用户名: 密码: 验证码:
光学遥感卫星轨道设计若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥感卫星为人类从外层空间观测地球提供了平台,利用卫星所搭载的各种传感器,人类能够及时获取地表和地球各个圈层的状态及变化信息。随着航天技术、信息技术的飞速发展,航天遥感已经进入高时间分辨率、高空间分辨率和高光谱分辨率的新阶段。
     然而,卫星遥感数据的获取和信息服务又受到了卫星轨道、传感器性能、通信条件、数据分发模式乃至行业管理体制的约束,尚无法满足用户的全部要求,特别是应急情况下对遥感数据时效性和精度的要求。
     鉴于卫星轨道是影响卫星数据获取能力的最重要因素,作者提出通过优化轨道设计,提升遥感数据的按需获取能力和数据质量。本文旨在通过对光学遥感卫星轨道设计中涉及的动力学基础、设计流程、覆盖指标量算、特殊类型轨道设计以及基于多目标优化算法的轨道设计等关键技术的研究,拟突破光学遥感卫星轨道设计中的几个重要瓶颈问题,为光学遥感轨道的优化设计提供理论和技术支撑。本文研究内容包括:
     1.研究了卫星轨道动力学基础和遥感卫星轨道设计流程。在介绍卫星运动的时空基准和运动规律的基础上,研究了遥感卫星轨道设计的流程,阐述了遥感卫星轨道设计各阶段的主要任务,深入分析了光学轨道设计的约束条件和性能指标,探讨了它们与轨道参数的关系。
     2.研究了适宜于光学遥感卫星的特殊组合轨道设计方法。特殊类型轨道的优化选择是光学遥感卫星轨道设计是一个重要步骤,论文重点研究了适宜光学遥感卫星几种特殊组合轨道的设计方法,结合典型应用给出了上述轨道的设计流程,开发了向导式光学遥感卫星轨道设计的原型系统。
     3.研究了光学遥感卫星覆盖性能度量的关键技术。卫星轨道的覆盖性能量算是轨道设计中的一项重要工作。本文针对时间分辨率和覆盖范围量算两个关键指标分别提出了度量算法,可为设计方案提供准确、快速的覆盖性能量算工具。
     4.研究了基于多目标优化算法的遥感卫星轨道和星座设计方法。卫星轨道设计是一个典型的约束条件下的多参数多目标优化问题,进化算法是解决多目标优化问题的一种有效手段。以改进的NSGA-Ⅱ算法为优化工具,针对单星和星座轨道进行了优化设计,本文提出了基于多目标优化算法的光学遥感卫星轨道和星座设计方法。
     论文的主要特色和创新点有:
     1.提出了一种满足局部区域覆盖要求的具有高时、空分辨率,且具有良好拱线静止特性的临界回归椭圆轨道设计方法。该轨道具有四个主要优势:第一,通过将近地点置于热点区域上空,可保障对局部目标成像的高空间分辨率;第二,扩展了回归系数的区间,大大缩短了轨道的回归周期,因而具有高时间分辨率;第三,由于使用临界轨道,具有良好的拱线静止特性,保证了对同一纬度目标成像时分辨率一致;第四,与轨道高度(近地点高度)相同的圆轨道相比,该轨道具有更长的工作寿命。
     2.提出了基于多目标优化算法(改进的NSGA—Ⅱ算法)的遥感卫星轨道和星座设计方法。针对特殊类型轨道无法满足减灾救灾、军事行动等快速响应任务要求的问题,本文采取了基于多目标优化理论的轨道优化设计方法。根据卫星轨道设计任务的特点,本文改进了NSGA-Ⅱ算法,利用卫星覆盖性能指标的快速算法,提出了基于多目标优化算法的光学遥感卫星轨道和星座设计方法。
     3.提出了光学遥感卫星覆盖性能指标量算的关键算法。针对轨道时间分辨率和覆盖范围量算两个关键指标量算问题,分别提出了顾及J2项摄动影响的光学卫星成像窗口预报和基于几何成像模型的线阵CCD卫星成像区域预报两种快速算法,为轨道的覆盖性能度量提供了工具,有效支撑了遥感卫星轨道的优化设计。
     4.基于本文提出的特殊轨道设计方法,开发了向导式的光学遥感轨道设计原型系统(ODPSRSS),提高了特殊轨道设计的工作效率。
As an important data resource for earth observation, remote sensing satellite equipped with a variety of sensors can provide abundant information about the status and variation of earth surface. With the rapid development of space and information technology in recent years, space-borne remote sensing has entered a new stage of the massive sensors with high temporal resolution, spatial resolution or spectral resolution. But the remote sensing data still cannot satisfy the all demands in different applications, especially in the cases of emergency response, for the limitation of sensor performance, communication conditions, data distribution mode, and management system.
