用户名: 密码: 验证码:
中空分流锻造成形机理及应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮品种多,数量巨大,在汽车、飞机、轮船、机床等产品中应用广泛,尤以各种车辆传动装置中应用最多,其中,一辆汽车上的齿轮近40件,约有一半可采用精密模锻工艺生产。其中,圆锥齿轮、起动齿轮和同步器齿环等已实现精密模锻工艺生产,在节材、节能、提高产品性能和环保方面创造了显著的经济与社会效益。但,结合齿轮、倒档齿轮和大模数直齿圆柱齿轮等结构复杂、成形极为困难的齿轮的精锻技术研究很少见到报导。国外,德国的蒂森克虏伯公司和日本的你期待(Nichidai)公司已研发出结合齿轮和倒档齿轮的温冷复合精锻成形工艺并用于生产,由于技术保密,未见发表论文;对于大模数直齿圆柱齿轮未见公开报导。而国内的研究刚刚起步,有的甚至为空白。本文以实现这些复杂齿轮的精密模锻为目标,采用经典塑性成形理论、有限元模拟与试验相结合的方法对中空分流锻造成形机理及应用技术进行研究,其主要研究内容及成果如下:
     研究了中空分流锻造成形机理,得到:当采用实心圆饼毛坯通过常规闭式锻造成形为圆饼直齿轮时,毛坯金属以轴向压缩流动为主,径向流动极小,其等效应变值小,但等效应力值大,导致成形力迅速增大,而齿顶未能充满;当采用环形毛坯闭式锻造即中空分流锻造时,毛坯金属产生轴向与径向复合流动,等效应变值增大,等效应力值减小,不仅成形力大为减小,而且齿顶充填饱满。
     分析了影响锻造成形力的各主要因素及其相互关系,提出了以成形力最小为目标函数的优化模型的思路,导出了中空分流锻造成形力的计算公式和满足中空分流锻造成形要求的环形毛坯孔径的计算公式,实现了环形毛坯的优化设计。
     采用刚粘塑性与热力耦合有限元模拟方法,分析了采用常规闭式锻造成形结合齿轮精密锻件时,因金属沿径向流动距离过长、切向拉应力过大,从而导致模具破裂和锻件缺陷;针对这一技术难题,提出了中空分流锻造成形工艺方案和预锻件的优化设计方法,完成了三工序结合齿轮中空分流锻造模具结构设计,同样,采用刚粘塑性有限元模拟和工艺及模具试验,验证了其可行性与先进性。
     针对采用厚壁无缝管坯通过带芯轴挤压成形为大模数直齿圆柱齿轮存在材料利用率低、成形力过大的问题,提出采用圆柱体毛坯通过温(热)态闭式挤压和冷挤压精整的中空分流锻造成形工艺方案,完成了热态闭式挤压和冷挤压精整模具结构设计并提出了相应的选用原则,采用刚粘塑性热力耦合有限元及弹塑性有限元模拟分析与工艺试验验证了其可行性。
     利用所取得的理论研究成果,在合作企业建立了由下料、加热、16000KN三工位热模锻压力机、热处理炉和6300KN精锻液压机组成的中空分流锻造成形生产线,实现了“大众”二档结合齿轮精密锻件的批量生产,为企业创造了良好的经济社会效益;大模数直齿圆柱齿轮中空分流锻造成形工艺与模具,为相关企业实现汽车驱动桥行星齿轮精锻生产的应用提供了科学依据。
There are many kinds of gears, which are extensively used in automobile, aircrafts, ships, machine tools and so on, especially in the transmission system of various kinds of vehicles. There are nearly 40 gears in a car, and half of which can be produced by precision die forging process. At present, the large industrialization production of bevel gears has been achieved by precision die forging process, as well as automobile starter gears and synchronizer blocking rings. Hence, a remarkable benefit in social, economic aspects were made on saving energy. And environmental protection, the quantity and performance of the products were improved. But reports are few, about the studies on joint gears, reverse gears and spur gears with big modulus which have complicated structure and great difficulty of being formed. German ThyssenKrupp Automotive Company and Japan Nichidai Company developed precision forging forming processes on joint gears and reverse gears. And those processes have been applied to production. Duo to technical security, there is no pubulic papers. The process of forming spur gears with big modulus has not been reported yet. Domestic research and application on joint gears and spur gears with big modulus have just started internally. In this paper, it is targeted as realizing the precision die forging of those gears. Classical plastic forming theory, finite element simulation and corresponding experiments were used to study the forming mechanism and application of hollow divided flow forging technology. The main research contents and results of this paper are as follows:
     Hollow divided flow forging technology was studied and some research results were achieved. When the flat spur gear is obtained from the solid cylinder blank through conventional closed die forging technology, most of the metal of the blank flows along the axial and the radial flow is very little. The equivalent strain is low; however the equivalent stress is high during the forming process. As a result, the forming force increases rapidly and the teeth of the gear are not formed competely. Nevertheless, by adopting hollow divided flow forging technology in the forming process of the flat spur gear, the matal flows along the axial combined with the radial. The equivalent strain increases and the equivalent stress decreases. Meanwhile, the teeth of the gear are formed well.
