用户名: 密码: 验证码:
油菜田日本看麦娘对高效氟吡甲禾灵抗药性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国长江中下游地区油菜田恶性杂草日本看麦娘(Alopecurus japonicus)为主要研究对象,初步研究了其种子休眠解除及萌发温度条件;通过种子生物测定法和整株测定法测定了不同地区不同用药年限油菜田日本看麦娘种群对乙酰辅酶A羧化酶(Acetyl coenzyme A carboxylase,简称ACCase)抑制剂类除草剂高效氟吡甲禾灵(haloxyfop-R-methyl)的抗药性及对其它药剂的交互抗性水平;并采用植物抗性生理生化测定技术,初步研究了日本看麦娘对高效氟吡甲禾灵产生抗性的机理。
     对日本看麦娘种子休眠及萌发适宜温度的研究表明:日本看麦娘萌发适宜温度为15-20℃。通过地下沉积10天,滁州和合肥种子即可解除休眠,萌发率达87.5%和90%;而句容点种子不能被解除,萌发率仅为1.67%。采用低温(4℃)下清水浸泡对三地种子都可解除休眠,且萌发时间也较一致。说明日本看麦娘种子存在一定的休眠,但通过短暂的低温、较高的湿度条件即可解除休眠。
     采用种子生物测定法和整株测定法对江苏、安徽11个点不同用药年限油菜田日本看麦娘对高效氟吡甲禾灵的抗药性测定结果基本相符。种子生物测定结果显示,江苏句容点日本看麦娘对此药剂的相对抗性倍数达61.13,整株测定结果为1331.68,说明句容点的日本看麦娘对此药剂已产生明显抗性。交互抗性检测结果显示,日本看麦娘对芳氧基苯氧基丙酸酯类(aryloxyphenoxypropionates,简称AOPPs)其它药剂已产生了不同程度的抗性,抗性水平依次为精吡氟禾草灵(fluazifop-P-butyl)>精喹禾灵(quizalofop-P-ethyl)>精噁唑禾草灵(fenoxaprop-P-ethyl);对具相同作用靶标的环已烯酮类(cyclohexanediones,简称CHDs)除草剂烯禾啶(sethoxydim)的抗性水平相对较低。室内测定结果与田间反映的实际情况吻合。
     以抗性(句容)和敏感(滁州)两种日本看麦娘种群为试验材料,研究了高效氟吡甲禾灵对这两地日本看麦娘抗氧化酶(antioxidase)活性、活性氧(active oxygen)、还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)、丙二醛(MDA)、脯氨酸(proline)、叶绿素(chlorophyll)和可溶性蛋白质(soluble protein)含量的影响。结果表明:药剂处理后,敏感种群超氧化物歧化酶(SOD)活性急剧下降,过氧化物酶(POD)活性在药后14天迅速上升,过氧化氢酶(CAT)活性先升高,后降低,而抗性种群SOD活性保持稳定,POD和CAT活性都先升高后降低,但CAT活性变化幅度比敏感种群小:敏感种群GSH含量随着时间的推移不断升高,超氧阴离子(O_2·~-)、过氧化氢(H_2O_2)、GSSG和MDA的含量也都逐渐提高,抗性种群则保持不变;敏感种群脯氨酸含量显著提高,叶绿素含量先升高后下降,而抗性种群则无显著变化;两种群可溶性蛋白质含量都先降低后升高,但抗性种群含量高于敏感种群。采用同位素标记法测定了抗性及敏感种群靶标酶ACCase活性,结果表明高效氟吡甲禾灵明显抑制了敏感种群ACCase活性。说明高效氟吡甲禾灵对敏感种群的生理生化指标及靶标酶活性影响较大。
In this paper, the Japanese Foxtail (Alopecurus japonicus Steud.), a kind of worstgrass weed in oilseed rape fields in the middle and lower reach of Yangtze valley in China,was chosen as a main research object. The methods of breaking dormancy of A.japonicusseeds and the optimal germinating temperature were studied, the resistance level of A.japonicus to haloxyfop-R-methyl, which is an ACCase inhibitor belonging toaryloxyphenoxypropionates (AOPPs), cross-resistance and the resistacne mechanism of A.japonicus was investigated.