     The orbit is the most important factor to impact the data acquisition of RS satellite. This dissertation aims to improve the acquisition ability of remote sensing satellite by the optimization of its orbit. The key techniques of optimized orbit design were compared and analyzed, which includes satellite dynamics, design procedures, coverage performance metrics calculation, special orbit design and multi-objectives optimization algorithm. Some key problems of orbit design were solved in the research, which could support the optimized design of optical remote sensing satellite. The detailed contents were followings:
     1. The satellite orbital dynamics theory and remote sensing satellite orbit design procedures. The design procedures were introduced, the main aims of different steps were decomposed firstly; then, constraints and objectives of the design mode were presented.
     2. Special orbit design methods for optical remote sensing satellites. Optimization selection is the key step in the optical satellite orbit design. The dissertation focuses on special circular orbits, elliptical orbit design methods of optical remote sensing satellite. And a prototype system of wizard tools for optical remote sensing satellite orbit were developed based on the methods represented in this dissertation.
     3. The key algorithm of coverage performance metrics for optical remote sensing satellite orbit. Coverage performance of the satellite orbit is regarded as an important objective in the orbit design. Imaging temporal windows forecast algorithm considering J2perturbation and the regional forecast algorithm for CCD imaging geometric model were proposed for the two key indicators, calculation of temporal resolution and the regional coverage rate.
     4. Orbit and constellation design method for optical satellite based on multi-objective optimization algorithm. Satellite orbit design is a typical multi-objective optimization problem(MOP), evolutionary algorithms is an effective tool to solve multi-objective optimization problem. NSGA-Ⅱ was selected as the optimization tool for single satellite orbit and constellation design.
     The main characteristics and innovation:
     1. Meeting local area coverage requirements with high temporal and spatial resolution, a critical repeat orbit elliptical orbit design method was introduced. The orbit has four major advantages:first, by placing the perigee over the hot spot areas, we can get the target's image with very high spatial resolution; second, extends the interval of the regression coefficients, greatly reducing the orbital cycle of regression, a high time resolution can be realized; third, arched line has a good stationary characteristics due to the use of the critical orbit, to ensure that the same ground resolution for targets with the same latitude; fourth, it has a longer working life compared to circular orbit with the same attitude.
     2. Remote sensing satellite orbit and constellation design method based on multi-objective optimization algorithm (improved NSGA-Ⅱ algorithm) was proposed. According to the characteristics of the satellite orbit design tasks, we improved NSGA-Ⅱ algorithm, and optic remote sensing satellite orbit and constellation design method based on multi-objective optimization algorithm were proposed.
     3. Key algorithm of calculating optic remote sensing satellite covering performance metricswere put forward. Count two key indicators of the amount of orbit time resolution and the amount of coverage problem, we proposed two fast algorithms, one is taking into account the J2perturbation optical satellite imaging window forecast, the other is the linear CCD Satellite imaging area forecast algorithm based on geometric imaging mode. They are the useful tools to support the optimization of the design of the remote sensing satellite orbit.
     4. Based on the special orbit design method proposed in this paper, we have developed a wizard-orbit design of optical remote sensing prototype system (ODPSRSS) to improve the efficiency of the special orbit design.
引文
1.刘林.航天器轨道理论[M].北京:国防工业出版社,2000.
    2. Kaula W.M., Theory of satellite geodesy[M]. New York:Blaisdell Publishing Company, Dover Publications,1996/2005.
    3. Guochang Xu. Orbit[M]. Springer-Verlag Berlin Heidelberg,2008.
    4.杨嘉墀,范秦鸿,张云彤等.航天器轨道动力学与控制[M].北京:宇航出版社,1995.
    5. Jerry Jon Sellers, W. J. Astore, Robert B. Giffen, Wiley, J. Larson, Understanding Space:An Introduction to Astronautics [M]. McGraw-Hill Companies,2005.
    6. Howard D. Curtis,Orbital Mechanics:For Engineering Students [M]. Elsevier Science,2005.
    7.朱仁璋.卫星循环轨道与覆盖轨道的设计[J].宇航学报,1984,3:22-29.
