用户名: 密码: 验证码:
一阶双曲方程和对流占优扩散方程的耗散谱元法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要讨论一阶双曲方程的耗散谱元法和间断耗散谱元法,以及耗散谱元法在对流占优的扩散方程上的应用.
     首先讨论一阶双曲方程的耗散谱方法(DSM)和耗散谱元法(DPSEM).
     对于带周期边界条件和带Dirichlet边界条件的一阶线性变系数双曲方程,分别构造Fourier DSM和Legendre DSM,通过收敛性分析,得到了空间方向的拟最优估计.数值例子主要表明:相对于传统的谱方法,该方法在处理边界及其附近的奇性方面有一定的优势.
     以此为基础,本文构造了二维问题的DPSEM,用Crank-Nicolson (CN)格式进行时间离散,并对半离散和全离散格式进行了收敛性分析.数值结果验证了该方法对于二维光滑问题具有谱精度,对于具有比较复杂的边界条件的问题同样有效,对于有限光滑问题比传统的谱元法(SEM)有更好的结果.
     本文还将Legendre DPSEM应用于非线性周期双曲方程,并对系数进行Chebyshev-Gauss-Labatto插值处理,以减少计算量.分析了半离散和Crank-Nicolson/Leap-Frog (CN/LF)全离散格式的收敛性,并给出了数值例子.光滑算例的结果显示出DPSEM对于非线性问题同样具有谱精度;对于某些在区间内部具有有限光滑性和在边界处具有弱间断性的算例,当计算时间较长时,DPSEM能够得到比SEM更好的结果.
     然后讨论一阶双曲方程的间断耗散谱元法(DDSEM).
     对于线性方程,用DDSEM进行空间离散.用CN格式对半离散格式进行时间离散;分析了其稳定性和收敛性,还设计了一种算法,于通常所用的基中引入一组“间断”基,使得各单元的问题可以并行求解;数值例子显示出DDSEM结合了间断机制和耗散机制的优点.为了提高格式在时间方向的收敛速度,用间断Galerkin格式进行时间离散,也给出了稳定性和收敛性分析以及数值结果,并与CN-DDSEM进行了比较.之后简要讨论了时空间断耗散谱元法,进行了稳定性和收敛性分析,得到了时空方向的拟最优误差估计.
     对于非线性双曲方程的DDSEM,时间方向用CN/LF格式进行离散.给出的数值算例将该格式与SEM和前面讨论的DPSEM进行了比较:一方面验证了DPSEM对于非周期问题的有效性,一方面显示出对于弱奇性解,DDSEM在流入边界所在单元内的误差比DPSEM,特别是比SEM小.
     最后,本文将DPSEM应用于非线性对流扩散方程,并用Chebyshev-Gauss-Labatto插值对系数进行了处理.分析了γ≥γ0>0情况下二维问题的全离散格式的收敛性,得到了空间方向的拟最优估计.还给出了一维和二维的算例,显示出在扩散项系数γ比较小的情况下,即对于对流占优的扩散方程,DPSEM能够发挥其所带的耗散项的作用,在一定程度上控制误差的积累,得到比SEM更好的结果.
This work mainly discusses the dissipative spectral element method (DPSEM) and thediscontinuous dissipative spectral element method (DDSEM) for the first order hyperbolicequations, and the application of the DPSEM to the nonlinear advection-dominant difusionequation.
     Firstly, the dissipative spectral method (DSM) and the DPSEM for the first order hyper-bolic equations are discussed.
     We construct Fourier DSM and Legendre DSM for the first order linear variable coefcientshyperbolic equations with the periodic and the Dirichlet boundary conditions respectively, andobtain quasi-optimal error estimates in spacial direction for both schemes. Numerical examplesshow some superiorities of the underlying method over the standard spectral method in dealingwith the singularity nearby the boundaries.
     Taking the DSM as the foundation, we construct the DPSEM for two-dimensional hyper-bolic equation. Convergencies are established for both the semi-discrete and the Crank-Nicolson(CN) fully discrete schemes. Numerical results verify the spectral accuracy of the scheme ap-plying to smooth solution, the validity in dealing with complex boundary conditions, and somesuperiority over the SEM in dealing with the solutions of limit smoothness.