     It was found that the optimal germinating temperature range of A.japonicus was 15—20℃. The dormancy of seeds from Chuzhou and Hefei could be broken by being buriedunderground 7 cm for 10 d, whose germination rates reach to 87.5%and 90%,respectively. While the germinate rate of seeds from Jurong was only 1.67%. Dormancycould also be broken by being soaked in water at 4℃, and Jurong, Chuzhou and Hefeipopulations could germinate at the same time. It was indicated that the short dormancy of A.japonicus seeds could be broken by lower temperature and higer humidity.
     The resistance level of A. japonicus to haloxyfop-R-methyl were evaluated byseed-bioassay and whole-plant test, which were collected from different oilseed rape fieldswhere haloxyfop-R-methyl had been continuously applied for different years, and similarresults were obtained by both of methods. In these two methods, the resistance index of A.japonicus to haloxyfop-R-methyl, which were collected from Jurong in Jiangsu province,were 61.13 and 1331.68, respectively, which demonstrated the emergence of A. japonicuspopulation resistant to haloxyfop-R-methyl in fields. The results of cross-resistance revealed that this resistant population was also resistant to some other AOPPs, in which theresistance level was: fluazifop-P-butyl>quizalofop-P-ethyl>fenoxaprop-P-ethyl.However, a relative low resistance level of this resistant population to sethoxydim wasobserved, which was a cyclohexanedione (CHD) herbicide sharing the same target site withAOPPs. And the results obtained in laboratory were agreed with the real fact in fields.
     To characterize the biochemical differences in haloxyfop-R-methyl-resistant and-sensitive populations of A. japonicus collected from Jurong and Chuzhou, the activities ofantioxidant oxygens, content of reduced/oxydized glutathione (GSH/GSSG),malondialdehyde (MDA), proline, chlorophyll and soluable protein in shoots and leaves ofindividuals treated by haloxyfop-R-methyl were studied. The results showed that theactivities of superoxide dismutase (SOD) decreased significantly in sensitive population,but kept stable in resistant population. The activity of peroxidase (POD) in sensitivepopulation rose obviously in 14 days after treatment, while the eatalase (CAT) increased inearlier period and then decreased, the trends of activities of POD and CAT in resistantpopulation were the same as that of CAT in sensitive population. The content of GSH keptincreasing in experiments, which could also be observed in the contents of superoxideanion radical (O_2·~-), hydrogen peroxide (H_2O_2), GSSG, MDA and proline, but not changingin the resistant population. The trends of soluable protein in both populations were oppositeto that of Chlorophyll content in sensitive population. In addition, the activities of aeetylcoenzyme A carboxylase (ACCase) in both of the population were determined. The resultdemonstrated that ACCase activity in sensitive population was inhibited obviously byhaloxyfop-R-methyl. It may be concluded that this herbicide greatly affected some of thephysiological and biochemical pathways in sensitive population, except for ACCase.