    8. Taini, G., Pietropaolo, A., Notarantonio, A.Criteria and Trade-offs for LEO Orbit Design[C], Aerospace Conference,2008 IEEE,1-11.
    9. Zayan, M.A., Eltohamy, F. Orbits Design for Remote Sensing Satellite[C] Aerospace Conference,2008 IEEE,1-9.
    10.罗克庄.地球资源卫星轨道设计[J].中国空间科学技术,1988,4:56-60.
    11.范秦鸿.返回式卫星轨道设计[J].航天器工程,2000,9(2):24-31.
    12.杨维廉.资源一号卫星轨道:理论与实践[J].航天器工程,2001,10(1):30-43.
    13.于绍华,杨林娜.对地观测卫星太阳同步轨道的快速设计方法[J].上海航天,2002,2:5-7.
    14.陈洁.冻结轨道卫星轨道设计与控制方法研究[D].长沙:国防科技大学硕士学位论文,2004.
    15.陈洁,汤国建.太阳同步卫星的轨道设计[J].上海航天,2004,3:34-38.
    16.曲宏松,张叶,金光.基于Q值选取的太阳同步回归轨道设计算法[J].光学精密工程,2008,16(9):1688-1694.
    17.廖炳瑜.太阳同步回归轨道的设计、仿真研究[D].北京:中国科学院硕士学位论文,2003.
    18.谢金华.遥感卫星轨道设计[D].郑州:解放军信息工程大学硕士学位论文,2005.
    19.杨意飞,廖良才.基于进化算法的人造卫星轨道优化设计与仿真[J].计算机仿真,2007,24(6):66-68.
    20.曹喜滨,张锦绣,孙兆伟.卫星任务分析与轨道设计数字化平台[J].系统仿真学报,2004,16(10):2230-2233.
    21.邓科,崔祜涛,崔平远,刘宇飞.通用卫星轨道的可视化向导式设计软件开发[J].飞行力学,2005,23(2):89-92.
    22.江刚武.航天器轨道设计与分析仿真系统的设计[D].郑州:解放军信息工程大学硕士学位论文,2003.
    23.王海丽.军用侦察卫星星座技术研究[D].长沙:国防科技大学博士学位论文,2001.
    24.范丽.卫星星座一体化优化设计研究[D].长沙:国防科技大学博士学位论文,2006.
    25.杏建军.编队卫星周期性相对运动轨道设计与构形保持研究[D].长沙:国防科技大学博士学位论文,2007.
    26.王钧.成像卫星综合任务调度模型与优化方法研究[D].长沙:国防科技大学博士学位论文,2007.
    27.吴廷勇.非静止轨道卫星星座设计和星际链路研究[D].成都:电子科技大学博士学位论文,2008.
    28. J.Adams, A.Robertson, K.Zimmerman, J.How. Technologies for spacecraft formation flying[C]. IONGPS 96Conferenee,Sept.1996.
    29. Chris Sabol, Rich Burns, Craig A. McLaughlin. Satellite Formation Flying Design and Evolution. Journal of Spacecraft and rocket[J].2001,38(2):270-281.
    30. J. G. Walker. Some Circular Orbit Patterns Providing Continuous Whole Earth Coverage [J]. Journal of the British Inter-planetary Society,1971,24:369-384.
    31. J.G. Walker. Continuous Whole-Earth Coverage Circular orbit Satellite Patterns [J]. Technical Report7044:Royal Aircraft Establishment,1977.
    32. J.G. Walker. Satellite Patterns for Continuous Multiple Whole-Earth Coverage [C]. In Maritime and Aeronautical Satellite Communication and Navigation, volume 160 of IEEE Conference Publication.1078.110-122.
    33. H. Ballard. Rosette Constellations for Earth Satellites [J]. IEEE Transactions on Aerospace and Electronic Systems,1980,16(5):656-673.
    34. Luders, R.D. Satellite networks for continuous zonal coverage [J]. American Rocket Society Journal,1961,31(2):179-184.
    35. L. Rider. Optimized Polar Orbit Constellation for Redundant Earth Coverage [J]. Journal of the Astronautical Sciences,1985,33(2):147-161.
    36. W. S. Adams and T. J. Lang. Mission Design and Implementation of Satellite Constellations [M]. International Astronautical Federation,1988.
