用户名: 密码: 验证码:
Linnik偏振白光干涉微纳测量的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机械、电子、光学、材料和半导体等工业不断地微型化、精密化的需求,开发的微纳米结构的三维形貌、表面膜厚、内部结构以及物理性质等特性对微纳米结构的研发和生产质量控制至关重要。因此,针对微纳米制造领域的三维非接触式测量系统及其技术的研究具有重要的学术价值和现实意义。
     本文提出并搭建了一种基于Linnik型偏振白光干涉架构的三维非接触式测量实验系统,并对其关键技术进行了研究,主要包括显微镜光学自动对焦技术、Linnik型白光干涉条纹自动搜索技术、微观表面三维形貌重构及系统标定技术、透明膜厚三维重构技术、材料内部应力双折射分布测量技术和光学三维断层显微测量技术。该系统架构在传统的Linnik干涉架构基础上进行了改动和扩充,可以针对不同的技术功能,切换到相应的模式中,且不必对该测量架构进行任何的改装和拆卸,从而使系统具备了很高的灵活性和稳定性。
     本研究的主要工作内容和创新点如下:
     1.在Linnik干涉架构中集成一个基于改进的像散法的光学自动对焦系统,以保证显微镜对焦过程中正确对焦位置的唯一性,实现了Linnik结构两个干涉臂的快速自动对焦。自动对焦系统具有190(±95)μm的动态范围,线性段的平均灵敏度为70mV/μm,平均标准偏差为41.6nm,理论分辨率4.4nm,实际测量精度55nm,自动对焦时间不大于0.3秒。
     2.在两个干涉臂实现快速自动对焦的前提下,提出一种通过调整干涉臂的光程差来实现干涉条纹自动搜索的策略,实现了对比度最好的干涉条纹的自动搜索,自动搜索速度为2.2min/mm,搜索到的最佳干涉条纹对比度的位置偏离理想位置不超过一个干涉条纹周期。
     3.利用频域分析法实现微纳米结构的表面三维形貌重构,并通过系统标定得到了测量标准不确定度±3.6nm、纵向(Z方向)的测量精度误差3.08%、横向X方向的测量精度误差2.69%、横向Y方向的测量精度误差2.16%、横向实际分辨率为1.31μm、纵向理论分辨率为0.59nm。
     4.通过对傅立叶相位和振幅这两种方法进行测量灵敏度分析的结果,提出了傅立叶相位和振幅加权的透明膜厚测量技术,该技术结合了傅立叶相位的高分辨率和傅立叶振幅的高重复性的两个优点。测量结果的纵向分辨率达到纳米级,由于采用显微测量技术,其横向分辨率就等于显微物镜的分辨率。
     5.利用Linnik白光干涉架构结合偏振测量原理,通过对Berek补偿器的标定,实现了对材料内部应力双折射的相位延迟分布、主轴方向分布、应力分布和反射率分布的同时测量。测量结果的相位延迟标准偏差不大于4°,主轴方向标准偏差不大于4.5°。
     6.提出了用于光学相干断层显微测量的具有高计算效率和极小残余寄生条纹量的五点差分格式移相算法,有效地重构出了样本的三维断层显微图像。并对包括探测器非线性和PZT移相器对波长依赖性在内的两个主要系统误差及其改进方法进行了分析。
     7.针对前述的PZT移相器对波长具有依赖性的问题,提出了移相量八倍于半波片旋转角的消色差几何移相干涉技术及系统,其具备了目前最大的几何移相放大倍率和最好的消色差性。该部分为本文的扩展研究内容。
With the demand for the continuously miniaturization and precision of machinery, electronics, optics, material and semiconductor industries, three-dimensional topography, thin-film thickness, internal structure and physical property play an essential role in the research, production and quality control of the developed micro-/nano-stuctures. Therefore, the study of the three-dimensional non-contact measurement system and techniques for the field of the micro-/nano-manufacturing has significant academic value and practical meaning.
     In this paper, a three-dimensional non-contact measurement system based on the Linnik polarization-sensitive white light interferometry (PSWLI) configuration is proposed and established, and its key techniques are studied. The techniques include the optical autofocus of microscopic system, the automatic search of Linnik white light interferogram, the three-dimensional surface topography and system calibration, the three-dimensional topography of thin-film thickness, the internal stress induced birefringence measurement and the three-dimensional optical coherence microscopy. The overall system configuration, which is modified and expanded based on the traditional Linnik interference configuration, can switch to the appropriate mode according to the different techniques and does not have to disassemble and remove any part of it. Thereby, the developed system has a high flexibility and stability.