引文
白桦,王玉国.外源脯氨酸对盐胁迫下大豆愈伤组织SOD和POD活性的影响[J].华北农学报,2002,17(3):37-40
    曹春田,李国宇,刘新峰,等.麦田恶性杂草日本看麦娘的发生与防治[J].植物医生,2003,16(6):9-10
    付仲文,张朝贤,钱益新,等.几种抗药性杂草的检测方法[J].植物保护,1999,25(4):40-42
    高海荣,林清,陆延婷.有机溶剂胁迫下苦草生理指标的变化[J].广西师范学院学报,2006,23(4):40-44
    顾宝根译.加强对抗性杂草的重视[J].农药科学与管理,1991,2:8-9
    顾品强,汪祖国,王桂云.上海地区油菜田不同年型杂草种群发生规律及判别分析[J].中国油料作物学报,2003,23(1):59-62
    韩庆莉,沈嘉祥.杂草抗药性的形成、作用机理研究进展[J].云南农业大学学报,2004,19(5):556-561
    黄建中.杂草学[M].北京:中国农业出版社,1996
    黄建中,褚建军,叶建强.抗药性杂草的管理.杂草科学[J],1995(4):4-7
    黄建中.农田杂草抗药性[M].北京:中国农业出版社,1995
    黄世霞.油菜田看麦娘的生物学特性及其对三种除草剂抗药性的研究[T].南京农业大学硕士学位论文,2004
    黄世霞,王庆亚,董立尧,等.乙酰辅酶A羧化酶抑制剂类除草剂与杂草的抗药性[J].杂草科学,2003,2:1-5
    黄世霞,王庆亚,张守栋.油菜田看麦娘对高效盖草能产生抗药性的现状研究[J].安徽农业科学,2006,34(9):1913-1914,1916
    李扬汉主编.中国杂草志[M].北京:中国农业出版社,1994,1472-1474
    李宜慰,陈永康.日本看麦娘对小麦产量的损失及经济阈值研究[J].杂草科学,1992,(2):5-7
    李宜慰,梅传生,李永丰,等.麦田罔草和日本看麦娘对氯磺隆抗药性的初步研究[J].江苏农业学报,1996,12(2):34-38
    李永丰,吴竞仑,王庆亚,等.日本看麦娘对氯磺隆的抗药性研究[J].杂草科学,2003,4:5-6
    李永丰,李宜慰,刘正道,等.抗药性杂草种群的发展及其防治对策[J].江西农业大学学报,1999,21(1):42-46
    刘东卫,李宜慰.农田杂草对除草剂的抗性[J].世界农业,1993,12:37-38
    刘后利.实用油菜栽培学[M].上海:上海科技出版社,1987
    娄群峰,黄建中,张敦阳,等.南京地区油菜田杂草群落特点及分布规律的研究[J].江西农业大学学 报,1999,21(3):370-375
    李合生主编.植物生理生化实验原理和技术[M].高等教育出版社,167
    李荣金,强胜.百日草链格孢菌毒素对加拿大一枝黄花叶片伤害的生理生化研究[J].西北植物学报,2006,26(5):995-1000
    刘俊,吕波,徐朗莱.植物叶片中过氧化氢含量测定方法的改进[J].生物化学与生物物理进展,2000,27(5):548-551
    马晓渊.抗药性杂草种群的发展及其治理对策[J].杂草科学,1994,1:1-4
    马晓渊.农田杂草抗药性的发生为害、原因与治理[J].杂草科学,2002,1:5-9
    毛丽娟,许文豪.运动对大鼠肝脏GSH、GSSG含量及GSG/GSSG的影响[J].体育与科学.2004,25(1):60-63
    梅慧生.植物同功酶研究的某些进展[J].植物生理学通讯,1981,3:1-7
    聂华堂,陈竹生,计玉.水分胁迫下柑桔的生理变化与抗旱性的关系[J].中国农业科学,1991,24(4):14-18
    欧晓明,唐德秀.除草剂作用机理研究的新进展[J].世界农业,2000,10:28-30
    潘瑞炽,董愚得编著.植物生理学(第三版)[M].北京:高等教育出版社,2000,318-335
    钱琼秋,宰文珊,朱祝军,等.外源硅对盐胁迫下黄瓜幼苗叶绿体活性氧清除系统的影响[J].植物生理与分子生物学学报,2006,32(1):107-112
    钱希.抗性杂草发展概况[J].世界农业,1994,12:37-38
    强胜主编.杂草学[M].北京:中国农业出版社,2001
    秦小琼,贾士荣.植物抗氧化逆境的基因工程[J].农业生物技术学报,1997,5(1):14-24
    沈国辉,管丽琴,石鑫,等.日本看麦娘生物学、生态学特性.上海农业学报[J],2000,16(增刊):37-40
    宋福南,杨传平,刘雪梅,等.盐胁迫对柽柳超氧化物歧化酶活性的影响[J].东北林业大学学报,2006,34(3):54-56
    苏少泉,宋顺祖.中国农田杂草化学防治[M].北京:中国农业出版社,1996
    苏少泉.杂草学[M].北京:农业出版社,1993:24-32
    苏少泉.ACCase特性、功能及其抑制除草剂发展与杂草抗性[J].农药研究与应用,2006,10(6):1-8
    孙丙耀.麦田看麦娘属杂草种群消长原因及其抗药性鉴定的研究[D].南京农业大学博士学位论文,1996
    世界油菜发展趋势.摘自:《优质油菜制种栽培及综合加工利用》.环球农业瞭望-环球农业动态
    唐洪元.中国农田杂草[M].上海:上海科技教育出版社,1994
    唐洪元.中国农田杂草[M].上海:上海科技出版社,1991
    唐正辉,姚建仁.国外控制和延缓杂草抗药性的对策与措施[J].世界农业,1993,(4):33-35