     The main factors that influence the forming force and the interrelation of these factors were analyzed. An optimal model of target function was developed for obtaining the minimal forming force. The calculation formula for the forming force of the hollow divided flow forging technology was derived, as well as the calculation formula for the radius of the ring blank used in hollow divided flow forging technology. The optimization design was implemented.
     Conventional closed die forging technology of joint gear was analysed by means of traditional plasticity theory and thermodynamic couple numerical simulation in rigid-viscoplastic finite element method, through which the forming rules were obtained. Because the metal of the blank flows too long and the tangential stress of die is too high, the fracture of die and forging defects appear. According to the key technical problems, the hollow divided flow forging technology of joint gear was developed, the same as the optimum design of the shape of pre-forging. The structure of the three-stage die was designed. As well, corresponding experiments were carried out. The results show that the forging is qualified, and the hollow divided flow forging technology of joint gear is feasible.
     Problems such as low material utilization and large forming force exist in the forming process of the spur gear with big modulus, when using the thick wall seamless tube through extrusion with core shaft. To solve the above-mentioned problems, hot closed extrusion shceme and cold extrusion finishing hollow divided flow forging technology were proposed. The die structure design was completed. Based on coupled thermo-mechanical simulation in rigid-viscoplastic finite element method and elastoplastic finite element method, the forming processes were simulated by the software Deform-3D. Then, corresponding experiments were conducted and the results perfectly matched the simulation results.
     Based on the theoretical research results, a hollow divided flow forging technology production line was put into production in cooperative enterprise. The production line includes blanking, heating,16000KN three-stage hot die forging press, heat treatment furnace and 6300KN precision forging hydraulic press. Batch process of two crosspiece joint gear precision forging was done and larger economic benefit was achieved. The hollow divided flow forging technology and the die of spur gears with big modulus provide a scientific basis for forming the precision forging of the driving axle planetary gear in relevant enterprises.
引文
[1]夏巨谌.典型零件精密成形[M].北京:机械工业出版社,2008.
    [2]M.L. Alves, J.M.C. Rodrigues, P.A.F. Martinsm. Cold forging of gears: experimental and theoretical investigation [J]. Finite Elements in Analysis and design,2001,37(6-7):549-558.
    [3]王华君,夏巨谌,程培元,等.从动螺旋伞齿轮精密锻造数值仿真[J].华中科技大学学报(自然科学版),2005,33(9):94-96.
    [4]T.A. Dean. The net-shape forming of gears [J]. Materials and Design,2000, 21(4):271-278.
    [5]Doege E, Bohnsack R. Closed die technologies for hot forging [J]. Journal of Materials Processing Technology,2000,98(2):165-170.
    [6]胡正寰,夏巨谌.中国材料工程大典(第20卷)材料塑性成形工程(下)[M].北京:化学工业出版社,2006.
    [7]夏巨谌.金属材料精密塑性加工方法[M].北京:国防工业出版社,2007.
    [8]赵军华,莫江涛,成国发,等.直齿锥齿轮精锻技术现状和发展[J].金属加工(热加工),2008,(17):15-18.
    [9]杨鄂川,康凤.行星伞齿轮闭塞精密成形技术[J].重庆工学院学报,2008,22(8):35-38.