     The main work and the innovation of this thesis are concluded as follows:
     1. An improved astigmatic autofocus system is embedded in the Linnik PSWLI to make the unique identification of the best focus position of the microscope and thus realizes the fast autofocus of the two interference arms of the Linnik PSWLI. The developed autofocus system has a dynamic range of190(±95) μm, average sensitivity of70mV/μm, average standard deviation of41.6nm, displayed resolution of4.4nm, accuracy of55nm, and autofocus time less than0.3s.
     2. An automatic search stratege of Linnik white light interferogram of the best fringe contrast by adjusting the optical path difference is proposed under the circumstance that the two interference arms are auto-focused. The automatic search time is2.2min/mm, and the best fringe contrast position obtained by the proposed method does not deviate the ideal one from one cycle of the interference signal at most.
     3. The three-dimensional surface topography of the mico-/nano-structure is realized by the frequency domain analysis of the interference signal. In accordance with the results of the calibration experiment, the system has a measurement standard uncertainty of±3.6nm, error of the axial measurement accuracy of3.08%, error of the lateral X-direction measurement accuracy of2.69%, error of the lateral Y-direction measurement accuracy of2.16%, practical lateral resolution of1.31 μm and theoretical axial resolution of0.59nm.
     4. The weighted method of Fourier phase and amplitude for the thin-film thickness measurement is proposed according to the sensitivity analysis. The weighted method combines the advantages of the Fourier phase of high resolution and the Fourier amplitude of high repeatability. The axial resolution of the measurement result achieves nanometer, and the lateral resolution equals to that of the microscope objective.
     5. Linnik white light interferometer configuration combined with polarization-sensitive detection is used to simultaneously measure the phase retardation distribution, the optical axis orientation, the stress distribution and the reflectance distribution of the internal stress induced birefringence sample. The standard deviations of the phase retardation and the optical axis orientation are less than4°and4.5°, respectively, according to the calibration results of the Berek compensator.
     6. A five-point-stencil (FPS) based phase shifting algorithm, which has high computation efficiency and small parasitic fringe amount, is proposed to effectively measure the optical coherence microscopic image of a sample. The two major systematic errors, detector nonlinearity and dependence of the PZT phase shifter on the wavelength, are analyzed and the improved methods are discussed.
     7. An achromatic (geometric) phase shifting interference system and technology are proposed to tackle the aforementioned problem of the dependence of the PZT phase shifter on the wavelength. The developed geometric phase shifter configuration, by which the shifted phase is eight times the rotation angle of the half-wave plate, has the largest magnification of the phase shifting and the best achromatism. This part is the extension of the study.
引文
[1]R. Leach. Optical Measurement of Surface Topography [M]. Berlin:Springer,2011:187-206.
    [2]D. Malacara. Optical Shop Testing [M]. New Jersey:John Wiley & Sons,2007:696-697.
    [3]L. Deck, P. de Groot. High-speed noncontact profiler based on scanning white-light interferometry [J]. Appl. Opt.,1994,33(31):7334-7338.
    [4]R.T. Blunt. White Light Interferometry-a production worthy technique for measuring surface roughness on semiconductor wafers [C]. CS MANTECH Coference,2006,59-62.
    [5]I. Lee-Bennett. Advances in non-contacting surface metrology [C]. Frontiers in Optics,2004, paper OTuC1.
    [6]G.S. Kino, S.S.C. Chim. Mirau correlation microscope [J]. Appl. Opt.,1990,29(26):3775-3783.
    [7]S.S.C. Chim. The Mirau correlation microscope-A new tool for optical metrology [D]. Stanford University Ph.D. Dissertation,1991.
    [8]W. Harris, S. Mrowka, R.J. Speer. Linnik interferometer:its use at short wavelengths [J]. Appl. Opt.,1982,21(7):1155-1155.
    [9]A. Dubois, L. Vabre, A.C. Boccara, E. Beaurepaire. High-resolution full-field optical coherence tomography with a Linnik microscope [J]. Appl. Opt.,2002,41(4):805-812.
    [10]X.D. Hu, S.J. Deng, W.N. Wang, X.T. Hu. Long-working-distance Linnik microscopic interferometry for measuring the surface profile of microstructures [J]. J. Vac. Sci. Technol. B,2009, 27(3):1403-1407.
    [11]D.M. Gale, M.I. Pether, J.C. Dainty. Linnik microscope imaging of integrated circuit structures [J]. Appl. Opt.,1996,35(1):131-148.
    [12]D.K. Cohen, J.D. Ayres, E.R. Cochran. Apparatus and method for automatically focusing an interference microscope [P]. U.S. patent 5122648,1992.
    [13]R.W. Swinford, D.J. Aziz, B.W. Guenther, P.R. Unruh. Automated minimization of optical path difference and referencemirror focus in white-light interference microscope objective [P]. U.S. patent 6552806,2003.