    汤春芳,刘国云,曾光明,等.镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响[J]. 植物生理与分子生物学学报,2004,30(4):469-474
    汤章城主编.现代植物生理学实验指南[M].北京:科学出版社,1999
    万方浩,王韧.世界杂草生防的历史成就及我国杂草生防的现状与建议[J].生物防治通报,1991,7(2):81-87
    万树青.病虫草害的抗药性及其治理措施[J].农药科学与管理,1992,3:11-14
    王汉中.我国油菜产业国际竞争力提升的科技对策[J].中国农业科技导报,2004,6(1):18-21
    王宁源,张玉娥.杂草抗药性与化学防除[J].雁北师范学院学报,2001,17(3):53-54
    王险峰,关成宏.关于农田杂草对除草剂产生抗性问题的探讨[J].现代化农业,2004,1:8-9
    王爱国,罗广华.植物的超氧物自由基与羧胺反应的定量关系[J].植物生理学通讯,1990,6:55-57
    王娟,李德全.水分胁迫对玉米根系AsA-GSH循环及H_2O_2含量的影响[J].中国生态农业学报,2002,10(2):94-96
    王林.六安地区油菜田杂草动态监测与分析[J].杂草科学,2000,4:7-9
    王爽,张荣全,叶非.乙酰辅酶A羧化酶抑制剂的研究进展[J].农药科学与管理,2003,24(10):26-32
    王信群.合肥地区冬油菜田禾本科杂草抗性的动态调查与监测[J].安徽农业科学,2003,31(4):667
    王信群,黄世霞,李楠.油菜田看麦娘对10.8%高效盖草能抗性及对几种除草剂交互抗性的研究[J].安徽农业科学,2006,34(16):4022-4023
    王信群,钱付舟.芳氧苯氧丙酸类除草剂用量监测-10.8%高效盖草能防除冬油菜田禾本科杂草用药剂量试验[J].安徽农业科学,2002,30(5):765-766
    吴晶,王谦玉,张继英,等.杂草抗药性的研究现状与抗性控制[J].植保技术与推广,1995,(1):30-31
    吴声敢.我国长江中下游稻田稗草对二氯喹啉酸的抗药性研究[T].南京农业大学硕士学位论文,2006
    夏敬源.我国农业有害生物抗性风险评估与治理进展[J].植物技术与推广,2003,6:35-38
    徐光曙,袁斌,赵飞.烯草酮·草除灵EC防除油菜田杂草效果[J].安徽农学通报,2006,12(5):109
    薛锦香.油菜田杂草发生规律及防除对策[J].上海农业科技,2007,1:101
    张朝贤,钱益新,胡祥恩.我国杂草科学研究与21世纪可持续发展农业冲国植物保护研究进展[C],北京:中国科学技术出版社,1996
    张芬琴,孟红梅,沈振国,等.镉胁迫下绿豆和箭舌豌豆幼苗的抗氧化反应[J].西北植物学报,2006,26(7):1384-1389
    张宏军,刘学,顾宝根.抗性杂草的鉴定与治理[J].农药科学与管理,2005,26(3):27-33
    张泽溥.农田抗药性杂草种群的发展值得重视[J].植物保护,1990,5:41
    张希福,熊建伟,尹健.杂草生物防治的现状与展望[J].河南职业技术师范学院学报,1997,25(4):8-14
    张人君,何锦豪,郑晋元,等.浙江省麦田和油菜田杂草发生种类及危害[J].浙江农业学报,2000,12(6):308-316
    赵延存,娄远来.长江下游地区油菜田杂草发生规律和综合防治[J].杂草科学,2004,3:15-17
    赵虎基,王国英.植物乙酰辅酶A羧化酶的分子生物学与基因工程[J].中国生物工程杂志,2003,2:12-16
    赵善欢主编.植物化学保护(第三版)[M].北京:中国农业出版社,1999,263
    周博如,李永镐,刘太国,等.不同抗性的大豆品种接种大豆细菌性疫病菌后可溶性蛋白、总糖含量变化的研究[J].大豆科学,2000,19(2):111-114
    周国民,吴福民,李华,等.12%快乐通乳油防除油菜田禾本科杂草的药效实验[J].杂草科学,2002,3:36-37
    Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50:601-639
    Bates L S., Wadem R P. and Teare I D. Rapid estimation of free proline for water stress determination[J]. Plant Soil, 1973, 39:205-207
    Beauchamp C O. and Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry, 1971, 44:276-287
    Betts K J., Ehlke N J., Wyse D L., et al. Mechanism of inheritance of diclofop resistance in Italian ryegrass (Lolium multiflorum) [J]. Weed Science, 1992, 40:184-189
    Bjelk L A., Monaco T J. and Zorner P S. Effect of fenoxaprop, haloxyfop and sethoxydim on acetyl coenzyme A carboxylase from rice, bamyardgrass and sprangletop[J]. Plant Science., 1991, 73(2): 129-136
    Bradford M M A. A rapid and sensitive method for the quantitation of microgram of protein utilizing the principle of protein dye binding[J]. Analytical biochemistry, 1976, 72:248-254
    Bradley K W., Wu J., Hatzios K K., et al. The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanodione herbicides in a Johnson grass biotype[J]. Weed Science, 2001, 49(4): 477-484