    [10]Hsu Hung-Hsiou. A study on precision forging of spur gear forms and spline by the upper bound method [J]. International Journal of Mechanical Sciences,2002,44(8): 1543-1558.
    [11]T.S. Yang, Y.C. Hsu. A finite element analysis for the forging process of hollow spur gear[C]//Proceedings of the 2005 International Conference on Advanced Manufacture. Switzerland:Trans Tech Publications Ltd, 2006:733-738.
    [12]Xu X, Yu Z. Failure analysis of diesel engine flywheel ring-gears [J]. Engineering Failure Analysis,2005,12(1):25-34.
    [13]Zhang Z, Xie J. A numerical simulation of super-plastic die forging process for Zr-based bulk metallic glass spur gear [J]. Materials Science and Engineering:A, 2006,433(1-2):323-328.
    [14]Liu J, Cui Z. Hot forging process design and parameters determination of magnesium alloy AZ31B spur bevel gear [J].Journal of Materials Processing Technology,2009,209(18-19):5871-5880.
    [15]Deng X, Hua L, Han X, et al. Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear [J]. Materials & Design,2011, 32(3):1376-1389.
    [16]P.B. Hussain, J.S.Cheon, D.Y. Kwak, et al. Simulation of clutch-hub forging process using CAMPform [J]. Journal of Materials Processing Technology,2002, 123(1):120-132.
    [17]Cai J, Dean T A, Hu Z M. Alternative die designs in net-shape forging of gears [J]. Journal of Materials Processing Technology,2004,150(1-2):48-55.
    [18]Chang Y C, Hu Z M, Kang B S, et al. A study of cold ironing as a post-process for net-shape manufacture [J]. International Journal of Machine Tools and Manufacture,2002,42(8):945-952.
    [19]E.R.H. Stone, J. Cai, Z.M. Hu. An exercise in cold ironing as the post-forging operation for net-shape manufacture [J]. Journal of Materials Processing Technology,2003, (135):278-283.
    [20]Cho J R, Kang W J, Kim M G, et al. Distortions induced by heat treatment of automotive bevel gears [J]. Journal of Materials Processing Technology,2004, 153-154:476-481.
    [21]Kang G, Song W, Kim J, et al. Numerical approach to forging process of a gear with inner cam profile using FEM [J]. Journal of Materials Processing Technology, 2005,164-165:1212-1217.
    [22]Kang J H, Lee K O, Je J S, et al. Spur gear forging tool manufacturing method considering elastic deformation due to shrink fitting[J]. Journal of Materials Processing Technology,2007,187-188:14-18.
    [23]Ma Y, Qin Y, Balendra R. Forming of hollow gear-shafts with pressure-assisted injection forging (PAIF) [J]. Journal of Materials Processing Technology,2005, 167(2-3):294-301.
    [24]Santos C A, Aguilar M T P, Campos H B, et al. Failure analysis of the die in the third hot forging stage of a gear blank [J]. Engineering Failure Analysis,2006, 13(6):886-897.
    [25]Bochniak W, Korbel A, Szyndler R, et al. New forging method of bevel gears from structural steel [J]. Journal of Materials Processing Technology,2006,173(1): 75-83.
    [26]Irani M, Taheri A K. Effect of forging temperature on homogeneity of microstructure and hardness of precision forged steel spur gear [J]. Materials Chemistry and Physics,2008,112(3):1099-1105.
    [27]Kim S, Kubota S, Yamanaka M. Application of CAE in cold forging and heat treatment processes for manufacturing of precision helical gear part [J]. Journal of Materials Processing Technology,2008,201(1-3):25-31.
    [28]Eyercioglu O, Kutuk M A, Yilmaz N F. Shrink fit design for precision gear forging dies [J]. Journal of Materials Processing Technology,2009,209(4):2186-2194.
    [29]Garcia Navas V, Gonzalo O, Quintana I, et al. Residual stresses and structural changes generated at different steps of the manufacturing of gears:Effect of banded structures [J]. Materials Science and Engineering:A,2011,528(15): 5146-5157.
    [30]Fuentes A, Iserte J L, Gonzalez-Perez I, et al. Computerized design of advanced straight and skew bevel gears produced by precision forging [J]. Computer Methods in Applied Mechanics and Engineering,2011,200(29-32):2363-2377.