    [14]L.L. Deck. Method and apparatus for automated focusing of an interferometric optical system [P]. U.S. patent 5208451,1993.
    [15]L.L. Deck, H. Chakmakjian. Method and apparatus for automatically and simultaneously determining best focus and orientation of objects to be measured by broad-band interferometric means [P]. U.S. patent 5784164,1998.
    [16]R.W. Swinford, D.J. Aziz, B.W. Guenther, P.R. Unruh. Automated minimization of optical path difference and reference mirror focus in white-light interference microscope objective [P]. U.S. patent 6552806,2003.
    [17]F. Murakami. Accuracy assessment of a laser triangulation sensor [C]. Instrumentation and Measurement Technology Conference,1994,2:802-805.
    [18]Laser Displacement Sensor LK-G5000 Series [Z], http://www.keyence.com/topics/vision/lkg/ 5000.php.
    [19]Q.X. Li, L.F. Bai, S.F. Xue, L.Y. Chen. Autofocus system for microscope [J]. Opt. Eng.,2002, 41(6):1289-1294.
    [20]Nikon TiE-Perfect Focus System [Z], http://www.microscopyu.com/tutorials/flash/focusdrift/ perfectfocus/index.html.
    [21]E. Higurashi, R. Sawada, T. Ito. Nanometer-displacement detection of optically trapped metallic particles based on critical angle method for small force detection [J]. Rev. Sci. Instrum.,1999,70(7): 3068-3073.
    [22]T. Kohno. On a few function of HIPOSS (High Precision Optical Surface Sensor) and their Applications [C]. Proc. SPIE,1989,1009:18-333.
    [23]T. Kohno, N. Ozawa, K. Miyamoto, T. Musha. High precision optical surface sensor [J]. Appl. Opt.,1988,27(1):103-108.
    [24]D.G. Kocher. Automated Foucault test for focus sensing [J]. Appl. Opt.,1983,22(12):1887-1892.
    [25]M. Minsky. Microscopy apparatus [P]. U.S. patent 30133467,1961.
    [26]M. Gu. Principles of Three Dimensional Imaging in Confocal Microscopes [M]. Singapore: World Scientific,1996:1-3.
    [27]H.F. Kelderman, M.E. Fein, A.E. Loh, A. Adams, A.P. Neukermans. Confocal measuring microscope with automatic focusing [P]. U.S. patent 4844617,1989.
    [28]L.A. Cacace. An optical distance sensor [D]. Eindhoven University of Technology Ph.D. Dissertation,2009.
    [29]Chuo Precision Industrial Co., Ltd [Z]. https://www.chuo.co.jp/.
    [30]Nikon Instruments Inc [Z]. http://www.nikoninstruments.com/Products/Microscope-Systems/ Upright-Microscopes/Material-Science/Eclipse-LV-DAF/.
    [31]D.Y. Lou, A. Martinez, D. Stanton. Surface profile measurement with a dual-beam optical system [J]. Appl. Opt.,1984,23(5),746-751.
    [32]K. Mitsui. In-process sensors for surface roughness and their applications [J]. Precis. Eng.,1986, 8(4):212-220.
    [33]K.C. Fan, C.Y. Lin, L.H. Shyu. Development of a low-cost focusing probe for profile measurement [J]. Meas. Sci. Technol.,2000,11:N1-N7.
    [34]K.C. Fan, C.L. Chu, J.I. Mou. Development of a low-cost autofocusing probe for profile measurement [J]. Meas. Sci. Technol.,2001,12:2137-2146.
    [35]D.K. Cohen, W.H. Gee, M. Ludeke, J. Lewkowicz. Automatic focus control:the astigmatic lens approach [J]. Appl. Opt.,1984,23(4):565-570.
    [36]M. Zhao, L. Huang, Q. Zhang, X.Y. Su, A. Asundi, K.M. Qian. Quality-guided phase unwrapping technique:comparison of quality maps and guiding strategies [J]. Appl. Opt.,2011, 50(33):6214-6224.
    [37]S.P. Fang, L. Meng, L.J. Wang, P.C. Yang, M. Komori. Quality-guided phase unwrapping algorithm based on reliability evaluation [J]. Appl. Opt.,2011,50(28):5446-5452.
    [38]K.M. Qian. Two-dimensional windowed Fourier transform for fringe pattern analysis:principles, applications and implementations [J]. Opt. Lasers. Eng.,2007,45:340-317.
    [39]S.K. Li, X.Z. Wang, X.Y. Su, F. Tang. Two-dimensional wavelet transform for reliability-guided phase unwrapping in optical fringe pattern analysis [J]. Appl. Opt.,2012,51(12):2026-2034.