    Brown A C., Moss S R., Wilson Z A., et al. An isoleucine to leucine substitution in the ACCase of Alopecurus myosuroides (black-grass) is associated with resistance to the herbicide sethoxydim[J]. Pesticide Biochemistry and Physiology, 2002, 72:160-168
    Burton J D., Gronwald J W., Keith R A., et al. Kinetics of inhibition of acetyl-coenzyme A carboxylase by sethoxydim and haloxyfop[J]. Pesticide biochemistry and physiology, 1991, 39:100-109
    Burton J D., Gronwald J W., Somers D A., et al. Inhibition of corn acetyl-CoA carboxylase by cylcohexanedione and aryloxyphenoxypropionate herbicides[J]. Pesticide Biochemistry and Physiology, 1989, 34(1): 76-85
    Cakmak I. and Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves[J]. Plant Physiology, 1992, 98:1222-1227
    Caseley J. Herbicide resistance in weeds[M]. Meeting and Training on herbicide resistance (Organized by FAO and Kyungpook National University. Republic of Korea), 1998
    Catanzaro C J., Burton J D., and Skroch W A. Graminicide resistance of acetyl-CoA carboxylase from ornamental grasses[J]. Pesticide Biochemistry and Physiology, 1993, 45(2): 147-153
    Choudhary M., Jetley U K., Abash K M., et al. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5[J]. Ecotoxicology and Environmental Safety, 2007, 66 (2): 204-209
    Christopher J T. The dieotyle - donous species Erodium moschatum (L) L'Her. ex Aiton is sensitive to haloxyfop herbicide due to herbicide- sensitive acetyl - coenzyme A carboxylase[J]. Planta, 1998, 207(20): 275-279
    Christopher J T. and Holtum J A M. Dicotyledons lacking the multisubunit form of the herbicide - target enzyme acetyl eoenzyme A earboxylase may be restricted to the family Geraniaceae[J]. Australian Journal of Plant Physiology, 2000, 27(9): 845-850
    Cocker K M., Moss S R. and Coleman J O D. Multiple Mechanisms of Resistance to Fenoxaprop-P-Ethyl in United Kingdom and Other European Populations of Herbicide-Resistant Alopecurus myosuroides (Black-Grass)[J]. Pesticide Biochemistry and Physiology, 1999, 65:169-180
    Cotterman J C. and Saari L L. Rapid metabolic inactivation is the basis for cross-resistance to chlorsulfuron in dielofop-methyl-resistant rigid ryegrass (Lolium rigidum) biotype SR4/84[J]. Pesticide Biochemistry and Physiology, 1992, 43(3): 182-192
    Davis M S., Solbiati J. and Cronan J E. Over production of Acetyl-CoA Carboxylase Activity Increases the Rate of Fatty Acid Biosynthesis in Escherichia coli[J]. Biology Chemistry, 2000, 275: 28593-28598
    Delye C., Zhang X Q., Michel S. et al. Molecular Basis for Sensitivity to Acetyl-Coenzyme A Carboxylase Inhibitors in Black-Grass[J]. Plant Physiology, 2005, 137(3): 794-806