    [31]Behrens B A, Doege E, Reinsch S, et al. Precision forging processes for high-duty automotive components [J]. Journal of Materials Processing Technology,2007, 185(1-3):139-146.
    [32]Brinksmeier E, Liibben T, Fritsching U, et al. Distortion minimization of disks for gear manufacture [J]. International Journal of Machine Tools and Manufacture, 2011,51(4):331-338.
    [33]夏巨谌,丁永祥,胡国安.闭式模锻[M].北京:机械工业出版社,1993.
    [34]夏巨谌,张启勋.材料成形工艺(第2版)[M].北京:机械工业出版社,2010.
    [35]王忠雷,赵国群.精密锻造技术的研究现状及发展趋势[J].精密成形工程,2009,1(1):32-38.
    [36]Takamitsu Suzuki. Recent developments of forging in Japan [J]. International Journal of Machine Tools and Manufacture,1989,29(1):5-27.
    [37]三本明,杨国彬.日本闭式模锻技术的发展[J].汽车工艺与材料,1995,(15):1-5.
    [38]Kopp R. Some current development trends in metal-forming technology [J]. Journal of Materials Processing Technology,1996,60(1-4):1-9.
    [39]三本明,杨国彬.日本最新精密锻造产品及工艺[J].汽车工艺与材料,1997,(4):6-9.
    [40]N.A. Abdul, T.A. Dean. An analysis of the forging of spur gear forms [J]. International journal of machine tool design & research,1986,26(2):113-123.
    [41]D.H. Hristov, B.I. Tomov, D.K. Kolev. Stresses and strains in a die for closed-die forging of cylindrical spur gears [J]. Journal of Materials Processing Technology, 1990,23(1):55-63.
    [42]Haeyong Cho, Jaechan Choi, Gyusik Min, et al. An upper-bound analysis of the closed-die forging of spur gears [J]. Journal of Materials Processing Technology, 1997,67(1-3):83-88.
    [43]Y. Choi, J.C. Choi. Forging of helical gears:Upper bound analyses and experiments [J]. Metals and Materials,1998,4(4):747-754.
    [44]A. El-Domiaty, M. Shabara, M. Al-Ansary. Closed-die forging of gear-like elements [J].Journal of Manufacturing Science and Engineering,1998, 120(1):34-41.
    [45]Yohng J. Kim, Naunit R. Chitkara. Determination of perform shape to improve dimensional accuracy of the forged crown gear form in a closed-die forging process [J]. International Journal of Mechanical Sciences,2001,43:853-870.
    [46]Naunit R. Chitkara, Yohng J. Kim. Near-net shape forging of a crown gear:some experimental results and an analysis [J]. International Journal of Machine Tools & Manufacture,2001,41:325-346.
    [47]Doege E, Bohnsack R. Closed die technologies for hot forging [J]. Journal of Materials Processing Technology,2000,98(2):165-170.
    [48]B.-A.Behrens. Cold sizing of cold- and hot-formed gears [J]. CIRP Annals-Manufacturing Technology,2004,53(1):239-242.
    [49]W. Bochniak, A. Korbel, R. Szyndler, et al. New forging method of bevel gears from structural steel [J]. Journal of Materials Processing Technology,2006, 173(1):75-83.
    [50]M. Skunca, P. Skakun, Z. Keran, et al. Relations between numerical simulation and experiment in closed die forging of a gear [J]. Journal of Materials Processing Technology,2006,177(1-3):256-260.
    [51]Tahir Altinbalik, H. ErolAkata, Yilmaz Can. An approach for calculation of press loads in closed-die upsetting of gear blanks of gear pumps [J]. Materials and Design,2007,28(2):730-734.
    [52]Yilmaz Can, Cenk Misirli. Analysis of spur gear forms with tapered tooth profile [J]. Materials and Design,2008,29(4):829-838.
    [53]J.-H. Song, Y.-T. Im. Process design for closed-die forging of bevel gear by finite element analyses [J]. Journal of Materials Processing Technology,2007, 192-193:1-7.
    [54]谢谈,贾德伟,蒋鹏等.精密塑性成形技术在中国的应用与进展[J].机械工程学报,2001,37(7):100-104.