     Furthermore, we apply the Legendre DPSEM to the nonlinear periodic hyperbolic equa-tion, treating the coefcients with the Chebyshev-Gauss-Labatto collocation method to reducecomputational capacity. Convergencies are established for both the semi-discrete and the Crank-Nicolson/Leap-Frog (CN/LF) fully discrete schemes, and numerical examples are given. Thesmooth example shows that the DPSEM has spectral accuracy for nonlinear problem as well aslinear equations. An example which has limit smoothness in the interval and weak discontinuityat the boundaries shows that, for such a problem, the DPSEM can obtain better results thanthe SEM when taking long time calculation.
     Secondly, the DDSEM for the first order hyperbolic equations is discussed.
     To the linear equation, we apply the DDSEM in space discretization. First, the CNscheme is used in time discretization. The stability and the convergence of the CN-DDSEM areestablished. Furthermore, we devise an algorithm by introducing an additional ‘discontinuous’basis, so that the problem in each element can be solved in parallel. What can be seen fromour numerical results is that, the discontinuous mechanism and the dissipative mechanism can localize and homogenize the errors respectively, and the DDSEM summarizes both the virtues.Next, we use the discontiuous Galerkin (DG) scheme in time discretization to improve theaccuracy in temporal direction. Analysis of the stability and convergence of the DG-DDSEMand numerical results are given. In the examples, the CN-DDSEM and the DG-DDSEM arecompared. After that, we discuss the space-time DDSEM, of which the stability and the quasi-optimal error estimate in both spacial and temporal directions are obtained.
     To the nonlinear equation, we apply the DDSEM with CN/LF time discretization. Anexample is given to compare the DDSEM with the SEM and the DPSEM discussed before: onone hand, it verifies the validity of the DPSEM for non-periodic problems; on the other hand,the results show that, for the solutions having some singularity, the error in the element withinflow boundary in of the DDSEM are smaller than that of the DPSEM, especially smaller thanthe SEM.
     At last, the DPSEM is used to solve the nonlinear convection-difusion equation, in whichthe coefcients are treated with the Chebyshev-Gauss-Labatto collocation method. Quasi-optimal error estimate in spacial direction of the fully discrete scheme for the two-dimensionalequation in the case of γ≥γ0>0is obtained. Besides, we give out examples of both one dimen-sion and two dimensions. From the numerical results, we find that, when the coefcient γ of thedifusion term is small enough, the dissipative term, which can reduce the error accumulationto a certain extent, makes the DPSEM perform better than the SEM.
引文
[1]Phillip Colella. Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys.,87(1):171-200,1990.
    [2]R. J. LeVeque. Finite volume methods for hyperbolic problems. The press Syndicate of the Uni-versity of Cambridge,2002.
    [3]Paul Houston, Christoph Schwab, and Endre Suli. Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal.,39(6):2133-2163,2002.
    [4]Jian Guo Tang and He Ping Ma. A Legendre spectral method in time for first-order hyperbolic equations. Appl. Numer. Math.,57:1-11,2007.
    [5]崔凯,马和平.一阶双曲方程的Legendre-tau方法.应用数学与计算数学学报,23(1):4252,2009.
    [6]Yen Liu, Marcel Vinokur, and Z. J. Wang. Spectral difference method for unstructured grids I: Basic formulation. J. Comput. Phys.,216(2):780-801,2006.
    [7]Z. J. Wang. Spectral (finite) volume method for conservation laws on unstructured grids. Basic formulation. J. Comput. Phys.,178(1):210-251,2002.
    [8]Hong Xia Li, Zhi Gang Wang, and De Kang Mao. Numerically neither dissipative nor compressive scheme for linear advection equation and its application to the Euler system. J. Sci. Comput.,36(3):285-331,2008.
    [9]王志刚,茅德康.线性传输方程满足3个守恒律的差分格式.上海大学学报(自然科学版),12(6):588598,2006.
    [10]Paul Houston, Christoph Schwab, and Endre Suli. Stabilized hp-finite element methods for first-order hyperbolic problems. SIAM J. Numer. Anal.,37(5):1618-1643(electronic),2000.
    [11]Ying Da Cheng and Chi-Wang Shu. Superconvergence of discontinuous Galerkin and local dis-continuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal.,47(6):4044-4072,2010.
    [12]C. Daveau and E. Sayari. Local discontinuous Galerkin method for scalar conservation laws. Far East J. Appl. Math.,40(1):83-88,2010.