    Delye C., Matejicek A. and Gasquez J. PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud)[J]. Pest Management Science, 2002, 58:474-478
    Devine M D. Mechanisms of resistance to acetyl-coenzyme A earboxylase inhibitors: A review[J]. Pesticide Science, 1997, 51(3): 259-264
    Devine M D., Maclssac S A., Romano M L., et al. Investigation of the mechanism of diclofop resistance in two biotypes of Avenafatua[J]. Pesticide Biochemistry and Physiology, 1992, 42(1): 88-96
    Diepenbrock W. Yield analysis of winter oilseed rope (Brassica napus L.): a review. Field Crops Res., 2000, 67:35-49
    DiTomaso J M. Membrane response to diclofop acid is pH dependent and is regulated by the protonated form of the herbicide in roots of pea and resistant and susceptible rigid ryegrass[J]. Plant Physiology, 1993, 102:1331-1336
    Evenson K J., Gronwald J W. and Wyse D L. Purification and characterization of acetyl - coenzyme A carboxylase from diclofop - resistant and - susceptible Lolium multiflorum[J]. Plant Physiology, 1994, 105 (2): 671-680
    Friesen L F., Jones T L., Van A R C., et al. Identification of Avena fatua populations resistant to imazamethabenz, flamprop, and fenoxaprop-P[J]. Weed Science, 2000, 48(5): 532-540
    Gorddard R J., Pannell D J. and Hertzler G. Economic evaluation of strategies for management of herbicide resistance[J]. Agricultural systems, 1996, 51 (3): 281-298
    Green M B., LeBaron H. and Moberg E M. Herbicide resistance in Alopecurus myosuroides[M]. In Managing Resistance to Agrochemicals. From fundamentals to practical strategies. American Chemistry. Society., Washington, D.C., 1990, 376-393
    Gressel J. and Baltazar A. Herbicide Resistance in Rice: Status, Causes and Prevention. In: Weed Management in Rice (eds BA Auld & K-U Kim), 1996, 195-238
    Hall L M., Moss S R. and Powles S B. Mechanisms of resistance to aryloxyphenoxypropionate herbicides in two resistant biotypes of Alopecurus myosuroides (black-grass): Herbicide metabolism as a cross-resistance mechanism[J]. Pestic Biochemistry and Physiology, 1997, 57:87-98
    Hausler R E., Holtum J A M. and Powles S B. Cross-resistance to herbicides in annual ryegrass (Loium rigidum): Ⅳ. Correlation between membrane effects and resistance to graminicides[J]. Plant Physiology, 1991, 97:1035-1043
    Heap I M. The occurrence of herbicide-resistant weeds worldwide[J]. Pesticide Science, 1997, 51(3): 235-243
    Heap I M. International survey of herbicide-resistant weeds: lessons and limitations. http://www.weedscience.com, 2000
    Heap I M. International survey of herbicide-resistant weeds: lessons and limitations. http://www.weedscience.com, 2002
    Heap I M. The international survey of herbicide resistance weeds. Online. Internet. Available www.weedscience.com, 2006.
