用户名: 密码: 验证码:
提高LF炉精炼工艺生产效率的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了改善精炼设备使用状况,在现有设备基础上提高生产效率,本文针对鞍钢二炼钢北区200t LF炉精炼周期过长的问题,开发了Al-CaO-CaC2渣系的钢包渣预脱硫改质剂和CaCO3-MgCO3-CaC2-NaCl-CaCl2渣系的精炼用发泡剂,从而达到缩短精炼时间的目的。同时本文还研究了不同的LF钢包衬耐火材料对深脱硫的影响。
     本试验设计Al-CaC2-CaO渣系钢包渣预脱硫改质剂对比试验,在实验室MoSi2高温炉内进行转炉出钢钢水预脱硫的热模拟试验,进而考察预脱硫改质剂对钢水脱硫率的影响,根据试验结果,优化出在本试验条件下预脱硫改质剂的最佳组成。
     以无氟预熔深脱硫精炼渣作为基础渣,设计CaCO3-MgCO3-CaC2-NaCl-CaCl2渣系LF精炼用发泡剂的对比试验。试验考察不同配比的发泡剂的相对发泡高度,以此优化出本试验条件下发泡剂的最佳组成。
     通过设计对比试验,研究在采用预熔和未预熔深脱硫精炼渣的条件下,含碳铝镁尖晶石砖和镁碳砖特制坩埚与电熔氧化镁坩埚对钢液脱硫率的影响,在此基础上确定有利于深脱硫的LF钢包衬材质。
     试验结果表明:
     (1)钢液的脱硫率随着预脱硫改质剂中Al、CaC2和CaO含量的增加呈先增大后减小的趋势,说明Al、CaC2、CaO均存在最佳含量。
     (2)在本试验条件下预脱硫改质剂的最佳成分为:wAl=33-37%、WCaC2=48-52%、WCaO=13-17%。优化出的预脱硫改质剂与现场用铝造渣球相比,不仅对转炉下渣的改质效果非常明显,而且对钢液还具有预脱硫能力,对钢液其他成分的影响很小。
     (3)在本试验条件下精炼用发泡剂的最佳成分为:WCaCO,=55-60%、WMgCO3=15-20%、WCaC2=6-8%、WCaCl2=8-9%、WNaCl=9-10%。优化出的发泡剂取得了较好的起泡效果,优于现场发泡剂。试验同时表明:发泡剂中含有适量的氯化物(CaCl2、NaCl),具有提高起泡效果的作用。
     (4)在现场实验中,通过使用优化后的预脱硫改质剂与发泡剂,使得LF炉的精炼时间大大缩短,精炼周期从原来的约60min缩短至约40min(原始w[S]=60-80×10-6,处理后w[S]=15-25×10-6),有效地提高了精炼生产效率。
     (5)对于考察的三种耐火材料,含碳铝镁尖晶石砖和镁碳砖特制的坩埚脱硫率都较高,使用氧化镁坩埚的脱硫效果较差,由于含碳铝镁尖晶石砖和镁碳砖能导致钢液增碳,因此不利于低碳钢生产。
To improve use ratio of refining equipment and productivity, Al-CaO-CaC2 slag system pre-desulfurizing and conditioning agent and CaCO3-MgCO3-CaC2-NaCl-CaCl2 slag system foaming agent are devised in this paper, which is originated from problems about refining periodic time of 200t LF in the northern work area of No.2 steel plant, Anshan New Iron and Steel Ltd. The paper also studies on the effect of refractories on desulfurizing ratios. This is important to the selection of LF refractory in the field.
     The comparison experiments about Al-CaO-CaC2 slag system pre-desulfurizing and conditioning agents are designed and thermal simulation experiments are carried out in MoSi2 Furnace. Through these experiments, desulfurizing ratios of molten steel are abtained and optimal composition of pre-desulfurizing and conditioning agent is acquired in this experimental condition.
     The comparison experiments about CaCO3-MgCO3-CaC2-NaCl-CaCl slag system foaming agents are designed which are based on pre-molten refining slag without fluorine. Accoring to foaming relative heights, optimal composition of foaming agent is obtained in this experimental condition.
