用户名: 密码: 验证码:
精噁唑禾草灵的微生物降解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究取安徽华星化工有限公司精噁唑禾草灵废水处理系统进水口处污泥进行驯化培养,从中筛选出活性菌株,对其中降解精噁唑禾草灵效果最好的活性菌株进行了鉴定以及UV诱变,并以此菌株以及此菌株UV诱变菌株(诱变菌株中降解精噁唑禾草灵效果最好)为出发菌株,运用高效液相色谱分析精噁唑禾草灵残存量的方法,进行了降解动力学以及外源物质对降解菌活性影响的研究,并通过高效薄层色谱方法,对精噁唑禾草灵的降解产物进行了分离。主要研究结果如下:
     1.取安徽华星化工有限公司精噁唑禾草灵废水处理系统进水口处污泥进行驯化培养,分离到8株有效菌株,通过高效液相色谱分析这8株菌株降解精噁唑禾草灵的残存量,确定其中降解精噁唑禾草灵最好的一株菌株为本实验菌株,通过传统的微生物鉴定方法,将其鉴定为产碱菌属(Alcaligenes sp),标记为Alcaligenes sp.H。
     2.以Alcaligenes sp.H为出发菌株,通过紫外诱变后,从中挑选降解精噁唑禾草灵效果最好的诱变株H8-1为本实验的第二株菌株,标记为Alcaligenes sp.H_(uv)。在精噁唑禾草灵浓度为5-100mg/L范围内,Alcaligenes sp.H_(uv)菌降解精噁唑禾草灵的效果优于Alcaligenes sp.H。
     3.本实验中Alcaligenes sp.H和Alcaligenes sp.H_(uv)以及混合菌降解精噁唑禾草灵的降解动力学方程用一级动力学方程模拟,其相关系数r均大于0.90。
     C_t=C_0e~(-kt)
     4.Alcaligenes sp.H与Alcaligenes sp.H_(uv)不同混合比例(2.5:1,1:1,1:2.5)的混合菌降解效果均明显优于Alcaligenes sp.H单菌,其半衰期分别为37.66h、30.39h、23.90h均明显小于Alcaligenes sp.H单菌的半衰期64.17h,而当Alcaligenes sp.H_(uv)在混合菌体系中所占比例超过一半时,混合菌的降解效果优于Alcaligenes sp.H_(uv)单菌(半衰期为35.18h),同时,随着Alcaligenes sp.H与Alcaligenes sp.H_(uv)混合比例的下降,即Alcaligenes sp.H_(uv)菌的比例增大,降解加快,这一点可以从半衰期的逐渐减小得到反映,说明Alcaligenes sp.H_(uv)菌在混合菌体系中占主导地位,也间接反映其降解效果优于Alcaligenes sp.H。
     5.Alcaligenes sp.H菌量分别为OD_(330)=0.2,0.4,0.6时,精噁唑禾草灵的微生物降解半衰期分别为67.28h、35.0h、21.72h,其半衰期与菌量近似成反相关,降解速率常数与Alcaligenes sp.H菌量近似成正比。而Alcaligenes sp.H_(uv)菌量分别为OD=0.2,0.4,0.6时,精噁唑禾草灵的微生物降解半衰期为35.54h、21.32h、19.58h,虽然其降解速率与Alcaligenes sp.H_(uv)菌量呈正相关,但其反映的菌量浓度差并没有Alcaligenes sp.H大,可见对于Alcaligenes sp.H_(uv)来说并非所有的菌都参与了降解(相对OD_(330)=0.2),说明对于一定浓度的精噁唑禾草灵来说,随着降解菌菌量的增加,农药的降解加快,降解速率与菌量基本成正相关,但同样存在一个最佳菌量问题,即当
    
    菌量增加到一定程度后,再增加菌量,其降解速率增加趋势不再明显。
     6.在精嗯哇禾草灵的浓度从 sing/L到 100mg/卜变化范围内,对于 Alcalfgenes Sp.H
    来说,其半衰期逐渐增大,分别为47.47h、65.38h、68.6lh、86.63h、135.88h,对于
    Alcaliggnes sp.Huv来说其半衰期分另为 18.24h、35.54h、46.51h、57.27h、72.19h;
    半衰期同样逐渐增大。不同精嗯哇禾草灵浓度对降解动力学的影响表明:AICJ人卯们“
    sp.H及 Alcallee,7es s H。v只对一定浓度的精噬哇禾草灵保持较强的降解作用,
    A儿7rnes sn·H及 Alcaliernes sn Huv降解高浓度的精曙哩禾草灵的效率下降。
     7.本实验所选取的 3种外源物质对Aleal@nes Sp.H及Alcalwnes Sp.HW降解精嗯哇
    禾草灵均产生了抑制作用。其中百菌清对 AlcaligeneS SP.HW及 Alcaligenes Sp丑与
    Alcaligenes Sp.H*混合菌门:1)降解精嗯哇禾草灵的抑制作用更为显著,而对于
    AlcaligenesspH其相对抑制作用较小;当外源物质为十二烷基苯磺酸钠和 Cr+6时,降解
    曲线形状发生了明显的变化,尤其降解初期十=烷基苯磺酸钠和Cr+‘对降解菌的抑制作
    用尤为明显,降解速度很慢,随着降解菌对十=烷基苯磺酸钠和 Cr+0的适应,降解速度
    逐渐加快。