    Holm L., Pancho J V., Herberger J P. et al. A geographical atlas of world weeds[M]. New York: John Wiley & Sons, Inc., 1979, 15-16
    Holt G. S. and Radosevich S R. Herbicide resistance in weeds (Biotypes, genetic component). Proceedings California weed conference, 1982, 34:152-155
    Holt J S. and LeBaron H M. Significance and distribution of herbicide resistance[J]. Weed Technology, 1990, 4:141-149
    Hoppe H H. Differential effect of diclofop-methyl on fatty acid biosynthesis in leaves of sensitive and tolerant plant species[J]. Pesticide Biochemistry and Physiology, 1985, 23:297-308
    HRAC (Herbicide Resistance Action Committee). Guideline to the Management of Herbicide Resistance, 1997 http://www.weedscience.com/
    Ineledon B J. and Hall J C. Acetyl-eoenzyme A carboxylase quaternary structure and inhibition by graminicidal herbicides[J]. Pesticide Biochemistry and Physiology, 1997, 57(3): 255-271
    Joseph M D I. Evidence against a direct membrane effect in the mechanism of action of graminicides[J]. Weed Science,1994, 42:302-309
    Joseph O O., Hobbs S L A. and Jana S. Dielofop resistance in wild oat (Avena fatua)[J]. Weed Science, 1990, 38:475-479
    Kemp M S. and Caseley J C. Synergistic effects of 1-aminobenzotriazole on the phytotoxicity of chlortoluron and isoproturon in a resistant population of black-grass (Alopecurus myosuroides) Brighton Crop Protection Conference-Weeds[C], 1987, 895-899
    Khorommbi G. The key to herbicide resistance management[J]. SA-Grain, 2000, 11: 68-70
    Kirkwood R C. Use and mode of action of adjuvants for herbicides: A review of some current work[J]. Pesticide Science, 1993, 38:93-102
    Konishi T., Shinohara K., Yamada K. et al. Acetyl-CoA earboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme[J]. Plant Cell Physiology, 1996, 37:117-122
    Kuk Y I., Wu J., Derr J F., et al. Mechanism of Fenoxaprop Resistance in an Accession of Smooth Crabgrass (Digitaria ischaeraum)[J]. Pesticide Biochemistry and Physiology, 1999, 64:112-123
    Kwak S S., Kim S K., Lee M S., et al. Acidic peroxidases from suspension-cultures of sweet potato[J]. Phytochemistry, 1995, 39, 981-984
    Lebaron H M. Management of herbicide to avoid, delay and control resistant weeds: a concept whose time has come[J]. Proceedings western society of weed science, 1989, 42:6-16
    Leonard P K. Resistance risk evaluation, "a European regulatory perspective" [J]. Crop Protection, 2000, 19(8): 905-909
    Letouze A. and Gasquez J. A pollen test to detect ACCase target-site resistance within Alopecurus myosuroides populations[J]. Weed Research, 2000, 40(2): 151-162
    Letouze A. and Gasquez J. A rapid reliable test for screening aryloxyphenoxypropionic acid resistance within Alopecurus myosuroides and Lolium spp. population[J]. Weed Research, 1999, 39(1): 37-48
    Lopez M N. and Prado R. Comparison of three propanil-resistant biotypes of Echinochloa spp. Mededelingen Faculteit Landbouwkundige en Toeqepaste ioloqische Wetenschappen[J]. Universiteit Gent, 1998, 63:691-696
    Maneechote C., Samanwong S., Zhang X Q., et al. Resistance to ACCase-inhibiting herbicides in sprangletop (Zeptochloa chinensis) [J]. Weed Science, 2005, 50:290-295
    Marshall L C., Somers D A., Dotray P D. et al. Allelic mutations in acetyl-coenzyme A carboxylase confer tolerance in maize[J]. Theoretical and Applied Genetics, 1992, 83:435-442
    Matthews J M., Holtum J A M., Liljegren D R. et al. Cross-resistance to herbicides in annual ryegrass (Lolium rigidwn). I. Properties of the herbicide target enzymes acetyl-coenzyme A carboxylase and acetolactate synthase[J]. Plant Physiology, 1990, 94(3): 1180-1186
    Maxwell, Bruce D. and Mortiner A M. Selection for herbicide resistance. In: Herbicide Resistance in Plants: Biology and Biochemistry In: Powles S B. and Holtum(eds.) J A M., 1994
    Menendez J., Jorrin J., Romera E. et al. Resistance to chlorotoluron of a Slender Foxtail (Alopecurus myosuroides) biotype[J]. Weed Science, 1994, 42:340-344
    Menendez J. and Prado R D. Diclofop-methyl Cross-Resistance in a Chlorotoluron-Resistant Biotype Alopecurus myosuroides[J]. Pesticide Biochemistry and Physiology, 1996, 56:123-133