     Magnesium-aluminum spinel refractory containting carbon, magnesium-carbon refractory and magnesium oxide refractory are applied in the comparison experiments in which the pre-molten refining slag and non-pre-molten refining slag are used in the experiments, and according to the desulfuring ratios, the proper refractories in LF refining process are decided.
     The experimental results show:
     (1) Desulfurizing ratios in molten steel increase at first and then decrease according to increment of Al, CaC2 and CaO contents in pre-desulfurizing and conditioning agents. These show that the contents of Al, CaC2 and CaO all have optimal values.
     (2) The optimized pre-desulfurizing and conditioning agent is obtained in this experimental condition and its composition is:WAl=33-37%、wCaC2=48-52%、wCaO=13-17%. The optimized pre-desulfurizing and conditioning agent is superior to field slag, which can decrease the oxidative of tap slag significantly, pre-desulfurize before LF process and has minor influence on other elements in molten steel.
     (3) The optimized foaming agent composition is obtained in this experimental condition:wCaCO3=55-60%、WMgCO3=15-20%、WCaC2=6-8%、wCaCl2=8-9%、wNaCl=9-10%.The optimized foaming agent has higher foaming relative height than field foaming slag. The results also indicate that proper chloride contents in foaming agent can increase foaming relative height.
     (4) Using optimized pre-desulfurizing and conditioning agent and foaming agent in field experiments, LF refining time has shortend greatly. Refining periodic time decreases from about 60min to about 40min. Productivity has improved efficiently.
     (5) In the three types refractories, both magnesium-aluminum spinel refractory containting carbon and magnesium-carbon refractory obtain higher desulfurizing ratios. Magnesium oxide refractories has lower desulfurizing ratios. Magnesinm-aluminum spinel refractory containting carbon and magnesium-carbon refractory can lead to recarburization in molten steel, so they are not fit to the production of low-carbon steel.
引文
1.朱苗勇.现代冶金学(钢铁冶金卷)[M],北京:冶金工业出版社,2005:292-293;307-308;175
    2.张鉴.炉外精炼的理论与实践[M],北京:冶金工业出版社,1993:321-324
    3.蒋国昌.纯净钢及二次精炼[M],上海:上海科学技术出版社,1996:25-26
    4.知水,王平,候树庭.特殊钢炉外精炼[M],北京:原子能出版社,1996:57-59
    5.赵沛,成国光.炉外精炼及铁水预处理实用技术手册[M],北京:原子能出版社,2004:549
    6.李中金,刘芳.我国钢水二次精炼的发展[J],特殊钢,2002,23(3):29-30
    7.翟玉春等.现代冶金学[M],北京:电子工业出版社,2001:165-166
    8.徐曾启等.炉外精炼[M],北京:冶金工业出版社,1994:99-100
    9.孟劲松.LF合成精炼渣优化与深脱硫工艺研究[D],沈阳:东北大学,2006
    10.张卫强.昆钢LF炉精练渣的组成及冶金性能的研究[D],重庆:重庆大学,2005
    11. Han J W, Heo S H, Kam D H et al. Transient fluid flow phenomena in a gas stirred liquid bath with top oil layer-approach by numerical simulation and water model experiments[J], ISIJ International,1995,35(5):472-479