    [13]D. Gottlieb and J. S. Hesthaven. Spectral methods for hyperbolic problems. J. Comput. Appl. Math.,128(1-2):83-131,2001.
    [14] Yvon Maday and Eitan Tadmor. Analysis of the spectral vanishing viscosity method for periodicconservation laws. SIAM J. Numer. Anal.,26(4):854–870,1989.
    [15] Yvon Maday, Sidi M. Ould Kaber, and Eitan Tadmor. Legendre pseudospectral viscosity methodfor nonlinear conservation laws. SIAM J. Numer. Anal.,30(2):321–342,1993.
    [16] Eitan Tadmor. Super viscosity and spectral approximations of nonlinear conservation laws. In M.J. Baines and K. W. Morton, editors, Numerical Methods for Fluid Dynamics. IV, pages69–82.Clarendon Press, Oxford,1993.
    [17] He Ping Ma. Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws. SIAMJ. Numer. Anal.,35(3):869–892,1998.
    [18] He Ping Ma. Chebyshev-Legendre super spectral viscosity method for nonlinear conservation laws.SIAM J. Numer. Anal.,35(3):893–908,1998.
    [19] Ben Yu Guo, He Ping Ma, and Eitan Tadmor. Spectral vanishing viscosity method for nonlinearconservation laws. SIAM J. Numer. Anal.,39(4):1254–1268,2001.
    [20] Juli′an Aguirre and Judith Rivas. A spectral viscosity method based on Hermite functions fornonlinear conservation laws. SIAM J. Numer. Anal.,46(2):1060–1078,2008.
    [21] C. Canuto, M. Y. Hussaini, A. Quartesoni, and T. A. Zang. Spectral Methods: Fundamentals inSingle Domains. Springer,2006.
    [22] Jie Shen and Li Lian Wang. Legendre and Chebyshev dual-Petrov-Galerkin methods for hyperbolicequations. Comput. Methods Appl. Mech. Engrg.,196:3785–3797,2007.
    [23] M. H. Aliabadi and E. L. Ortiz. Numerical treatment of moving and free boundary value problemswith the tau method. Computers Math. Applic.,35(8):53–61,1998.
    [24] Giovanni Sacchi Landriani. Spectral tau approximation of the two-dimensional Stokes problem.Numer. Math.,52:683–699,1988.
    [25] Jie Shen. A spectral-tau approximation for the Stokes and Navier-Stokes equations. Math. Model.Num. Anal.,22:677–693,1988.
    [26] Jian Guo Tang and He Ping Ma. Single and multi-interval Legendre τ-methods in time for parabolicequations. Adv. Comput. Math.,17:349–367,2002.
    [27] Marios Charalambides and Fabian Walefe. Spectrum of the Jacobi tau approximation for thesecond derivative operator. SIAM J. Numer. Anal.,46:280–294,2008.
    [28] Paul T. Dawkins, Steven R. Dunbar, and Rod W. Douglass. The origin and nature of spuriouseigenvalues in the spectral tau method. J. Comput. Phys.,147:441–462,1998.
    [29] M. K. El-Daou and E. L. Ortiz. Error analysis of the tau method: Dependence of the error on thedegree and the length of the interval of approximation. Computers Math. Applic.,25(7):33–45,1993.
    [30] M. K. El-Daou and E. L. Ortiz. A posteriori error bounds for the approximate solution of second-order ODEs by piecewise coefcients perturbation methods. J. Comput. Appl. Math.,189:51–66,2006.
    [31] Jie Shen. A new dual-Petrov-Galerkin method for third and higher odd-order diferential equations:Application to the KdV equation. SIAM J. Numer. Anal.,41(5):1595–1619,2004.
    [32] J. E. Dendy. Two methods of Galerkin type achieving optimum L2rates of convergence for firstorder hyperbolics. SIAM J. Numer. Anal.,11(3):637–653,1974.
    [33] Lars B. Wahlbin. A dissipative Galerkin method for the numerical solution of first-order hyperbolicequation. In Mathematical Aspects of Finite Elements in Partial Diferential Equations, pages147–169. Academic Press, New York,1974.
    [34] Lars B. Wahlbin. A dissipative Galerkin method applied to some quasilinear hyperbolic equa-tions. Revue francaise d’automatique, informatique, recherche ope′rationelle. Analyse nume′rique,8(2):109–117,1974.