    [40]K.M. Qian. Windowed Fourier transform for fringe pattern analysis [J]. Appl. Opt.,2004, 43(13):2695-2072.
    [41]K.M. Qian, W.J. Gao, H.X. Wang. Windowed Fourier-filtered and quality-guided phase unwrapping algorithm [J]. Appl. Opt.,2008,47(29):5420-5428.
    [42]K.M. Qian, H.X. Wang, W.J. Gao, Windowed Fourier transform for fringe pattern analysis: theoretical analyses [J]. Appl. Opt.,2008,47(29):5408-5419.
    [43]P. de Groot, X.C. de Lega, J. Kramer, M. Turzhitsky. Determination of fringe order in white-light interference microscopy [J]. Appl. Opt.,2002,41(22),4571-4578.
    [44]A. Harasaki, J. Schmit, J.C. Wyant. Improved vertical-scanning interferometry [J]. Appl. Opt, 2000,39(13),2107-2115.
    [45]S. Chen, A.W. Palmer, K.T.V. Grattan, B.T. Meggitt. Fringe order identification in optical fibre white-light Interferometry using centroid algorithm method [J]. Electron. Lett.,1992,28(6):553-555.
    [46]P.J. Caber. Interferometric profiler for rough surfaces [J]. Appl. Opt.,32(19):3438-3441.
    [47]S.S.C. Chim, G.S. Kino. Correlation microscope [J]. Opt. Lett.,1990,15(10),579-581.
    [48]P. de Groot, L. Deck. Three-dimensional imaging by sub-Nyquist sampling of white light interferograms [J]. Opt. Lett.,1993,18(17),1462-1464.
    [49]P. de Groot, L. Deck. Surface profiling by analysis of white-light interferograms in the spatial frequency domain [J]. J. Mod. Opt.,1995,42(2):389-401.
    [50]B.A. Douglas, M. Ivor. Surface profiling apparatus [P]. U.S. patent 20080215271,2008.
    [51]M.E. Pawlowski, Y. Sakano, Y. Miyamoto, M. Takeda. Phase-crossing algorithm for white-light fringes analysis [J]. Opt. Comm.,2006,260:68-72.
    [52]S.D. Ma, C.G. Quan, R.H. Zhu, C.J. Tay, L. Chen. Surface profile measurement in white-light scanning interferometry using a three-chip color CCD [J]. Appl. Opt.,2011,50(15):2246-2254.
    [53]A. Hirabayashi, H. Ogawa, K. Kitagawa. Fast surface profiler by white-light interferometry by use of a new algorithm based on sampling theory [J]. Appl. Opt.,2002,41(23):4876-4883.
    [54]A. Hirabayashi, H. Ogawa, K. Kitagawa. Fast surface profiler by white-light interferometry using a new algorithm, the SEST algorithm [C]. Proc. SPIE,2001,4451:356-367.
    [55]M. Hissmann, F.A. Hamprecht. Bayesian estimation for white light interferometry [J]. Opt. Eng., 2005,44(1):015601.
    [56]M. Li, C. Quan, C. Tai. Continuous wavelet transform for micro-component profile measure-ment using vertical scanning interferometry [J]. Opt. Laser Technol.,2008,40:920-929.
    [57]Z. Wang, H. Ma. Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing [J]. Opt. Eng.,2006,45(4):045601.
    [58]S.W. Kim, GH. Kim. Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry [J]. Appl. Opt.,1999,38(28):5968-5973.
    [59]H.G. Tompkins, W.A. McGahan. Spectroscopic Ellipsometry and Reflectometry:A User's Guide [M]. New York:John Wiley $ Sons,1999:1-12.
    [60]W.D. Joo, J. You, Y.S. Ghim, S.W. Kim. Angle-resolved reflectometer for thickness measure-ment of multi-layered thin-film structures [C]. Proc. SPIE,2008,7063:70630Q-1.
    [61]S.K. Debnath, J. You, S.W. Kim. Determination of film thickness and surface profile using reflectometry and spectrally resolved phase shifting interferometry [J]. International Journal of Precision Engineering and Manufacturing,2009,10(5):5-10.
    [62]D. Kim, S. Kim, H.J. Kong, Y. Lee, Y.K. Kwak. Fast thickness profile measurement using a peak detection method based on an acousto-optic tunable filter [J]. Meas. Sci. Technol.,2002,13: L1-L5.
    [63]R.M.A. Azzam, N.M. Bashara. Ellipsometry and Polarized Light [M]. Amsterdam:North-Holland,1979:1-14.
    [64]H.G. Tompkins, E.A. Irene. Handbook of Ellipsometry [M]. New York:William Andrew,2005: 1-20.