    [55]胡亚民,段辉.国内外复动锻造加工技术现状与展望[J].锻压装备与制造技术,2004,(2):20-23.
    [56]张弛,陈元芳,杨长辉.闭塞锻造的发展概况及其应用[J].锻压技术,2004,(3):7-10.
    [57]林雪,张耀宗,方泉水等.精密锻造成形技术在我国的应用[J].精密成形工程,2009,1(2):12-17.
    [58]刘战术,陆瑛,孟逵等.高比压预应力闭塞锻造模具的研制及应用[J].郑州纺织工学院学报,1999,10(3):18-24.
    [59]张猛,黄尚宇,赵玉民等.汽车螺旋伞齿轮封闭模锻造成形的变形特性[J].中国有色金属学报,1999,9(3):567-572.
    [60]黄良驹,刘化民,程万军.闭塞冷锻轿车差速器行星齿轮的微观分析[J].热加工工艺,2003,(6):21-24.
    [61]刘化民.轿车差速器圆锥齿轮闭塞冷锻关键技术研究[D].长春:吉林大学博学位论文,2003.
    [62]程万军,黄良驹,刘化民.闭塞冷锻半轴齿轮的微观研究[J].材料·工艺·设备,2005,(1):37-39.
    [63]刘化民,黄良驹,张士宏.闭塞冷锻轿车差速器行星齿轮组织性能研究[J].材料科学与工艺,2005,13(3):275-277.
    [64]Huamin Liu, Liangju Huang, Shenhua Yang, et al. Filling rules of bevel gears in the closed-die cold forging [J]. Journal of Materials Science and Technology,2005, 21(6):925-928.
    [65]刘化民,谷诤巍,程万军等.圆锥齿轮闭塞冷锻后的性能变化规律研究[J].锻压装备与制造技术,2006,(3):44-47.
    [66]刘化民,黄良驹,杨慎华.闭塞冷锻行星齿轮齿形修正方法研究[J].材料科学与工艺,2008,16(6):814-816.
    [67]杨慎华,寇淑清,赵勇等.伞齿轮冷闭塞锻造成形过程数值仿真[J].农业机械学报,2003,34(2):117-119.
    [68]寇淑清,杨慎华,邓春萍等.直齿圆锥齿轮冷闭塞锻造数值模拟分析[J].中国机械工程,2003,14(20):1721-1724.
    [69]杨慎华,寇淑清,徐成林.轿车差速器行星与半轴齿轮冷闭塞锻造成形研究[J].锻压技术,2004,(1):9-12.
    [70]梁继才,黄良驹,付沛福,等.闭塞模锻专用模架简介[J].汽车工艺与材料,2001(11):37-39.
    [71]梁继才,付沛福,黄良驹等.闭塞模锻液压模架的研制[J].吉林工业大学自然科学学报,2001,31(2):17-21.
    [72]黄良驹,梁继,李义,等.闭塞模锻液压模架液压系统设计[J].电加工与模具,2001(6):39-40.
    [73]刘化民,黄良驹,梁继才.闭塞模锻双动液压模架的研制[J].吉林大学学报(工学版),2004(4):544-546.
    [74]张清萍,尚勇,赵国群.直齿圆柱齿轮精锻成形过程数值模拟及参数分析[J].中国机械工程,2004,15(17):1546-1548.
    [75]田福祥,王者静,付志刚.螺旋伞齿轮闭式精锻新工艺[J].热加工工艺,2004,(1):42-43.
    [76]田福祥.螺旋伞齿轮闭式精锻模设计[J].模具工业,2005,(9):46-48.
    [77]何长青,夏巨谌,王新云等.轿车直齿圆锥齿轮冷精锻试验研究[J].锻压装备与制造技术,2005,(2):65-67.
    [78]Wang huajun, Xia juchen, Hu guoan. Finite element simulation and optimization of multistage warm/hot forming for outer race. Chinese Journal of Mechanical Engineering [J],2002,15(4):339-343.
    [79]王华君,夏巨谌,张猛.螺旋伞齿轮复动闭式模锻模具[J].锻压装备与制造技术,2005,(2):93-94.