    [35] Zhen F. Tian and P. X. Yu. A high-order exponential scheme for solving1d unsteady convection-difusion equations. J. Comput. Appl. Math.,235(8):2477–2491,2011.
    [36] B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method for time-dependentconvection-difusion systems. SIAM J. Numer. Anal.,35(6):2440–2463(electronic),1998.
    [37] Yan Xu and Chi-Wang Shu. Error estimates of the semi-discrete local discontinuous Galerkinmethod for nonlinear convection-difusion and KdV equations. Comput. Methods Appl. Mech.Engrg.,196(37-40):3805–3822,2007.
    [38] Carl Ollivier-Gooch and Michael Van Altena. A high-order-accurate unstructured mesh finite-volume scheme for the advection-difusion equation. J. Comput. Phys.,181(2):729–752,2002.
    [39]Richard E. Ewing and Hong Wang. A summary of numerical methods for time-dependent advection-dominated partial differential equations. J. Comput. Appl. Math.,128(1-2):423-445,2001. Numerical Analysis2000. Vol. VII:Partial Differential Equations.
    [40]Bernardo Cockburn and Chi-Wang Shu. Runge-kutta discontinuous galerkin methods for convection-dominated problems. J. Sci. Comput.,16:173-261,2001.
    [41]Alexandre Ern, Annette F. Stephansen, and Paolo Zunino. A discontinuous galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal.,29(2):235-256,2009.
    [42]Kai Xin Wang. A uniform optimal-order estimate for an Eulerian-Lagrangian discontinuous galerkin method for transient advection-diffusion equations. Numer. Methods Partial Differen-tial Equations,25(1):87-109,2009.
    [43]林群,王凯欣,王宏,阴小波.对流扩散方程双线性有限元解的一致估计.数学的实践与认识,41(18):220223,2011.
    [44]D. B. Haidvogel, A. R. Robinson, and E. E. Schulman. The accuracy, efficiency, and stability of three numerical models with application to open ocean problems. J. Comput. Phys.,34(1):1-53,1980.
    [45]Steven A. Orszag and L. C. Kells. Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech.,96:159-205,1980.
    [46]D. Kosloff and R. Kosloff. A Fourier method solution for the time dependent Schrodinger equation as a tool in molecular dynamics. J. Comput. Phys.,52(1):35-53,1983.
    [47]Christine Bernardi and Yvon Maday. Spectral methods. Elsevier B.V.,1997.
    [48]C. Canuto, M. Y. Hussaini, A. Quartesoni, and T. A. Zang. Spectral Methods in Fluid Dynamics. Springer,1988.
    [49]Ben Yu Guo. Gegenbauer approximation and its applications to differential equations on the whole line. J. Math. Anal. Appl.,226(1):180-206,1998.
    [50]John P. Boyd. Chebyshev and Fourier Spectral Methods:Second Revised Edition. DOVER Publi-cations, Inc.,2000.
    [51]Steven A. Orszag. Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representations. Stud. Appl. Math.,50:293-326,1971.
    [52]David Gottlieb and Steven A. Orszag. Numerical analysis of spectral methods:Theory and ap-plications. Society for Industrial and Applied Mathematics, Philadelphia, Pa.,1977. CBMS-NSF Regional Conference Series in Applied Mathematics, No.26.
    [53]C. Canuto and A. Quarteroni. Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comp.,38(157):67-86,1982.
    [54]G. Fdez-Manin and R. Munoz-Sola. Error estimates for the patching method in the bidimensional case. Numer. Math.,82(4):621-634,1999.
    [55]王健平.谱方法的基本问题与有限谱法.空气动力学学报,19(2):161171,2001.
    [56]Steven A. Orszag. Spectral methods for problems in complex geometries. J. Comput. Phys.,37(1):70-92,1980.
    [57]Wilhelm Heinrichs and Birgit I. Loch. Spectral schemes on triangular elements. J. Comput. Phys.,173(1):279-301,2001.
    [58]C. Canuto, M. Y. Hussaini, A. Quartesoni, and T. A. Zang. Spectral Methods:Evolution to complex geometries and Applications to fluid dynamics. Springer,2006.
    [59]Youyun Li, Li-Lian Wang, Huiyuan Li, and Heping Ma. A new spectral method on triangles. In Jan S. Hesthaven and Einar M. R(?)nquist, editors, Spectral and High Order Methods for Partial Differential Equations, volume76of Lecture Notes in Computational Science and Engineering, pages237-246. Springer Berlin Heidelberg,2011.