    12.朱立新,马志刚,雷思源等.宝钢300tLF渣精炼技术的开发与应用[J],钢铁,2004,39(4):21-23
    13.刘海强,王三忠,程官江。安钢100tLF精炼炉造渣工艺实践[J],湖南冶金,2004,32(3):32-34
    14.夏春学,杨晓江,崔宝民等.唐钢150tLF钢包精炼炉快速脱硫工艺实践[J],河南冶金,2005,13(1):36-44
    15. Mazumdar D, Guthrie R. The physical and mathematical gas stirred ladle systems[J], ISIJ International,1995,35(1):1-20
    16. Das N K, Sen N, Ghosh M et al. Effect of simulation addition of CaO-Al2O3 flux and CaSi on the modification of inclusions in aluminum-killed steel[J], Scandinavian journal metallurgy, 2005,3(4):274-282
    17. Berryman R, Sommerville I D,Ishii F. The influence of oxygen potential on the sulfide capacity of slags[J], I&SM,1987,(7):49-54
    18. Sosnsky D J, Sommerville I D, The composition and temperature dependence of the sulfide capacity of metallurgical slags[J], Metallurgical transactins B,1986,7B(5):331-337
    19. Martinez R E. Formation of CaS during secondary metallurgy and solidification of steel [J], I&SM,1995,(6):19-23
    20.李广田,陈俊锋,李文献等.多功能预熔精炼渣的研制与应用[J],特殊钢,2004,25(2):47-49
    21.杨桂荣,王祖宽.在钢包中采用合成渣料脱硫的探讨[J],河北理工学院学报,1998,20(4):1-5
    22.徐国华.100t钢包炉用固体合成精炼渣[J],包头钢铁学院院报,2001,20(4):319-321
    23. Shibata E, Nakamura T, Nishida T et al. Evaluation of desulphuization flux in CaO-Al2O3-BaO-CeO2-MgO system[J], Steel research int,2004,75(5):308-313
    24.周世详,许诚心等.铝渣灰脱硫剂对提高LF炉脱硫效果的影响[J],北京科技大学学报,1997,19(4):338-341
    25.战东平,姜周华,梁连科.150tEAF-LF预熔精炼渣脱硫试验研究[J],炼钢,2003,19(2):48-51
    26.吴坚,梁志钢.包钢LF精炼过程脱硫工业试验研究[J],钢铁,2001,36(8):16-19
    27. Park J H, Dong J M. thermodynamics of fluoride vaporization from slags containing CaF2 at 1773K[J], Steel research int,2004,75(12):807-811
    28. Natio K, Wakoh M.Recent change in refining process in Nippon steel corporation and metallurgical phenimena in the new process[J], Scandinavian journal metallurgy, 2005,(34):326-333
    29. Simeonov S R. Sulphur equilibrium distribution between CaO-CaF2-SiO2-Al2O3 slags and carbon-saturated iron[J], ISIJ International,1991,31(12):139
    30.寥建云,王平.LF钢包脱硫工艺分析[J],四川冶金,1994,(2):19-25
    31.吕同军,倪友来,张学松,50t钢包炉用精炼渣的研制[J].特殊钢,2002,23(5):41-42
    32. Keum C H, shin H K, Park J M,et al. Development of a new slag cut method during BOF tapping[A],79th steelmaking conference proceedings[C],1996:71-78
    33.于华财.转炉挡渣出钢技术的探讨[J],本钢技术,2005,(4):13-15
    34. Hvozda G, Toner T, Luyckx L. White slag tapping for efficient desulfurization and cleaner steel[A], Steelmaking conference proceedings[C],1998:157-162
    35. Jemson C W, Sansby B, Attwood R N.英国钢铁公司蒂赛德查厂减少转炉出钢带渣系统得开发与效益[J],国外钢铁,1993,(5):22-28
    36.华夏.转炉挡渣塞的研究及其结构设计[J],钢铁研究,1997,(6):6-8
    37.侨光,张怀军.挡渣塞法挡渣工艺研究与应用[J],包钢技术,2001,27(增刊):33-34
    38.黄宗泽,顾文兵.LF-VD过程泡沫渣的应用于控制[J],包头钢铁学院学报,1999,18(3):260-263
    39.任正德,颜广庭,唐萍.还原泡沫渣用发泡剂的试验研究[J],特殊钢,1996,17(6):17-20