    8.在展开剂为甲苯:H氯甲烷(V:V,7:3)条件下,精嗯哇禾草灵降解产物得到很
    好的分离,通过比较精嗓哇禾草灵标样及精嗯陛禾草灵降解产物的展开距离即R。值,
    除Rf叫.22(精嗯哇禾草灵标样峰)的峰外,精嗯哩禾草灵降解产物(降解菌为
    Ale。lfgenes SP.H)在 Rr=0.14、0.29、0.34、0.39、0.47处有 5个峰;精lg陛禾草灵
    降解产物(降解菌为 Alcalfgunes sp.Hm)在 Rr=0.11、0.39处有 2个峰,这与 CAMAG紫
    外灯下观察的斑点数量相符。通过 HPLC-MS分析可以推测出:m)《三-门-氯J,
    3-苯并嗯陛千-基氧)苯氧基」丙酸乙酯水解是降解菌 Alcallernes p丑与 Alcalfgenes
    SP.Huv降解精嗯咆禾草灵的公共降解途径之一,其产物为m)六二-历-氯习,卜苯
    并嗯哇-2-基氧)苯氧基」丙酸和乙醇。
Bacterial strains which could decompose fenoxaprop-p-ethyl were isolated from a batch culture with fenoxaprop-p-ethyl as carbon source and the sludge from waste water dealing system of Huaxing chemical engineering Co L.td . After determining the rest quantity of fenoxaprop-p-ethyl with HPLC , H was selected as dominant degradation bacterial strain for its best degradation ability to fenoxaprop-p-ethyl . H8-1 was also selected as another dominant degradation bacterial strain for its higher degradation ability to fenoxaprop-p-ethyl than the other strains after UV mutation . Fenoxaprop-p-ethyl degradation dynamics was studied with HPLC method , and degradation products of fenoxaprop-p-ethyl had been separated with HPTLC . The main study results are as follows :
    1 .Eight bacterial strains which could decompose fenoxaprop-p-ethyl were isolated from a batch culture with fenoxaprop-p-ethyl as carbon source and the sludge from waste water dealing system of Huaxing chemical engineering Co L.td . After determining the rest quantity of fenoxaprop-p-ethyl with HPLC , H was selected as dominant degradation bacterial strain for its best degradation ability to fenoxaprop-p-ethyl .Based on the morphological appearances and physiological characteristics ,H was identified as Alcaligenes sp and named as Alcaligenes sp.H .
    2.H8-1 was also selected as another dominant degradation bacterial strain for its higher degradation ability to fenoxaprop-p-ethyl than the other strains after UV induce . H8-1 was marked as Alcaligenes sp. Huv . With the concentration of fenoxaprop-p-ethyl varing from 5mg/L to 100mg/L , Alcaligenes sp. Huvhas better degradation ability to fenoxaprop-p-ethyl than Alcaligenes sp.H .
    3. fenoxaprop-p-ethyl degradation dynamics was studied . Degradation kinetics follow the first order kinetics .