    37. Draim J. Elliptical-Orbit MEO Constellations:A Cost-Effective Approach for Multi-Satellite Systems [J]. Space Technology,1996,16(1):21-20.
    38. Cefola P. Carter D. Draim J.,Inciardi R., Proulx R. Demonstration ofthe COBRA Teardrop Concept Using Two Smallsats in 8-Hour Orbits [C].15th Annual AIAA/USU Conference on Small Satellites,Logan,Utah,2001.
    39. Inciardi R. Cefola P. Carter D. Proulx R. Draim, J. and D. Larsen. Beyond CEO-Using Elliptical Obit Constellations to Multiply the Space Real Estate[C]. 52nd International AstronauticalCogress,Toulouse,France,2001.
    40. Lang, Thomas J. Symmetric circular orbit satellite constellations for continuous global coverage[C]. Proceedings of the AAS/AIAA Astrodynamics Conference, Kalispell,MT, Aug.10-13,1987. Part 2 San Diego,CA,Univelt, Inc.1111-1132, 1998.
    41. Lang, T.J. Optimal low Earthorbit constellations for continuous global coverage[C]. Proceedings of the AAS/AIAA Astrodynamics Conference, Victoria, Canada,1199-1216.1994.
    42. Lang, T.J., Adams, W.S. A Comparison of satellite constellations for continuous global coverage[C]. Proceedings of the International Workshop,Toulouse,France; 51-62.1998.
    43. Draim J.E. Satellite Constellations. The 55th International Astronautical Congress, Vancouver, Canada,2004.
    44. George E. Coverage Optimization of Satellite Constellations for Discontinuous Global via Genetic Algorithms[J]. Advances in the Astronautical Sciences, 1997,97(3):333-346.
    45. Crossley W.A. Williams E.A. and Lang T.J. Average and Maximum Revisit Time Trade Studies for Satellite Constellations Using a Multi-Objective Genetic Algorithm[J]. Advances in the Astronautical Sciences,2000,105(1):653-657.
    46. Crossley W.A., Ely T.A. and Williams E.A. Satellite Constellation Design for tonal Coverage Using Genetic Algorithms[J]. Advances in the Astronautical Sciences,1998,99(2):443.
    47. Gennaro M. Di, Confessoreu G. and Ricciardelli S. A Genetic Algorithm to Design Satellite Constellations for Regional Coverage[M]. Operations Research Proceedings, springer, Berlin,2000.
    48. Lang T.J. A Parametric Examination of Satellite Constellations to Minimize Revisit Time for Low Earth Orbits Using a Genetic Algorithm[J]. Advances in the Astronautical Sciences,2001,100(Aug):625.
    49. Tafazolli R., Asvial M. and Evans B.G. Genetic Hybrid Satellite Constellation Design[J]. In AIAA Paper 22883, April 2003.
    50. David B.S., Matthew P.F. Satellite Constellation Design Tradeoffs Using Multiple-Objective Evolutionary Computation[J]. Journal of Spacecraft and Rockets,2006,43(6):1404-1411.
    51. Monica Roca, SeymourLaxon, and Carlo Zelli. The EnviSat RA-2 Instrument Designand Tracking Performance[J], IEEE Transactions on Geosciences and Remote Sensing,2009,47(10),3489-3506.
    52. Cheng-Chien Liu. Processing of FORMOSAT-2 Daily RevisitImagery for Site Surveillance[J], IEEE Transactions on Geosciences and Remote Sensing,2006, 44(11),3206-3214.
    53. Jeng-Shing Chern, An-Ming Wu, Shin-Fa Lin, Lesson learned from FORMOSAT-2 mission operations[J]. Acta Astronautica,2006,59(1):344-350
    54. G H Thomson, Evaluation of Russian Arkon-2 Earth observation satellite[J]. The Imaging Science Journal,2005,53:163-173.
    55. Kai-Jian Zhu, Jun-Feng Li, He-Xi Baoyin. Satellite scheduling considering maximum observation coverage time and minimum orbital transfer fuel cost[J], Acta Astronautica,66 (2010):220-229.
    56. Osama Mohamed Omar Abdelkhalik. Orbit Design and Estimation for Surveillance Missions Using Genetic Algorithms[D]. Ph.D Dissertation of TexasA&MUniversity,2005.
    57. Lim Samsung. Orbit Analysis and Maneuver Design for The Geoscience Laser Altimeters System[D]. Ph.D Dissertation of the University of Texas at Austin, 1995.