    [60]Ben Yu Guo and Hong Li Jia. Spectral method on quadrilaterals. Math. Comp.,79(272):2237-2264,2010.
    [61]H. A. Schwarz. Gesammelte mathematische Abhandlungen. Springer,1890.
    [62]A. McKerrell, C. Phillips, and L. M. Delves. Chebyshev expansion methods for the solution of elliptic partial differential equations. J. Comput. Phys.,41(2):444-452,1981.
    [63]Y. Morchoisne. Inhomogeneous flow calculations by spectral methods-mono-domain and multi-domain techniques. ONERA, TP no.1982-67,1982.
    [64]Anthony T. Patera. A spectral element method for fluid dynamics:Laminar flow in a channel expansion. J. Comput. Phys.,54(3):468-488,1984.
    [65]Daniele Funaro. A multidomain spectral approximation of elliptic equations. Numer. Methods Partial Differential Equations,2(3):187-205,1986.
    [66]Paul F. Fischer. An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations. J. Comput. Phys.,133(1):84-101,1997.
    [67]P. Gervasio, E. Ovtchinnikov, and A. Quarteroni. The spectral projection decomposition method for elliptic equations in two dimensions. SIAM J. Numer. Anal.,34(4):1616-1639,1997.
    [68]Jian Guo Tang and He Ping Ma. Single and multi-interval Legendre spectral methods in time for parabolic equations. Numer. Methods Partial Differential Equations,22:1007-1034,2006.
    [69]A. Pinelli and A. Vacca. Chebyshev collocation method and multidomain decomposition for the incompressible Navier-Stokes equations. Internal. J. Numer. Methods Fluids,18(8):781-799,1994.
    [70]Francesco Malara. A Chebyshev pseudospectral multidomain method for a boundary-layer prob-lem. J. Comput. Phys.,124(2):254-270,1996.
    [71]Henry H. Yang and Bernie Shizgal. Chebyshev pseudospectral multi-domain technique for viscous flow calculation. Comput. Methods Appl. Mech. Engrg.,118(1-2):47-61,1994.
    [72]Athanassios Souvaliotis and Antony N. Beris. Spectral collocation/domain decomposition method for viscoelastic flow simulations in model porous geometries. Comput. Methods Appl. Mech. Engrg.,129(1-2):9-28,1996.
    [73]吴华Chebyshev-Legendre谱方法及其区域分裂方法.博士学位论文,上海大学,2004.
    [74]Hong Li Jia and Ben Yu Guo. Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems on polygons. Chin. Ann. Math. Ser. B,31(6):855-878,2010.
    [75]贾红丽.多角形区域上偏微分方程混合非齐次边值问题的谱元方法和区域分解拟谱方法.博士学位论文,上海师范大学,2011.
    [76]Thomas J. R. Hughes and Alexander N. Brooks. A multi-dimensional upwind scheme with no crosswind diffusion. In Thomas J. R. Hughes, editor, Finite Element Methods for Convection Dominated Flows, volume34, pages19-35. ASME, New York,1979.
    [77]Guo Hui Zhou. How accurate is the streamline diffusion finite element method? Math. Comput.,66(217):31-44,1997.
    [78]Martin Stynes and Lutz Tobiska. The SDFEM for a convection-diffusion problem with a boundary layer:Optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal.,41(5):16201642,2004.
    [79]J. M. Melenk and C. Schwab. The hp streamline diffusion finite element method for convection dominated problems in one space dimension. East-West J. Numer. Math.,7:31-60,1999.
    [80]K. Gerdes, J. M. Melenk, C. Schwab, and D. Schotzau. The hp-version of the streamline diffusion finite element method in two space dimensions. Mathematical Models and Methods in Applied Sciences,11(2):301-337,2001.
    [81]Paul Houston and Endre Suli. Stabilised hp-finite element approximation of partial differential equations with nonnegative characteristic form. Computing,66:99-119,2001.
    [82]J. M. Zhao and L. H. Liu. Spectral element method with adaptive artificial diffusion for solving the radiative transfer equation. Numer. Heat. Tr. B-Fund.,53(6):536-554,2008.
    [83]孙澈,曹松.对流占优扩散问题的经济型流线扩散有限元法.计算数学,26(3):367384,2004.