    4. It proved that degradation ability of mixed bacterial by Alcaligenes sp.H and Alcaligenes sp. Huv to fenoxaprop-p-ethyl is superior to Alcaligenes sp.H , superior to Alcaligenes sp. Huv after the quantity of Alcaligenes sp. Huv surpasses half , and with the quantity increasing of Alcaligenes sp. Huv , degradation ability of mixed bacterial by and Alcaligenes sp. Huv to fenoxaprop-p-ethyl increases respectively comparing their half-time . Their half-times are 37.66h, 30.39h and 23.90h to mixed bacterial (Alcaligenes sp.H : Alcaligenes sp. Huv 2.5:1,1:1,1:2.5 ) ,64.17h to Alcaligenes sp.H and 35.18h to Alcaligenes sp. Huv.
    5. Degradation rates of fenoxaprop-p-ethyl were positively correlative to biomass .On the
    
    
    
    contrary , the fortified concentration is opposite the degradative rate . It can be seen from their half-time and their half-time are 67.28h, 35.0h and 21.72h to Alcaligenes sp.H , 35.54h ,21.32h and 19.58h to Alcaligenes sp. Huv correlative to their different biomass .Results showed that biomass has a appropriately fortified concentration .When surpassing this biomass , the degradative rate can not grow obviously .
    6. With the concentration of fenoxaprop-p-ethyl varing from 5mg/L to 100mg/L , the half-time of Alcaligenes sp.H and Alcaligenes sp. Huv increased respectively .The different half-time of Alcaligenes sp.H and Alcaligenes sp. Huv with different concentration are 47.47h,65.38h,68.61h,86.63h,135.88h and 18.24h,35.54h,46.51h,57.27h,72.19h .Effects of different concentration of fenoxaprop-p-ethyl to degradation showed that Alcaligenes sp.H and Alcaligenes sp. Huv had better degradation in some a concentration and the degradation ability to fenoxaprop-p-ethyl of Alcaligenes sp.H and Alcaligenes sp. Huv was obviously decreased in high concentration.
    7. Chlorothalonil, dodecylbenfenxaprop -p-ethylene sulfonic aid sodium salt and Cr+6can inhibite the degradation ability of Alcaligenes sp.H , Alcaligenes sp. Huv and the mixed bacterial by Alcaligenes sp.H and Alcaligenes sp. Huv to fenoxaprop-p-ethyl. The degradation ability of Alcaligenes sp.H to fenoxaprop-p-ethyl was severely inhibited by Chlorothalonil. In early period , Alcaligenes sp.H , Alcaligenes sp. an
引文
1.韩熹莱主编,农药概论.北京:北京农业大学出版社出版.,1995年第1版,P84-92
    2.马文漪,杨柳燕主编,环境微生物工程.南京:南京化工大学出版社出版,1998年第一版,P124-150
    3.吴新杰,岳永德,花日茂.丁草胺高效降解菌的筛选.应用与环境生物学报,2000,6(6):593-596
    4.Matsumura, C.R.Krishna Marti.Biodegradation of Pesticide,Plenum press,P67-89
    5.沈阳化工环保室编,《农药废水处理》.化学工业出版社出版发行,2000年第1版,P22-39
    6.唐受印主编,废水处理工程.北京:化学工业出版社出版发行,1998年第1版