    58.范剑锋.重复观察和连续监视地面目标的近地卫星(飞船)的轨道设计方法 [J].中国空间科学技术,1982,4:53-59.
    59.余明生,戴超.卫星星座设计概述[J].中国空间科学技术,1996,6:45-49.
    60.白鹤峰,任萱,郗晓宁.近地轨道卫星星座设计时的轨道模型[J].国防科技大学学报,1999,21(4):1-4.
    61.胡剑浩,吴诗其,李乐民.区域性中轨道移动通信系统“时间决定”星座设计[J].电子科学学刊,2000,22(6):914-920.
    62.连全斌,张乃通,张中兆.地带性覆盖星座通用优化设计方法研究[J].高技术通讯,2001,5:54-58.
    63.王瑞,马兴瑞,李明.采用遗传算法进行区域覆盖卫星覆盖卫星星座优化设计[J].宇航学报,2002,23(3):24-28.
    64.王瑞,马兴瑞,李明.卫星星座优化设计的分布式遗传算法[J].中国空间科学技术,2003,1:38-43.
    65.郦苏丹,朱江,李广侠.采用遗传算法的低轨区域通信星座优化设计[J].通信学报,2005,26(8):122-128.
    66.郦苏丹,朱江,李广侠.采用遗传算法的中轨区域通信星座优化设计[J].系统仿真学报,2005,12(6):1366-1369.
    67.韩潮,邓丽,徐嘉.一种改进的区域覆盖星座优化设计方法[J].上海航天,2005,1:11-14.
    68.范丽,张育林.基于稳态遗传算法的间歇式覆盖天基雷达星座优化设计[J].国防科技大学学报,2006,28(2):17-21.
    69.胡修林,王贤辉,曾喻江,王莹.基于遗传算法的区域性Flower星座设计[J].华中科技大学学报(自然科学版),2007,35(6):8-10.
    70.谢恺,薛模根,韩裕生,周一宇.基于遗传算法的低轨天基雷达星座设计[J].信号处理,2008,24(2):233-236.
    71.程思微,张辉,沈林成,田菁.基于GDE3算法的侦查卫星星座优化设计[J].系统仿真学报,2009,21(2):586-589.
    72.阎志伟,田著,李汉铃.基于改进的NSGA-Ⅱ算法的区域覆盖卫星星座优化[J].空间科学学报,2004,24(1):43-50.
    73.郦苏丹,朱江,李广侠.基于多目标进化算法的MEO区域通信星座优化设计 [J].上海航天,2005,5:42-46.
    74.郦苏丹,朱江,李广侠.基于多目标进化算法的低轨区域通信星座优化设计[J].解放军理工大学学报(自然科学版),2005,6(1):1-6.
    75.魏蛟龙,岑朝辉.基于蚁群算法的区域覆盖卫星星座优化设计[J].通信学报,2006,27(8):62-66.
    76.刘文,张育林,刘昆.基于多目标进化算法的卫星通信星座优化设计[J].宇航学报,2008,29(1):95-98.
    77.蒙波,伊成俊,韩潮.基于多目标粒子群算法的导航星座优化设计[J].航空学报,2009,30(7):1284-1291.
    78. He Quan, Han Chao. Satellite Constellation Design with Adaptively Continuous Ant System Algorithm [J]. Chinese Journal of Aeronautics,2007,20:297-303.
    79.蒙波,韩潮,黄卫俊.区域覆盖特殊椭圆轨道星座优化设计[J].北京航空航天大学学报,2008,34(2):167-170.
    80.曾喻江.基于遗传算法的卫星星座设计[D].武汉:华中科技大学博士学位论文,2008.
    81.曾喻江,胡修林,王贤辉Flower卫星星座设计方法研究[J].宇航学报,2007,28(3):659-662.
    82. Schaffer J.D.Multiple objective optimization with vector evaluated genetic algorithms.In Genetic Algorithms and their Applications:Proceeding of the FirstInternational Conference on Genetic Algorithms, Lawrence Erlbaum, 1985.93-100.
    83. Fonseca C.M., Flemimg P.J. Genetic algorithm for Multiobjective Optimization: Formulation, discussion and generalization[C]. Proceeding of the 5th International Conference on Genetic Algorithms, San Mateo, California,1993.