    [80]王华君,夏巨谌,钱应平,等.主动螺旋伞齿轮闭塞模锻物理模拟[J].华中科技大 学(自然科学版),2005,(8):78-80.
    [81]王华君,华林,夏巨谌.主动螺旋伞齿轮闭塞挤压的成形分析[J].农业机械学报,2006,37(11):133-136.
    [82]金俊松,夏巨谌,胡国安等.轿车圆锥齿轮闭式冷精锻凹模的优化设计[J].锻压技术,2006,(3):96-99.
    [83]Jin junsong, Xia juchen, Wang xinyun, et al. Die design for cold precision forging of bevel gear based on finite element method [J]. Journal of South China University of Technology,2009, (16):0546-0551.
    [84]胡国安,夏巨谌,李大才等.8000kN闭式冷精锻设备及模具的研制与应用[J].锻压装备与制造技术,2006,(6):33-35.
    [85]Dongsheng Ji, Xinyun Wang, Lei Deng, et al. Closed hot precision forging process of a bevel gear with large cone angle [J]. Advanced Materials Research,2011, 154-155:143-146.
    [86]钱荣芳,胡国军.精密圆柱齿轮的冷挤压闭式成形与模具设计[J].模具技术,2003,(4):14-17.
    [87]钱荣芳.精密齿轮的冷挤压成形研究[J].锻压技术,2005,(2):73-75.
    [88]林雪,张耀宗,方泉水,等.高精度锥齿轮冷闭式锻造齿模修形及加工电极设计[J].锻压技术,2006,(6):80-84.
    [89]林雪,张耀宗,方泉水,等.轿车行星锥齿轮冷闭式锻造数值模拟分析[J].锻压技术,2007(2):115-119.
    [90]Hu Chengliang, Wang Kesheng, Liu Quankun. Study on a new technological scheme for cold forging of spur gears [J]. Journal of Materials Processing Technology,2007,187-188:600-603.
    [91]杨鄂川,康凤.行星伞齿轮闭塞精密成形技术[J].重庆工学院学报(自然科学版),2008,22(8):35-38.
    [92]C.C. Chang, W.L. Kuo. Effects of temperature and grain refinement on the closed-die forging of a micro gear [J]. Journal of Engineering Manufacture,2010, 224(11):1767-1773.
    [93]Kyoichi OHGA, Kazuyoshi KONDO. Research on precision die forging utilizing divided flow(First report, Theoretical analysis of processes utilizing flow relief-axis and relief-hole) [J]. Bulletin of the Japan Society of Mechanical Engineers,1982,25 (209):1828-1835.
    [94]Kyoichi OHGA, Kazuyoshi KONDO, Toshimasa JITSUNAR1. Research on precision die forging utilizing divided flow(Second report, Experimental study of processes utilizing flow relief-axis and relief-hole) [J]. Bulletin of the Japan Society of Mechanical Engineers,1982,25 (209):1836-1842.
    [95]Kyoichi OHGA, Kazuyoshi KONDO, Toshimasa JITSUNARI. Research on precision die forging utilizing divided flow(Third report, Study on an optimum combination by two step method proposed anew) [J]. Bulletin of the Japan Society of Mechanical Engineers,1982,25 (209):1843-1850.
    [96]Kyoichi OHGA, Kazuyoshi KONDO, Toshimasa JITSUNARI. Research on precision die forging utilizing divided flow(4th report, Influence of restricting a centripetal flow) [J]. Bulletin of the Japan Society of Mechanical Engineers,1983, 24(218):1434-1441.
    [97]Kyoichi OHGA, Kazuyoshi KONDO, Toshimasa JITSUNARI. Research on precision die forging utilizing divided flow(5th report, Application to actual machine parts) [J]. Bulletin of the Japan Society of Mechanical Engineers,1985, 28 (244):2451-2459.
    [98]Kazuyoshi KONDO, Toshimasa JITSUNARI, Kyoichi OHGA. Investigation on cold die forging of a gear utilizing divided flow(1st report, Examination of applicable condition for a spur gear) [J]. Bulletin of the Japan Society of Mechanical Engineers,1985,28 (244):2442-2450.