    [65]D. Kim, S. Kim. Direct spectral phase function calculation for dispersive interferometric thickness profilometry [J]. Opt. Express,2004,12(21):5117-5124.
    [66]Y.S. Ghim, J. You, S.W. Kim. Dispersive white-light interferometry for 3-D inspection of thin-film layers of flat panel displays [C]. Proc. SPIE,2007,6616:66160T-1.
    [67]Y.S. Ghim, S.W. Kim. Fast, precise, tomographic measurements of thin films [J]. Appl. Phys. Lett.,2007,91:091903-1.
    [68]D. Kim, S. Kim, H.J. Kong, Y. Lee. Measurement of the thickness profile of a transparent thin film deposited upon a pattern structure with an acousto-optic tunable filter [J]. Opt. Lett.,2002, 27(21),1893-1895.
    [69]S.K. Debnath, M.P. Kothiyal, J. Schmit, P. Hariharan. Spectrally resolved phase-shifting interferometry of transparent thin films Sensitivity of thickness measurements [J]. Appl. Opt.,2006, 45(34):8636-8640.
    [70]S.K. Debnath, M.P. Kothiyal, J. Schmit, P. Hariharan. Spectrally resolved white-light phase-shifting interference microscopy for thickness-profile measurements of transparent thin film layers on patterned substrates [J]. Opt. Express,2006,14(11):4662-4667.
    [71]P. Hlubina, D. Ciprian, J. Lunacek, M. Lesnak. Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film [J]. Opt. Express,2006,14(17):7678-7685.
    [72]P. Hlubina, D. Ciprian, J. Lunacek. Spectral interferometric technique to measure the relative phase change on reflection from a thin-film structure [J]. Appl. Phys. B,2010,101:869-873.
    [73]P. Hlubina, D. Ciprian, J. Lunacek, M. Lesnak. Thickness of SiO2 thin film on silicon wafer measured by dispersive white light spectral interferometry [J]. Appl. Phys. B,2006,84:511-516.
    [74]P. de Groot, X.C. de Lega. Angle-resolved three-dimensional analysis of surface films by cohrerence scanning interferometry [J]. Opt. Lett.,2007,32(12),1638-1640.
    [75]D.S. Wan. Measurement of thin films using Fourier amplitude [P]. U.S. patent 7612891,2009.
    [76]T. Yoshizawa. Handbook of Optical Metrology:Principles and Applications [M]. New York: Taylor & Francis,2009:677-690.
    [77]C.C. Montarou, T.K. Gaylord, R.A. Villalaz, E.N. Glytsis. Colorimetry-based retardation measurement method with white-light interference [J]. Appl. Opt.,2002,41(25):5290-5297.
    [78]C.C. Montarou, T.K. Gaylord. Two-wave-plate compensator method for single-point retardation measurements [J]. Appl. Opt.,2004,43(36),6580-6595.
    [79]Y. Shindo, H. Hanabusa. An improved highly sensitive instrument for measuring optical birefringence [J]. Polym. Commun.,1984,25:378-382.
    [80]B.L. Wang. Linear birefringence measurement at 157 nm [J]. Rev. Sci. Instrum.,2003,74(3): 1386-1389.
    [81]B.L. Wang, T.C. Oakberg. A new instrument for measuring both the magnitude and angle of low level linear birefringence [J]. Rev. Sci. Instrum.,1999,70(10):3847-3854.
    [82]N. Umeda, S. Wakayama, S. Arakawa, A. Takayanagi, H. Kohwa. Fast birefringence measure-ment using right and left hand circularly polarized laser [C]. Proc. SPIE,1996,2873:119-122.
    [83]Y. Otani, T. Shimada, T. Yoshizawa, N. Umeda. Two-dimensional birefringence measurement using the phase shifting technique [J]. Opt. Eng.,1994,33(5):1604-1609.
    [84]Y. Otani, T. Shimada, T. Yoshizawa. The local-sampling phase shifting technique for precise two-dimensional birefringence measurement [J]. Opt. Rev.,1994,1(1):103-106.
    [85]D.W. Robinson, G.T. Reid. Interferogram Analysis:Digital Fringe Pattern Measurement Techniques [M]. Philadelphia:Institute of Physics Publishing,1993:94-140.
    [86]J.R. Swedlow, M. Platani. Live cell imaging using wide-field microscopy and deconvolution [J]. Cell Struct Funct.,2002,27:335-341.
    [87]M.A.A. Neil, R. Juskaitis, T. Wilson. Method of obtaining optical sectioning by using structured light in a conventional microscope [J]. Opt. Lett.,1997,22(24):1905-1907.
    [88]J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J.H. Sorensen, R. Baldock, D. Davidson. Optical projection tomography as a tool for 3D microscopy and gene expression studies [J]. Science, 2002,19:541-545.
