, 75(6): 064004.
    [183] GUHA P, OLVER P J. Geodesic flow and two (super) component analog of the Camassa-Holm equation[J]. SIGMA, 2006, 2: 54-63.
    [184] OEVEL W, POPOWICZ Z. The biHamiltonian structure of fully supersymmetric Kortewegde Vries systems [J]. Commun. Math. Phys., 1991, 139: 441-460.
    [185] MOROSI C, PIZZOCCHERO L. On the biHamiltonian structure of the supersymmetric KdV hierarchies: a Lie superalgebraic approach[J]. Commun. Math. Phys., 1993, 158: 267-288.
    [186] UENO K, YAMADA H, IKEDA K. Algebraic study on the super-KP hierarchy and the ortho-sympletic super-KP hierarchy[J]. Common. Math. Phys., 1989, 124: 57-78.
    [187] MATHIEU P. Superconformal algebra and supersymmetric Korteweg-de Vries equation[J].Phys. Lett. B, 1988, 203: 287-291.
    [188] BILAL A, GERVAIS J L. Superconformal algebra and super-KdV equation[J]. Phys. Lett.B, 1988, 211: 95-100.
    [189] LIU Q P. Darboux transformations for supersymmetric Korteweg-de Vries equations[J]. Lett.Math. Phys., 1995, 35: 115-122.
    [190] AYATI M A, AYATI M I, HUSSIN V. Computation of Lie supersymmetries for the super-symmetric two bosons equations [J]. Computer Physics Communications, 1998, 115: 416-427.
    [191] AYATI M A, HUSSIN V. GLie: a MAPLE program for Lie supersymmetries of Grassmann-valued differential equations[J]. Computer Physics Communications, 1997, 10: 157-176.
    [192] 张鸿庆,杨光.变系数偏微分方程组一般解的构造[J].应用数学和力学:1991,12:135-139.
    [193] 张鸿庆.线性算子方程组一般解的代数构造[J].大连工学院学报,1979,3:1-16.
    [194] ZHANG H Q, FAN E G. Applications of Mechanical Methods to Partial Differential Equations in Mathematics Mechanization and Applications [M]. London: Academic Press, 2000:409-432.
    [195] 吕卓生.计算微分方程对称与精确解的机械化算法及实现[D].大连:大连理工大学,2003.
    [196] 范恩贵.孤立子与可积系统[D].大连:大连理工大学,1998.
    [197] HUANG D J, ZHANG H Q. The extended first kind elliptic sub-equation method and its application to the generalized reaction Duffing model[J]. Phys. Lett. A., 2005, 344: 229-237.
    [198] LOU S Y, RUAN H Y, HUANG G X. Exact solitary waves in a converting fluid[J]. J. Phys.A, 1991, 24: 587-590.
    [199] WANG Q, CHEN Y, ZHANG H Q. A new Riccati equation rational expansion method and its application to (2+1)-dimendional Burgers equation[J]. Chaos Solitons and Fractals, 2005,25: 1019-1028.
    [200] CHEN Y, LI B, ZHANG H Q. Exact Traveling Wave Solutions for Some Nonlinear Evolution Equations with Nonlinear Terms of Any Order [J]. Int. J. Mod. Phys. C, 2003, 14(1): 99-112.
    [201] CHEN Y, LI B, ZHANG H Q. Exact solutions for a new class of nonlinear evolution equations with nonlinear term of any order [J]. Chaos Solitons Fractals, 2003, 17(4): 675-682.
    [202] LI X Z, WANG M L. A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms [J]. Phys. Lett. A, 2007, 361: 115-118.
    [203] LI B, CHEN Y, ZHANG H Q. Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation[J]. Appl. Math. Comp., 2003, 146: 653-666.
    [204] LEVID, WINTERNITZ P. Continuous symmetries of discrete equations[J]. Phys. Lett. A,1991, 152(7): 335-338.
    [205] LEVI D, WINTERNITZ P. Symmetries and conditional symmetries of differential-difference equations[J]. J. Math. Phys., 1993, 34(8): 3713-3730.
    [206] MAEDA S. Canonical structure and symmetries for discrete systems[J]. Math. Japn., 1980,25(4): 405-420.
    [207] MAEDA S. The similarity method for difference equations [J]. IMA J. Appl. Math., 1987,38(2): 129-134.
    [208] QUISPEL G, CAPEL H W, SAHADEVAN R. Continuous symmetries of differential-difference equations: the Kac-van Moerbeke equation and Painlev(?) reduction[J]. Phys. Lett.A, 1992, 170(5): 379-383.
    [209] CAMPA A, GIANSANTI A, TENENBAUM A, etal. Quasisolitons on a diatomic chain at room temperature [J]. Phys. Rev. B, 1993, 48: 10168-10182.