    84. Horn J., Nafpliotis N., Goldberg D.E. A niched Parteo genetic algorithm for multi-objective optimization[C]. IEEE World Congress on Computational Computation, Piscataway, NJ,1994.
    85. Srinivas N., Deb K. Multiobjectvieoptimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation.1994,10(2):221-248.
    86. Deb K., Agrawal S., Pratap A., Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA Ⅱ[C]. Parallel Problem Solving for Nature, Berlin,2000.
    87. Kennedy J., Eberhart R. C. Particle swarm optimization[C]. Proceeding of IEEE International Conference on neural networks, Perth, Australia,1995.
    88. Li D., Remote Sensing in the Wenchuan Earthquake[J], Photogrammety Engineering & Remote Sensing,2009,75 (5):506-506.
    89.阮启明.面向区域目标的成像侦查卫星调度问题研究[D].长沙:国防科学技术大学博士学位论文,2006.
    90. Ali I., AL-DHAHIR N., Hershey J.E. Predicting the visibility of LEO satellites[J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(4)1180-1189.
    91. Palmer P., Mai Y. A Fast Prediction Algorithm of Satellite Passes[C]. Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, 2001.
    92. Mai Y., Palmer P., FastAlgorithm for Prediction of Satellite Imaging and Communication Opportunities [J]. Journal of Guidance, Control, and Dynamics, 2001,24 (6):1118-1124.
    93.仇原鹰,陈怀琛.低轨通信卫星覆盖区域和覆盖时间的研究[J].西安电子科技大学学报,1995,22(2):201-209.
    94.张锦绣,曹喜滨,林晓辉.卫星过顶与成像区域时间的快速预报算法研究[J].哈尔滨工业大学学报,2006,38(4):514-516.
    95. Tang Rongfu, YI Dongyu, ZHU Jubo, LUO Qiang, YAO Jing,TAIC Algorithm for the Visibility of the Elliptical Orbits'Satellites [C]. Proceedings of IEEE Geosience International and Remote Sensing Symposium Conference (IGARSS 2007), Barcelona, Spain,2007.
    96.李冬,易东云,罗强,蒋亮.基于J2项摄动的星地链路时间窗口快速算法[J].航天测控,2010,28(1):27-31.
    97.李冬,唐荣富,易东云.对地观测卫星访问区域目标时间窗口快速算法[J].上海航天,2010,27(3):1-5.
    98.刘雄,阮启明,陈英武.卫星全球普查任务规划系统预处理模块的开发[J].计算机仿真,2006,23(7),43-46.
    99.刘述明,顾行发,余涛.基于Web的资源卫星覆盖查询设计与仿真[J].计算机仿真,2008,25(12):49-53.
    100.罗伊萍,解志刚,陈文峰.一种有效的卫星过顶预报方法[J].海洋测绘,2006,26(3):13-16.
    101.T.Toutin, Geometric processing of remote sensing images:models, algorithms and methods, International Journal of RemoteSensing,25(10),1893-1924(2004).
    102.Understanding satellite orbit modeling. The user's guide of PCI.
    103.Chi, D.T., Su, Y.T. On a satellite coverage problem[J]. IEEE transactions on Aerospace and Electronic Systems,1995,31(3):891-896.
    104.R. Vilhena de Moraes, H. K. Kuga, and D. Y. Campos. Orbital propagation for Brazilian satellites using NORAD models[J]. Advanced space research, 2002,30(2):331-335.
    105.张过.缺少控制点的高分辨率卫星遥感影像几何纠正[D].武汉:武汉大学博士学位论文,2005.
    106.包海涛.共轨迹卫星星座的优化设计及其应用[D].武汉:华中科技大学硕士学位论文,2006.
    107.唐荣富.LEO卫星可见性问题研究[D].长沙:国防科学技术大学硕士学位论文,2007.
    108.Sengupta, P., S.R. Vadali, and K.T. Alfriend, Semi-Analytical Approach to Target Access in the Responsive Space Problem.2008.
    109.郭晓敏,张洪群,韩家玮,陈勃.侧摆条件下卫星观测区域计算研究[J].微计算机信息,2011,27(11):71-73.
    110.仇原鹰,陈怀琛.低轨道通信卫星覆盖区域和覆盖时间的研究[J].西安电子科技大学学报,1995,22(2):201-209.
    111.杨维廉.关于卫星运动的交点周期.航天器工程,1997,6(003):34-38.
    112.刘磊.基于HLA的卫星过境数据分析系统设计与实现[D].长沙:国防科学技术大学硕士学位论文,2005.