    [89]J.R. Walls, J.G. Sled, J. Sharpe, R.M. Henkelman. Correction of artefacts in optical projection tomography [J]. Phys. Med. Biol.,2005,50(19):4645-4665.
    [90]J.B. Pawley. Limitations on optical sectioning in live-cell confocal microscopy [J]. Scanning, 2002,24:241-246.
    [91]J.A. Conchello, J.W. Lichtman. Optical sectioning microscopy [J]. Nature Methods,2005,2: 920-931.
    [92]E. Beaurepaire, A.C. Boccara, M. Lebec, L. Blanchot, H.S. Jalmes. Full-field optical coherence microscopy [J]. Opt. Lett.,1998,23(4):244-246.
    [93]T. Anna, V. Srivastava, D.S. Mehta, C. Shakher. High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells [J]. Appl. Opt.,2011,50(34),6343-6351.
    [94]M. Mansuripur. Analysis of astigmatic focusing and push-pull tracking error signals in magnetooptical disk systems [J]. Appl. Opt.,1987,26(18),3981-3986.
    [95]J.H. Zhang, L.L. Cai. An auto-focusing measurement system with the piezoelectric translator [C]. Proc. IEEE,1997,4:2801-2806.
    [96]A. Bartoli, P. Poggi, F. Quercioli, B. Tiribilli. Fast one-dimensional profilometer with a compact disc pickup [J]. Appl. Opt.,2001,40(7):1044-1048.
    [97]W.Y. Hsu, C.S. Lee, P.J. Chen, N.T. Chen, F.Z. Chen, Z.R. Yu, C.H. Kuo, C.H. Hwang. Development of the fast astigmatic auto-focus microscope system [J]. Meas. Sci. Technol.,2009,20: 1-9.
    [98]N. Islam, R.M. Parkin, M.R. Jackson, Z. Kesy. Development of a novel profile measurement system for actively planed surfaces [J]. Measurement,2011,44:466-477.
    [99]B. Hnilicka, A. Voda, H.J. Schroder. Modeling the characteristics of a photodetector in a DVD player [J]. Sens. Actuators A,2005,120:494-506.
    [100]E.F. Erickson, R.M. Brown. Calculation of fringe visibility in a laser-illuminated interfero-meter [J]. J. Opt. Soc. Am.,1967,57:367-368.
    [101]P. Hlubina. Dispersive spectral-domain two-beam interference analysed by a fibre-optic spectrometer [J]. J. Mod. Opt.,2004,51(4):537-547.
    [102]Scratch/Dig optical surface specification [Z]. http://www.prhoffman.com/technical/scratch-dig.htm.
    [103]S. Bell. A beginner's guide to uncertainty of measurement [M]. Measurement Good Practice Guide of National Physical Laboratory,1999,11(2):1-33.
    [104]Zygo Corporation. Measuring sub-angstrom surface texture [Z]. Zygo Application Note,2005.
    [105]A. Harasaki, J.C. Wyant. Fringe modulation skewing effect in white-light vertical scanning interferometry [J]. Appl. Opt.,2000,39(13):2101-2106.
    [106]T. Kihara, K. Yokomori. Simultaneous measurement of the refractive index and thickness of thin films by S-polarized reflectance [J]. Appl. Opt.,1992,31(22):4482-4487.
    [107]P. de Groot, R. Stoner, X.C. de Lega. Profiling complex surface structures using scanning interferometry [P]. U.S. patent 7271918,2007
    [108]P. Pavlicek, J. Soubusta. Measurement of the influence of dispersion on white-light interfero-metry [J]. Appl. Opt.,2004,43(4):766-770.
    [109]W.J. Tango. Dispersion in stellar interferometry [J]. Appl. Opt.,1990,29(4):516-521.
    [110]P.R. Lawson. Bandwidth limitations and dispersion in optical stellar interferometry [J]. Appl. Opt.,1996,35(25):5122-5124.
    [111]A. Meadway, S.H.H. Darbrazi, G. Dobre, R.B. Rosen, A.G. Podoleanu. A rapid method of measuring dispersion in low coherence interferometry and optical coherence tomography systems [J]. J. Opt.,2010,12:1-6.
    [112]A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, T. Lasser. Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography [J]. Opt. Express,2001,9(12):610-615.
    [113]P. de Groot, J.W. Kramer. Height scanning interferometry method and apparatus including phase gap analysis [P]. U.S. patent 6775006,2004.
    [114]K. Madsen, H.B. Nielsen, O. Tingleff. Methods for Non-linear Least Squares Problems [M]. Denmark:Technical University of Denmark,2004:24-29.