    7 王学东.咪唑烟酸在非耕地环境中降解与代谢得研究.博士论文.2003
    8.王保军,刘志培,杨惠芳.单甲脒农药得微生物降解代谢研究.环境科学学报,1998,18(3):296-302
    9.Daniel R,Michael A. A model describing pesticide bioavalability and biodegradation in soil,Soil Science Society of America Journal. 1997,(4): 1078-1084
    10 Issa S. Degradation of atrazine and isoproturon in the unsaturated zone:a study from Southern England. Pesticide Science, 1999,55(5):539-545
    11 马文漪,孙丽伟,薄海航.微生物降解速灭菊酯的遗传毒性效应.南京大学学报.自然科学版,1988,24(3):555-561
    12 虞云龙,盛国英,傅家谟等.杀灭菊酯的微生物降解及酶促降解.环境科学,1997,18(2)5-7
    13 虞云龙.农药的微生物降解性及酶促降解.博士论文.1995
    14 李淑彬.微生物降解有机磷农药(甲胺磷)的研究.硕士论文.1998
    15 谢冰,徐亚同.农药废水处理工艺研究.上海环境科学,1996,15(10):28-30
    16 Pemberton, J .M.,Wynne, E .C.Genetic engineering and biological detoxification/degradation of insecticides,in insecticide Microbiology,ed. By R.Lal. 1984,P147-168
    17.Guenzi W.D.Pesticides in soil and Water. Soil sci. Soc. Amer. inc.Publisher, Madison,Wiscosin,1974,P133-151
    18 Mandelbaum R.T. et al,Mineralization of the s-Triazing ofatrazine by stable bacterial mixed culture.Appl.Environ. Microbiol., 1993(59),1695-1701
    19.(日)山本出,深见顺一主编,农药的代谢降解与毒理,北京:化工出版社,1991,P155-160
    20.Behki, R.M.,Khan,Shahamat.Degradation of atrizin,prpazine ,and simazine by Rhodococcus strain B-30.J. Agric. Food chem.. 1994(42) 1237-1241
    21 (日)土壤微生物研究会编,土壤微生物实验法,北京:科学出版社,1981P47-61,
    22.Guth,J.A. Experimental approaches to studying the fate of pesticide in soil,Progress in Pesticide Biochemistry ,Vol.1,ed.by Huston. D.H. and .Roberts. T. R1981.P85-110
    
    
    23.Logan B E. Adsorption and removal of pentachlorophenoo by white rot fungi in bactch culture .Water Res., 1994,128(7): 1533~1539
    24 Katayama-Hirayama K et al. Biodegradation of phenol and monochlorophenols by yeast. Rhodotorula glutinis Water Sci. Technol.,1994, 30(9): 59~66
    25 刘志培.贾省芬.单甲脒降解菌的分离筛选.微生物学通报,1995,22(5);285-288
    26 Hill,l.R,et al.Pesticide Microbiology. Academic Press,London. 1978
    27 Bollag,J.M. Microbial transformation of pesticides,Adv. Appl.Microbiol, 1974, 18:75-79
    28 Barik S. Metabolism of insecticides by microorganism,in insecticides Microbiology, ed.by Lal. R, 1984,P87-130
    29 周乐民.浅谈有机杀虫剂的微生物降解.广西植保,1999,12(1):33-36
    30 崔中利,李顺鹏.化学农药的微生物降解及其机制.江苏环境科技,1998(3):1-3
    31 周群英.环境工程微生物学(第二版).北京;高等教育出版社.2002,P72-83
    32 Derbyshire,M.K. et al. Purification and characterization of an N-methylcarbamate pesticide hydrolyzing enzyme .J.Agric .Food. Chem, 1987(35):871-877.
    33 Mileski,G.J.et al. Biodegradation of pentochlorophenoi by the white -rot fungus Phanerochaete chrysosporiun.Appl.Environ. Microbiol, 1998(54):2885-2889.