    [99]Kazuyoshi KONDO, Kyoichi OHGA, Kouichi FUKUI. Investigation on cold die forging of a gear utilizing divided flow(2nd report, Application to a steel product and constructions of two step forging process) [J]. Bulletin of the Japan Society of Mechanical Engineers,1987,30 (261):540.
    [100]Kazuyoshi KONDO, Kyoichi OHGA. Investigation into forming processes of various spur gears [J]. Advanced Technology of Plasticity,1987 (II):1089-1096.
    [101]J.C. Choi, Y. Choi. Precision forging of spur gears with inside relief [J]. International Journal of Machine Tools and Manufacture,1999,39(10):1575-1588.
    [102]付沛福,寇淑清,杨慎华,等.冷精锻直齿轮的工艺方案与充填规律[J].农业机械学报,1997,28:118-122.
    [103]寇淑清,杨慎华,赵勇.直齿圆柱齿轮冷精锻成形过程数值模拟分析[J].农业机械学报,2001,32(1):95-98.
    [104]张英杰.法兰锻件制坯问题探讨[J].机械,2000,27(2):40-41.
    [105]刘彦国,张振宇,程仲文.回转体锻件制坯问题探讨[J].兰州工业高等专科学校学报,2002,9(1):36-39.
    [106]王广春,赵国群,夏世升.直齿轮精锻成形新工艺及试验研究[J].机械工程学报,2005,41(2):123-126.
    [107]张丽辉,薛克敏.大模数高凸台圆柱直齿轮净成形试验研究[J].锻压技术,2007,32(3):30-33.
    [108]王岗超,薛克敏,许锋,等.齿腔分流法冷精锻大模数圆柱直齿轮[J].塑性工程学报,2010,17(3):18-21.
    [109]石文超,王岗超,许锋,等.局部加载约束分流冷锻直齿轮工艺研究[J].精密成形工程,2010,2(2):47-50.
    [110]龚冬梅.基于径向分流和浮动凹模耦合法圆柱直齿轮冷锻成形数值模拟研究[J].机械传动,2010,34(4):52-53.
    [111]谭险峰,刘霞,胡德锋,等.约束分流精锻成形直齿圆柱齿轮[J].锻压技术,2010,35(2):26-30.
    [112]Yoshimura H, Tanaka K. Precision forging of aluminum and steel [J]. Journal of Materials Processing Technology,2000,98(2):196-204.
    [113]刘全坤,胡成亮,王强,等.齿轮闭式锻造新工艺方案的数值模拟研究[J].合肥工业大学学报(自然科学版),2005(9):1035-1038.
    [114]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1986.
    [115]陈如欣,胡忠民.塑性有限元法及其在金属成形中的应用[M].重庆:重庆大学出版社,1989.
    [116]李尚健.金属塑性成形过程模拟[M].北京:机械工业出版社,1995.
    [117]李俊,游理华.热锻过程中变形与热传导的耦合分析[J].机械研究与应用,1999,12(2):19-21.
    [118]张凯峰,魏艳红,魏尊杰.材料热加工过程的数值模拟[M].哈尔滨工业大学出版社,2000.
    [119]刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003.
    [120]董湘怀.材料成形计算机模拟(第2版)[M].北京:机械工业出版社,2006.
    [121]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999.
    [122]上海交通大学《冷挤压技术》编写组.冷挤压技术[M].上海:上海人民出版社,1976.
    [123]贾俐俐.挤压工艺及模具[M].北京:机械工业出版社,2006.
    [124]洪慎章,曾振鹏.驱动齿轮冷模锻工艺及模具设计[J].模具工业,2000,(3):35-37.
    [125]Y.C. Chang, Z.M. Hu, B.S.Kang. A study of cold ironing as a post-process for net-shape manufacture [J]. Machine Tools & Manufacture,2002(42):945-952.
    [126]E.R.H.Stone, J.Cai, Z.M.Hu. An exercise in cold ironing as the post-forging operation for net-shape manufacture [J]. Journal of Materials Processing Technology,2003(135):278-283.
    [127]Behrens B A, Doege E. Cold Sizing of Cold- and Hot-Formed Gears [J]. CIRP Annals-Manufacturing Technology,2004,53(1):239-242..
    [128]赵震,陈军,吴公明.冷温热挤压技术[M].北京:电子工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700