    [115]The Levenberg-Marquardt function is available as LSQNONLIN in the MATLAB software. For details, refer to Optimization Toolbox for Use with MATLAB [Z], Math Works, Natick, Mass., 1992
    [116]Refractive Index Database [Z]. http://www.filmetrics.com/
    [117]K. Schoenenberger, B.W. Colston, D.J. Maitland, L.B. da Silva, M.J. Everett. Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography [J]. Appl. Opt.,1998,37(25):6026-6036.
    [118]J. Moreau, V. Loriette, A.C. Boccara. Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography. Ⅰ. Theory [J]. Appl. Opt.,2003,42(19): 3800-3810.
    [119]J. Moreau, V. Loriette, A.C. Boccara. Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography. Ⅱ. Instrument and results [J]. Appl. Opt.,2003, 42(19):3811-3818.
    [120]C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, A. Fercher. Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography [J]. Opt. Express,2001,9(13):780-790.
    [121]H. Scholze. Glass:Nature Structure and Properties [M]. Berlin:Springer,1991:1-156.
    [122]D. Brewster. Experiments on the de-polarization of light as exhibited by various mineral, animal and vegetable bodies with a reference of the phenomena to the general principle of polarization [J]. Philos. Tras. R. Soc. London,1815,1:21-53.
    [123]M.R. Hee, S.E. David, J.G. Fujimoto. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging [J]. J. Opt. Soc. Am. B,1992,9(6):903-908.
    [124]S.L. Francis. Mount for Berek compensator [P]. U.S. patent 5245478,1993.
    [125]The Berek Polarization Compensator Model 5540 User's Manual [Z].
    [126]Schott D263M glass coverslips technical data [Z]. http://www.tedpella.com/histo_html/ coverslip-info.htm.
    [127]S. Patrick. An algorithm for profilometry by white-light phase-shifting interferometry [J]. J. Mod. Opt.,1996,43(8):1545-1554.
    [128]K.M. Qian, F.J. Shu, X.P. Wu. Determination of the best phase step of the Carre algorithm in phase shifting interferometry [J]. Meas. Sci. Technol.,2000,11:1220-1223.
    [129]H.W. Guo, Z. Zhao, M.Y. Chen. Efficient iterative algorithm for phase-shifting interferometry [J]. Opt. Lasers. Eng.,2007,45:281-292.
    [130]Y.Y. Cheng, J.C. Wyant. Phase shifter calibration in phase-shifting interferometry [J]. Appl. Opt.,1985,24(18):3049-3052.
    [131]A. Masaaki. Phase-shift algorithm for white-light interferometry insensitive to linear errors in phase shift [J]. Opt. Rev.,2008,15(3):148-155.
    [132]P. de Groot. Generating fringe-free images from phase-shifted interferometry data [J]. Appl. Opt.,2005,44(33):7062-7069.
    [133]D. Malacara. Optical Shop Testing [M]. New Jersey:John Wiley & Sons,2007:547-612.
    [134]J.C. Wyant. Phase shifting interferometry [Z], http://www.optics.arizona.edu/jcwyant/optics 513/ChapterNotes/Chapter05/3.PrintedVersionPhaseShiftingInterferometry.pdf.
    [135]C. Weils, J.C. Wyant. Fringe modulation characterization for a phase shifting imaging ellipsometer [C]. Proc. SPIE,1997,3134:466-474.
    [136]P. Carre. Installation et utilisation du comparateur photo-electrique et interterential du bureau international des poids de mesures [J]. Metrologia,1966,2:13-23.
    [137]D. Malacara, M. Servin, Z. Malacara. Interferogram analysis for optical testing [M]. New York: Taylor & Francis,2006:272-275.
    [138]P. Hariharan, B.F. Orebm, T. Eiju. Digital phase-shifting interferometry:a simple error-compensating phase calculation algorithm [J]. Appl. Opt.,1987,26(13):2504-2506.
    [139]J. Schwider, R. Burow, K.E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel. Digital wave-front measuring interferometry:some systematic errors sources [J]. Appl. Opt.,1983,22(21):3421-3432.
    [140]K.G. Larkin. Efficient nonlinear algorithm for envelope detection in white light interferometry [J]. J. Opt. Soc. Am. A,1996,13(4):832-843.
    [141]C.J. Morgan. Least-squares estimation in phase-measurement interferometry [J]. Opt. Lett., 1982,7(8):368-370.
    [142]H.W. Guo, M.Y. Chen. Least-squares algorithm for phase-stepping interferometry with an unknown relative step [J]. Appl. Opt.,2005,44(23):4854-4859.
    [143]Five point stencil [Z]. http://en.wikipedia.org/wiki/Five-point_stencil.
    [144]M.B. Sinclair, M.P. de Boer, A.D. Corwin. Long-working-distance incoherent-light interference microscope [J]. Appl. Opt.,2005,44(36):7714-7721.