    34 Munnecke,D.M.. Enzymaticdetoxificationof waste organophosphate pesfcide.J.Agric. Food Chem.,1980(28):105-111.
    35 Marty, J.L., Vouges. J. Purification and properties of a phenylcarbamate herbicide degrading enzyme of pseudomonas alcaligenes isolated from soil Agric. Biol.Chem., 1987(51):3287-3294
    36 Sarkar. J.M.,et al.Immobilization of enzymes on clays and soils.Soil Biol. Biochem.,1989(21):223-230
    37 Ruggiero,P. et al..Detoxification of 2,4-dichlorophenol by a laccase immobilized on soil orclay. Soil Sci, 1989(147):361-370
    38 Mulbury.W.W, Karns.J.S.Parathion hydrolase specified by the Flavobacterium opd genes:relationship between the gene and protein .J.Bacteriol. 1989(171):6740-6746
    39 Serdar .C M.,Gibson. D.T. Enzymatic hydrolysis of organophosphates: cloning and expression of a parathion hydrolase from Pseudomonas diminuta .Bio/Technology, 1985(7): 1151-1155
    40 Don,R.H., Pemberton. J M.. Properities of six pesticide degradation plasmids isolated from Alcaligenes eutrophus and Alcaligenes paradoxus .J.Bacteriol, 1981(145):681-686
    41 Amy, P.S.,et al. Characterization of aquatic bacterial and cloning of genes specifying partial degradation of 2,4-dichlorophenoxyacetic acid .Appl.Environ. Microbiol, 1983(49): 1237-1245
    42 Don,R.H., Pemberton. J.M. Genetic and physical map of the 2,4-dichlorophenoxyacetic.acid. degradative.plasmid.pJP4.J.Bacterol, 1985(161):466-468
    43 Don,R.H.,et al. Transposon mutagenesis and cloning analysis of the payhway for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP 134(pJP4).J.Bacteriol, 1985(161):85-90
    
    
    44 Kukor,J.,et al .Recruitment of a chromosomally encoded malelactate reductase for degradation of 2,4-dichlorophenoxyacetic acid by the plasmid pJP4.J.Bacteriol, 1989(171):3385-3390
    45 Don R H, Pemberton J M.Genetic and physical map of the 2,4-dihlorophenoxyacetic acid degradative plasmid pJP4.J.Bacteriol. 161:466-468
    46 Mulbry ,W.W., Keamey, P.C. Degradation of pesticides by microorganism and the potential for genetic manipulation ,Crop Protection,1991,10:334-346
    47 闰艳春,姚良同,宋晓妍等.工程菌及其固定化细胞对有机磷农药的降解.中国环境科学,2001,21(5):411—416
    48 Head I M, Saunders J R,Pickup R W. Microbial evolution ,diversity, and ecology :A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbiol Ecol, 1998.35(1):1-21
    49 蹇文英,东秀珠.定向进化同源基因在细茵系统进化研究中的应用.微生物通报,2000,27(5) 377—383
    50 王连生,韩朔映.有机物定量结构—活性相关[M].北京:中国环境科学出版社,1993
    51 白遒彬.定量构效关系在环境化学中的应用.环境科学.,1990,11(5):66-70
    52 白遒彬.定量构效关系(QSAR)在环境化学中的进展与方法.环境科学1990,11(2):62-67.
    53 蒋展鹏,杨宏伟.有机物生物降解性的鉴定方法及定量结构活性关系的研究.第一届全国环境化学学术研讨会论文集,2002,10.P346-347
    54 戴树桂,宋文华,颜慧等.有机污染物生物降解途径按制反应的预测与优势菌选择模型的建立.环境化学,1998,17(6):547-553)
    55 徐满.三维定量构效关系研究进展.环境科学研究,2002,15(1):45-47
    56 钟鸣,周启星.微生物分子生态学技术及其在环境污染研究中的应用.应用生态学报,2002,13(2):247-251
    57 Sayer G S,Sheilds M S,Tedford E T. Application of DNA-DNA colony hybridzation to the detection of catabolic genotypes in environmental samples.Appl Environ Microbiol, 1985,49:1295-1303
    58 Top E M,Holben W E ,Forney L J.Characterization of diverse 2,4-dichlorophenoxyacetic acid degradative plasmids isolated from soil by complementation. Appl Environ Microbiol, 1995,61(5):11691-11698
    59 Churchill S A,Harper J P, Chuechill P F. Isolation and characterization of a Mycobacterium speices capable of degrading three and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol, 1999,65(2):549-552
    60 Lawrence P W ,Nell C B.Environmental biotechnology towards sustainability [J].Curr. Opin. Biotechnol, 2000,11:229-231
    61 Ieper D H, Reineke W.Engineering bacteria for bioremediation[J]. Curr.Opin. Biotechnol, 2000,11:262-270
    
    
    62 刘和,陈英旭,环境生物修复中高效基因工程菌的构建策略.浙江大学学报(农业与生命科学版),2002,28(2):208-212.
    63 农药部农药检定所主编,新编农药手册(续集),北京:农业科学出版社出版,1998,P362-363
    64.张朝伦,郑晓明.骡马防除小麦田梗杂草研究初报,杂草科学,1991(3):14-16.