    113.刘述民.基于网络的民用卫星过境查询系统设计与实现[D].成都:电子科技大学硕士学位论文,2008.
    114.蒋力,苏秋萍.目标过顶的程序跟踪控制技术.现代电子技术[J].2005,28(8):42-44.
    115.高策,乔彦峰.人造卫星光学可见期实时预测方法[J].激光与光电子学进展,2010(10):76-80.
    116.闫野,任萱,陈磊.卫星对地球覆盖情况的判据及算法探讨[J].宇航学报,1999,20(2):55-60.
    117.李冬.星地与星间链路时间窗口快速计算方法研究[D].国防科学技术大学硕士学位论文,2008.
    118.罗伏军,章文毅,黄鹏,过西荣.遥感卫星过境仿真系统研究[J].计算机仿真,2011,28(9):94-97.
    119.王鹏,刘海涛.一种小卫星过顶预报算法[J].上海航天,2002,19(5):17-19.
    120.Bar-Lev, M., L. Shcherbina, M.V. Levin. EROS System-Satellite Orbit and Constellation Design. in Paper presented at the 22nd Asian Conference on Remote Sensing.2001.
    121.Delory, G.T., Pitman J., Duncan A. High resolution remote sensing observations for missions to the Jovian system:Io as a case study[J]. Planetary and Space Science,2010.58(13):p.1699-1707.
    122.Sandau, R., K. Brieβ, and M. D'Errico, Small satellites for global coverage: Potential and limits[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010.65(6):p.492-504.
    123.杨维廉,周文艳.嫦娥一号月球探测卫星轨道设计[J].航天器工程,2008,16(6):16-24.
    124.魏二虎,程晓晖,安志国.测地型SVLBI卫星的轨道设计[J].武汉大学学报(信息科学版),2009(11):1285-1289.
    125.张传定.大地测量应用卫星的轨道设计——椭球谐引力场下卫星的运动[J].测绘学报,2009(z1).
    126.龚志辉,姜挺,江刚武.航天器轨道向导式设计器的设计与实现[J].测绘科学技术学报,2006,23(2):p.141-144.
    127.代明鑫,张文明,王雪松.基于STK的SAR卫星轨道预报设计与仿真[J].现代防御技术,2008,36(1):5-9.
    128.徐莹,张有广,林明森.卫星高度计轨道设计的因素分析[J].遥感技术与应用,2009(2):155-163.
    129.李德仁.我国第一颗民用三线阵立体测图卫星——资源三号测绘卫星[J].测绘学报,2012.41(3):p.317-322.
    130.张贵祥,金光,曲宏松.星载光学遥感器地面幅宽与轨道参数之间关系[J]. 光学精密工程,2008(8):1522-1527.
    131.Vandenrijt, J.F., Simulation and graphical representation of the orbit and the imaging parameter of Earth observation satellites[J]. Acta Astronautica,2005. 57(2):186-196.
    132.李程,章文毅.对地观测卫星成像区域仿真研究[J].微计算机信息,2012(2):81-82+90.
    133.李德治,窦朝晖,吕波,魏波.卫星点波束覆盖区域算法研究[J].载人航天,2009,04:53-55.
    134.李子扬,李传荣,胡坚,高彩霞.遥感卫星传感器的重复观测能力计算[J].空间科学学报,2009(6):615-619.
    135.孟红云,张小华,刘三阳.用于约束多目标优化问题的双群体差分进化算法[J].计算机学报,2008,31(2):228-235.
    136.公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289.
    137.王勇,蔡自兴,周育人,肖赤心.约束优化进化算法[J].软件学报,2009,20(1):11-29.
    138.Liu, B., et al. An enhanced moea/d-de and its application to multiobjective analog cell sizing[C].2010 IEEE World Congress on Computational Intelligence.2010.
    139.Zhang, Q. and H. Li, MOEA/D:A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation,2007, 11(6):712-731.
    140.Vasile, M. Multi-Objective Memetic Algorithms. Hybrid Behavioral-Based Multiobjective Space Trajectory Optimization, Studies in Computational Intelligence, Springer,2008.
    141.Li, H. and Q. Zhang, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2009.13(2):284-302.
    142.Liefooghe, A., et al. ParadisEO-MOEO:A framework for evolutionary multi-objective optimization. in Evolutionary multi-criterion optimization. Springer,2007.