    [145]S. Pancharatnam. Generalized theory of interference and its applications [C]. Proc. Ind. Acad. Sci. A,1956,44:247-262.
    [146]M.V. Berry. The adiabatic phase and Pancharatnam's phase for polarized light [J]. J. Mod. Opt. 1987,34(11):1401-1407.
    [147]R.C. Jones. A new calculus for the treatment of optical systems, Ⅰ. Description and discussion of the calculus [J] J. Opt. Soc. Am.,1941,31(7):488-493.
    [148]H. Hurwitz, R.C. Jones. A new calculus for the treatment of optical systems, Ⅱ. Proof of three general equivalence theorems [J]. J. Opt. Soc. Am.,1941,31(7):493-499.
    [149]R.C. Jones. A new calculus for the treatment of optical systems, Ⅲ. The Sohncke theory of optical activity [J]. J. Opt. Soc. Am.,1941,31(7):500-503.
    [150]R.C. Jones. A new calculus for the treatment of optical systems, IV. Experimental deter miniation of the matrix [J]. J. Opt. Soc. Am.,1941,32 (8):486-493.
    [151]S. Ramaseshan, R. Nityananda. The interference of polarized light as an early example of Berry's phase [J]. Curr. Sci.,1986,55(24):1225-1226.
    [152]J. Samuel, R. Bhandari. General setting for Berry's phase [J]. Phys. Rev. Lett.,1988,60(23): 2339-2342.
    [153]O.J. Kwon, H.T. Lee, S.B. Lee, S.S. Choi. Observation of a topological phase in a noncyclic case by use of a half-sturn optical fiber [J]. Opt. Lett.,1991,16(4):223-225.
    [154]T.D. Visser, T. van Dijk, H.F. Schouten, W. Ubachs. The Pancharatnam-Berry phase for non-cyclic polarization changes [J]. Opt. Express,2010,18(10):10796-10804.
    [155]C. Johannes. Wave plates and the Pancharatnam phase [J]. Opt. Comm.,1999,171:179-183.
    [156]M. Roy, P. Svahn, L. Cherel, C.J.R. Sheppard. Geometric phase-shifting for low-coherence interference microscopy [J]. Opt. Lasers. Eng.,2002,37:631-641.
    [157]H.K. Teng, K.C. Lang. Polarization shifting interferometric profilometer [J]. Opt. Lasers. Eng., 2008,46:203-210.
    [158]M.F. Erna, D. Wolfgang, A.F. Jose. Polarization-shifting method for step interferometry [J]. Pure Appl. Opt.,1998,7:53-60.
    [159]S.S. Helen, M.P. Kothiyal, R.S. Sirohi. Phase shifting by a rotating polarizer in white-light interferometry for suface profiling [J]. J. Mod. Opt.,1999,46(6):993-1001.
    [160]Y. Watanabe, M.Sato. High-speed high-resolution full-field optical coherence tomography using achromatic phase shifting by a rotating polarizer [C]. Pacific Rim Conference on Lasers and Electro-Optics,2005,30:985-986.
    [161]Y. Watanabe, Y. Hayasaka, M. Sato, N. Tanno. Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer [J]. Appl. Opt.,2005,44(8):1387-1392.
    [162]S.S. Helen, M.P. Kothiyal. Achromatic phase shifting by a rotating polarizer [J]. Opt. Comm., 1998,154:249-254.
    [163]P. Hariharan. Achromatic phase shifting for polarization interferometers [J]. J. Mod. Opt.1996, 43(6):1305-1306.
    [164]P. Hariharan, M. Roy. Achromatic phase-shifting for two-wavelength phase-stepping interferometry [J]. Opt. Comm.,1996,126:220-222.
    [165]P. Hariharan. Achromatic Phase-Shifting for White-Light Interferometry [J]. Supplement to Optics and Photonics News,1996,7(5):1-2.
    [166]B. Naoshi, S. Kaichirou. Geometric phase observation with dispersed fringes [J]. Opt. Rev., 1997,4(5):593-595.
    [167]P. Hariharan, M. Roy. White-light phase-stepping interferometry for surface profiling [J]. J. Mod. Opt. 1994,41(11):2197-2201.
    [168]S.S. Helen, M.P. Kothiyal, R.S. Sirohi. White-light interferometry with polarization phase-shifter at the input of the interferometer [J]. J. Mod. Opt.,2000,47(6):1137-1145.
    [169]The CVI Melles Griot technical guide [Z]. CVI Melles Griot Inc.,2009.
    [170]E.J. Galvez, Applications of geometric phase in optics [J]. Recent Research Developments in Optics,2002,2:165-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700