    65 任乙,蒋主清.骠马防除杂草技术.杂草科学,1991,(4):14-17
    66 张宗俭,耿贺利.恶唑禾草灵与阔叶杂草防除剂的混用药效研究.农药,1997.36(8):40-43
    67 中国农业百科全书农药卷编辑委员会主编,中国农业百科全书农药卷,农药出版社,北京:1993,P143-144
    68 德国Bayer公司资料.Bayer CropScience.Material SaRy DataSheet.August 1,2002
    69 农药商品大全,北京:中国商业出版社出版发行,1996,P601-603
    70 农业部农药检定所编,农药残留量实用检测方法手册第一卷,北京:中国农业科技出版社,1995
    71 黄长江,于允府.一种优良除草剂骠马 S.山西化工,1992(2):59-60
    72 Benno A.Ingelse, Jetse C.Reijenga, Mirko Flieger, Frans M.Everaerts, Capillary electrophoretic separation of herbicidal enantiomers applying ergot alkaloids,Journal of Chromatography A.791(1997) 340-343
    73 石晶波,施晓钟,韩才明.骠马对土壤微生物数量和酶活性的影响,上海农业科技,1995(1):29-30
    74 Control of Pesticides 1999,Chemical Substances and Chemical Preparations NERI Technical Report.ed. by Ministry of Environment and Energy National Environmental Research Institute,P328
    75 高宣德,苗兰中,戴荣彩等.除草剂骠马(Pumasuper)在小麦上的残留试验总结.农药合理使用准则研究总结报告(六),1993~1997:753~767
    76 朱国念,刘惠君,朱金文.恶唑禾草灵在小麦及土壤环境中的残留与降解研究.农药,2000(5):19-20
    77 A Tal,E.Kotoula-Syka,B.Rubin. Seed-bioassay to detect grass weeds resistant to acetyt coenzyme A carboxylase inhibiting herbicides. Crop Protection,2000(19): 467
    78 德国Bayer公司资料.CD Archive186
    79 岳永德编.农药研究技术(研究生用),1998年10月.
    80 周德庆主编.微生物学教程.北京:高等教育出版社出版.1991
    81 牛世全,胡正嘉.高效解酚菌的筛选-环境科学与技术,1991,53(2)44-7
    82 无锡轻工学院编.微生物学.轻工出版社.1990年版
    83 张纪忠主编.微生物分类学.上海:复旦大学出版社,1990
    84 [美]Philopp Gerhardt主编.厦门大学生物系微生物学教研室译.普通细菌学方法手册.厦门:厦门大学出版社,1989
    85 中国科学院微生物研究所细菌分类组.一般细菌常用鉴定方法.北京:科学出版社,1978
    
    
    86 R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册(第八版).北京:科学出版社,1984
    87 周俊初主编.微生物遗传学.北京:中国农业出版社.1996年第一版,P21-36
    88 王永杰 李顺鹏 严淑玲,活性微生物与农药的降解.中国沼气,1999,17(4)10-13
    89 梁治平,宗志娟,李金华编.功能性表面活性剂.北京:中国轻工出版社.2000,P1-16
    90 张丽芳,姜承志,李东辉.表面活性剂对不同石油降解菌除油影响的研究.沈阳工业学院学报,2001(4):80-84
    91 姜广水,刘贤锡,张兆莲等.表面活性剂对变形链球菌致龋基因表达和粘附定植的影响.山东大学学报,2002,40(5):401-403
    92 Shonall Laha, Richard G Luthy. Inhibition of phenananthrene mineralization by nonionic surfactants in soil-water systerms [J]. Environ Sci Techno, 1991,25(11):1920-1929
    93 陈世和,陈键华,王士芬等.微生物学原理[M].上海:同济大学出版社,1992
    94 胡家骏,周群英.环境工程微生物学[M].北京:高等教育出版社,1992
    95 Brookes P C, Mc Grath S P.Effects of metal toxicity on the size of the soil microbial biomass[J].Journal of Soil Science, 1984,35:341-346
    96 Jordan M J, Le Chevalier M P .Effects of zinc—smelter emission on forest soil microflora[J]. Canada Journal of Microbiology, 1975,21:1855-1865
    97 Pennanen T A, Frostgard H Fritze, Baath E. Phospholioid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal polluted gradients in coniferous forest[J]. Applied Environmetal and Microbiology, 1996,62:420-428
    98 孙波,赵其国.土壤质量评价的生物学指标[J].土壤,1997,29(5):225—234
    99 王秀丽,徐建民,姚槐应,谢正苗.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响.环境科学学报,2003,23(1):22-26
    100 戴树桂主编.环境化学.北京:高等教育出版社,1999,P227-228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700