    143.Ferringer, M.P. and D.B. Spencer, Satellite constellation design tradeoffs using multiple-objective evolutionary computation. Journal of spacecraft and rockets, 2006,43(6):1404-1411.
    144.郑强.带精英策略的非支配排序遗传算法的研究与应用[D].杭州:浙江大学硕士学位论文,2006.
    145.赵小冰.单目标-多目标遗传算法的研究[D].天津:天津理工大学硕士学位论文,2011.
    146.刘鎏.多目标优化进化算法及应用研究[D].天津:天津大学博士学位论文,2010.
    147.谢涛,陈火旺.多目标优化与决策问题的演化算法[J].中国工程科学,2002,4(2):59-68.
    148.辜方清.多目标进化算法中多样性与均匀性策略研究[D].广州:广东工业大学硕士学位论文,2011.
    149.高媛.非支配排序遗传算法(NSGA)的研究与应用[D].杭州:浙江大学硕士学位论文,2006.
    150.马小妹.多目标优化的遗传算法研究[D].西安:西安电子科技大学硕士学位论文,2010.
    151.杨意飞.基于进化算法和STK的人造卫星轨道优化设计[D].长沙:国防科学技术大学硕士学位论文,2006.
    152.强婕.基于NSGA-Ⅱ的多目标鲁棒优化方法研究[D].上海:华东理工大学硕士学位论文,2011。
    153.D'Errico, M. and G. Fasano. Design of interferometric and bistatic mission phases of COSMO/SkyMed constellation[J]. Acta Astronautica,2008. 62(2):97-111.
    154.Chander, G., M.J. Coan, and P.L. Scaramuzza. Evaluation and Comparison of the IRS-P6 and the Landsat Sensors. Geoscience and Remote Sensing, IEEE Transactions on,2008.46(1):209-221.
    155.Thomson, G., Evaluation of Russian Arkon-2 Earth observation satellite. Imaging Science Journal, The,2005.53(3):163-173.
    156.Fong, C.J., et al., FORMOSAT-3/COSMIC constellation spacecraft system performance:After One Year in Orbit. Geoscience and Remote Sensing, IEEE Transactions on,2008.46(11):3380-3394.
    157.Vighnesam, N., et al., IRS-P6 orbit determination and achieved accuracy during early phase. Acta Astronautica,2007.60(2):79-87.
    158.Langlais, B., et al., Mars environment and magnetic orbiter model payload. Experimental Astronomy,2009.23(3):761-783.
    159.Davies, A., et al., Monitoring active volcanism with the Autonomous Sciencecraft Experiment on EO-1[J]. Remote Sensing of Environment,2006.101(4):427-446.
    160.Liu, C.C., Processing of FORMOSAT-2 daily revisit imagery for site surveillance. Geoscience and Remote Sensing, IEEE Transactions on,2006.44(11):3206-3214.
    161.Harinath, N., V. Mahadevan, and K.S. Sarma, Resourcesat-1 mission planning, analysis and operations—Outline of key components. International Journal of Applied Earth Observation and Geoinformation,2008.10(2):124-132.
    162.Moccia, A., N. Chiacchio, and A. Capone, Spaceborne bistatic synthetic aperture radar for remote sensing applications. International Journal of Remote Sensing, 2000.21(18):3395-3414.
    163.Chern, J.S., J. Ling, and S.L. Weng, Taiwan's second remote sensing satellite[J]. Acta Astronautica,2008.63(11):1305-1311.
    164.Yoon, Y.T., et al. TerraSAR-X precise trajectory estimation and quality assessment[J]. IEEE Transactions on Geoscience and Remote Sensing,2009. 47(6):1859-1868.
    165.Roca, M., S. Laxon, and C. Zelli. The EnviSat RA-2 instrument design and tracking performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009.47(10):3489-3506.
    166.杨维廉.基于Brouwer平根数的冻结轨道[J].中国空间科学技术,1998,18(5):13-18.
    167.Zitzler E, Thiele L. Multi-Objective evolutionary algorithms:A comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
    168.Coello Coello CA, Pulido GT. A micro-genetic algorithm for multiobjective optimization [C]. Proc. of the Genetic and Evolutionary Computation Conf., GECCO 2001. San Francisco:Morgan Kaufmann Publishers,2001.274-282.
    169.Coello Coello CA, Pulido GT, Lechuga MS. Handing multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computations, 2004,8(3):256-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700