    [84]任宗修,郝岩,白冬梅.RLW方程的经济型差分-流线扩散法.河南科学,24(6):799801,2006.
    [85]任宗修,郝岩,任卫银.非线性RLW方程的经济型差分-流线扩散法.工程数学学报,25(4):708712,2008.
    [86]任宗修,李冰冰,刘晓Sobolev方程的经济型差分-流线扩散法.河南师范大学学报(自然科学版),37(3):4-7,2009.
    [87]P. Lesaint and P. A. Raviart. On a finite element method for solving the neutron transport equation. In C. de Boor, editor, Mathematical Aspects of Finite Elements in Partial Differential Equations, pages89-145. Academic Press, New York,1974.
    [88]Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin methods for nonlinear Schrodinger equations. J. Comput. Phys.,205(1):72-97,2005.
    [89]Yinhua Xia, Yan Xu, and Chi-Wang Shu. Local discontinuous Galerkin methods for the generalized Zakharov system. J. Comput. Phys.,229(4):1238-1259,2010.
    [90]Yin Hua Xia, Yan Xu, and Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Ser. B,8(3):677-693,2007.
    [91]Yinhua Xia, Yan Xu, and Chi-Wang Shu. Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. Commun. Comput. Phys.,5(2-4):821-835,2009.
    [92]Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Engrg.,195(25-28):3430-3447,2006.
    [93]Yan Xu and Chi-Wang Shu. Local discontinuous Galerkin methods for the Degasperis-Procesi equation. Commun. Comput. Phys.,10(2):474-508,2011.
    [94]孙澈,汤怀民,吴克俭.一阶双曲问题的间断流线扩散法.计算数学,20(1):3544,1998.
    [95]康彤,余德浩.一阶双曲问题的间断流线扩散法的后验误差估计.应用数学和力学,23(6):732740,2002.
    [96]Yang Zhang. A discontinuous finite difference streamline diffusion method for time-dependent hyperbolic problems. Comput. Math. Appl.,58(10):1901-1910,2009.
    [97]Jorge L. D. Calle, Philippe R. B. Devloo, and Sonia M. Gomes. Stabilized discontinuous Galerkin method for hyperbolic equations. Comput. Method. Appl. M.,194(17):1861-1874,2005.
    [98]杨征,张中强.一阶双曲方程的耗散谱tau方法及最优误差估计.丽水学院学报,30(5):1215,2008.
    [99]沈婷婷.非线性偏微分方程的Legendre tau方法及其多区域方法.博士学位论文,上海大学,2010.
    [100]Ting Ting Shen, Zhong Qiang Zhang, and He Ping Ma. Optimal error estimates of the Legendre tau method for second-order differential equations. J. Sci. Comput.,42:198-215,2010.
    [101]Heinz Otto Kreiss and Joseph Oliger. Stability of the Fourier method. SIAM J. Numer. Anal.,16(3):421-433,1979.
    [102]J. A. Nitsche. Ein kriterium fur die quasi-optimalitat des Ritzchen Verfahrens. Numer. Math.,11:346-348,1968.
    [103]Yan Fen Cui and De Kang Mao. Numerical method satisfying the first two conservation laws for KdV equation. J. Comput. Phys.,227:376-399,2007.
    [104]Randall J. LeVeque. Numerical methods for conservation laws. Birkhauser-verlag,1992.
    [105]Wei Zhang Huang, He Ping Ma, and Wei Wei Sun. Convergence analysis of spectral collocation methods for a singular differential equation. SIAM J. Numer. Anal.,41(6):2333-2349,2004.
    [106]George Karniadakis and Spencer J. Sherwin. Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press,2005.
    [107]李飞,梅立泉.输运方程谱间断流线扩散耦合方法.应用数学,12(4):1520,1999.
    [108]张争茹,羊丹平.对流扩散问题的Crank-Nicolson差分-流线扩散法.高等学校计算数学学报,23(4):293299,2001.
    [109]M. Stynes and L. Tobiska. Analysis of the streamline-diffusion finite element method on a piecewise uniform mesh for a convection-diffusion problem with exponential layers. East-West J. Numer. Math.,9(1):59-76,2001.
    [110]Zhiyong Si, Xinlong Feng, and Abdurishit Abduwali. The semi-discrete streamline diffusion fi-nite element method for time-dependented convection-diffusion problems. Appl. Math. Comput.,202(2):771-779,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700