    40.刘润藻,战东平.LF精炼用发泡剂的发泡效果[J],材料与冶金学报,2004,3(4):250-25l
    41.牛四通,张鉴,成国光.LF埋弧渣技术的开发及应用[J],钢铁,1997,32(3):21-24
    42.成国光,牛四通,张鉴等.还原精炼条件下炉渣的泡沫化[J],钢铁研究学报,1996,18(5):12-16
    43.迪林,王平,张鉴.精炼渣复合发泡剂配方的试验[J],特殊钢,1998,19(6):24-26
    44.牛四通,成国光,张鉴.精炼渣系的发泡性能[J],北京科技大学学报.1997,12(2):138-142
    45.于广石.首钢LF埋弧精炼技术的研究[J],钢铁研究,2000,(4):24-27,67
    46.张东力,王晓明.LF精炼渣发泡性能的试验研究[J],钢铁研究学报,2003(15),6:12-15
    47.迪林,王平,傅杰.LF埋弧泡沫渣试验研究[J],特殊钢,1999,20(3):24-26
    48. Ghag S S, Hayes P C, Lee H. Physical model development of slag foaming [J], ISIJ International,1998,38(11):1208-1215
    49. Ito K, Fruehan R J. Slag foaming in electric furnace steelmaking[J], Iron and Steel Maker, 1989,16(8):55-60
    50. Patsiogiannis F, Pal U B, Bogan R S. Laboratory scale refining studies on low carbon aluminum killed steels using synthetic fluxes[J], ISIJ International,1994,39(2):140-149
    51. Hayakawa H, hasegawa M, Oh-nuki K et al. sulphide capacities of CaO-SiO2-MgO-Al2O3 slags[J], steel resreach int,2006,77(1):14-20
    52. patsiogiannis F, Pal U B. Incorporation of sulfur in optimized ladle steelmaking slag[J], ISIJ International,1996,37(4):402-409
    53.颜广庭.LF炉泡沫渣埋弧作业研究,第8届全国炼钢学术会议论文集,1994,413-417
    54.26. Ito K, Fruchan R J. Study on the foaming of CaO-SiO2-FeO slag[J], Met. Trans.1989, 20B (4):509-514
    55. Shigeta H, Masahisa I. Foaming of molten slag contain iron oxide[J], 铁と钢,1983,69(9): 1152-1159
    56.刘德胜,工学智.缩短LF炉精炼周期的措施探讨[J],宽厚板,2004,10(1):18-20
    57. Warczok A A, Utigard T A. Low temperature physical modeling of slag foaming[J], Can. Met. Ouart,1994,64(10):491
    58. Zhang Y, Fruehan R J. Effect of the bubble size and chemical reaction on slag foaming[J], Metall Mater Trans B,1995,26b:803-812
    59.任正德.熔渣发泡幅度的理论模型[J],四川冶金,2000,(3):30-33
    60.张旭升,关勇.新型LF炉精炼渣的研制与应用[J],鞍钢技术,2006,(2):33-37
    61.吴利中,毛福来,杨潜.LF精炼造渣工艺研究[J],包钢科技,2003,29(增刊):24-27
    62. Cramb A W, Byrne M. Chemical interactions in ladle, tundish and mold slags[J], I&SM, 1986,(5):27-36
    63.乐可襄,王世俊CaO-SiO2-MgO-Al2O3渣的脱硫性能[J],特殊钢,1998,(3):15-17
    64.张东力,王晓鸣.LF埋弧精炼渣发泡剂试验研究[J],炼钢,2004,20(1):33-34
    65.俞皓.精炼渣泡沫化的研究[J],上海金属,2003,25(6):18
    66.黄宗泽,肖兴国,肖泽强等.含FeO熔渣的起跑过程及起跑参数间关系分析[J],金属学报,1996,32(3):278-283
    67. Ito K, Fruehan R J. Study on the foaming of CaO-SiO-FeO slags[J], Metall Mater Trans B, 1989,20b:509-521
    68. Hallberg M, Jonsson L I. A new approach to using modeling for on-line prediction of sulphur and hydrongen removal during ladle refining[J], ISIJ International,2004,44(8):1314-1327
    69. Hassall G J, Jackman D P, Hawkins R J. Phosphorus and sulphur removal from liquid steel in ladle steelmaking process[J], Ironmaking and steelmaking,1991,18(5):359-362
    70.黄希祜.钢铁冶金原理[M],北京:冶金工业出版社,2006:319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700