    [210] SCOTT A. Davydov's soliton[J], Phys. Rep., 1992, 217(1): 1-67.
    [211] PNEVMATEKOS S, FLYTZANIS N, REMOISSENET M. Soliton dynamics of nonlinear diatomic lattices[J]. Phys. Rev. B, 1986, 33(4): 2308-2321.
    [212] WINTERNITZ P, GAZEAU J P. Allowed transformations and symmetry classes of variable coefficient Korteweg-de Vries equations[J]. Phys. Lett. A, 1992, 167(3): 246-250.
    [213] DAVID D, KAMRAN N, LEVI D, etal. Subalgebras of Loop Algebras and Symmetries of the Kadomtsev-Petviashvili Equation[J]. Phys. Rev. Lett., 1985, 55(20): 2111-2113.
    [214] CHAMPAGNE B, WINTERNITZ P. On the infinite-dimensional symmetry group of the Davey-Stewartson equations[J]. J. Math. Phys., 1988, 29(1): 1-8.
    [215] MARTINA L, WINTERNITZ P. Analysis and applications of the symmetry group of the multidimensional three-wave resonant interaction problem[J]. Ann. Phys., 1989,196(2): 231-277.
    [216] ORLOV A Y, WINTERNITZ P. Loop algebra symmetries and commuting flows for the Kadomtsev-Petviashvili hierarchy [J]. Preprint CRM-1936, 1994.
    [217] WINTERNITZ P, ORLOV A Y. Symmetries of the Kadomtsev-Petviashvili hierarchy[J].Preprint CRM-2149, 1994.
    [218] GUNGOR F, SANIELEVICI M, WINTERNITZ P. On the integrability properties of variable coefficient Korteweg-de Vries equations[J]. Can. J. Phys., 1996, 74: 676-684.
    [219] GAGNON L, WINTERNITZ P. Symmetry classes of variable coefficient nonlinear Schroinger equations [J]. J. Phys. A: Math. Gen., 1993, 26: 7061-7076.
    [220] BARUT A O, RACZKA R. Theory of Group Representations and Applications[M].Warszawa: PWN-Polish Scientific, 1977.
    [221] HELGASON S. Differential Geometry, Lie Groups, and Symmetric Spaces[M]. New York:Academic Press, 1978.
    [222] MOROZOV V V. Classification of six-dimensional nilpotent Lie algebras[J].Izv. Vys. Ucheb.Zaved., 1958, 5(5): 161-171 (in Russian).
    [223] MUBARAKZYANOV G M. On solvable Lie aIgebras[J]. Izv. Vys. Ucheb. Zaved. Matematika, 1963, N1(32): 114-123 (in Russian).
    [224] MUBARAKZYANOV G M. The classification of the real structure of five-dimensional Lie algebras [J]. Izv. Vys. Ucheb. Zaved., 1963, 3(34): 99-105 (in Russian).
    [225] MUBARAKZYANOV G M. The classification of six-dimensional Lie algebras with one nilpotent basis element [J]. Izv. Vys. Ucheb. Zaved., 1963, 4(35): 104-116 (in Russian).
    [226] MUBARAKZYANOV G M. Some theorems on solvable Lie algebras [J]. Izv. Vys. Ucheb.Zaved., 1966, 3(55): 95-98 (in Russian).
    [227] TURKOWSKI P. Solvable Lie algebras of dimensional six[J]. J. Math. Phys., 1990, 31:1344-1350.
    [228] TURKOWSKI P. Low-dimensional real Lie algebras[J]. J. Math. Phys., 1988, 29: 2139-2144.
    [229] LEVI D, WINTERNITZ P. Symmetries of discrete dynamical systems [J]. J. Math. Phys.1996, 37(11): 5551-5576.
    [230] BROER L J F. Approximate equations for long water waves [J]. Appl. Sci. Res., 1975, 31:377-395.
    [231] KAUP D J. A higher-order water-wave equation and the tnethod for solving it[J]. Prog.Theor. Phys., 1975, 54: 396-408.
    [232] KUPERSHMIDT B A. Mathematics of dispersive water waves[J]. Commun. Math. Phys.,1985, 99(5): 1-73.
    [233] ARATYN H, FEREIRilA L A, COMES J F, etal. On W, algebras, gauge equivalence of KP hierarchies, two-boson realizations and their KdV reductions [J]. Nucl. Phys. B, 1993, 402:85.
    [234] BONORA L, XIONG C S. An alternative approach to KP hierarchy in matrix models[J].Phys. Lett. B, 1992, 285: 191-198.
    [235] BRUNELLI J C, DAS A. The supersymmetric two bosons hierarchies [J]. Phys. Lett. B,1994, 337: 303-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700