    Misra N. and Gupta A K. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram[J]. Plant Science, 2005, 169:331-339
    Moss S R. Techniques for determining herbicide resistance. In: Brighton crop protection conference - weed[C], 1995, 547-556
    Moss S R. The response of Alopecurus myosuroides during a four year period to different cultivation and straw disposal systems. Proceedings Association of Applied Biologists Conference: Grass weeds in cereals in the United Kingdom, 1981, 15-21
    Moss S R. Herbicide resistance in black-grass (Alopecurus myosuroides). Brit. Crop Prot. Conf. Weeds[C], 1987:879-886
    Moss S R. and Rubin B. Herbicide resistance weeds: A worldwide perspective[J]. Journal of Agricultural science, 1993, 120:141-148
    Moss S R. and Cussaus G W. Variability in the susceptibility of Alopecurus myosuroides (black-grass) to chlortoluron and isoproturon[J]. Aspects of Applied Biology, 1985, 9:91-98
    Murry B G., Friesen L F. and Beaulieu K J. A seed bioassay to identify acetyl-CoA carboxylase Inhibitor Resistant Wild Oat (Avena fatua) Populations[J]. Weed Technology, 1996, 10:85-89
    Oxtoby E. and Hughes M A. Engineering herbicide tolerance into crop[J]. Trends in Biotechology, 1990, 8(3): 61-65
    Parker W B., Somers D A., Wyse D L., et al. Selection and characterization of sethoxydim-tolerant maize tissue cultures[J]. Plant Physiology, 1990, 92(4): 1220-1225
    Prado J L D., Prado R A D. and Shimabukuro R H. The effect of diclofop on membrane potential, ethylene induction, and herbicide phytotoxicity in resistant and susceptible biotypes of grasses[J]. Pesticide Biochemistry and Physiology, 1999, 63:1-14
    Prado R D., Osuna M D. and Fischer A J. Resistance to ACCase inhibitor herbicides in a green foxtail (Setaria viridis) biotype in Europe[J]. Weed Science, 2004, 52:506-512
    Pyon, J Y., Piao R Z., Roh S W., et al. Differential levels of antioxidants in paraquat-resistant and-susceptible Erigeron Canadensis biotypes in Korea[J]. Weed Biology and Management, 2004, 4: 75-80
    Rahman I. and MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches[J]. Free Radicical Biology & Medicine, 2000, 28:1405-1420
    Ratterman D M. and Balke N E. Herbicidal disruption of proton gradient development and maintenance by plasmalemma and tonoplast vesicles from oat root[J]. Pesticide Biochemistry and Physiology, 1988, 31:221-236
    Rendina A R., Felts J M., Beaudoin J D., et al. Kinetic characterization, stereoselectivity and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxypropionie acid grass herbicides[J]. Archives of Biochemistry and Biophysics, 1988, 265(1): 219-225
    Reverdatto S., Beilinson V., Nielsen N C., et al. A multisubunit acetyl coenzyme A carboxylase from soybean[J]. Plant Physiology, 1999, 961-978
    Ritter R L. Management tactics for herbicide resistant weeds. Proceedings of the annual meeting[J]. Northeastern weed science. 1991, 45:160-162
    Rotteveel T J W., Goeij J W F. and Gemerden A F. Towards the construction of a resistance risk evaluation scheme[J]. Pesticide Science, 1999, 51 (3): 407-411
    Ryan G F. Resistance of common groundsel to simazine and atrazine[J]. Weed Science, 1970, 18: 614-616
    Sasaki Y., Konishi T. and Nagano Y. The compartimentation of acetyl-coenzyme A carboxylase in plants[J]. Plant Physiology, 1995, 108:445-449
    Shalata A. and Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii[J]. Physiologia Plantarum, 1998, 104:169-174
    Shao H B., Liang Z S. and Shao M A. Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage[J]. Colloids and Surfaces B: Biointerfaces, 2005, 45:7-13
    Shi Q H., Zhu Z J., Xu M., et al. Effect of excess manganese on the antioxidant system in Cucumis sativus L. under two light intensities[J]. Environmental and Experimental Botany, 2006, 58:197-205
    Shukla A., Dupont S. and Devine M D. Resistance to ACCase-inhibitor Herbicides in Wild Oat: Evidence for Target Site-Based Resistance in Two Biotypes from Canada[J]. Pesticide Biochemistry and Physiology, 1997, 57:147-155
    Strachan S D. and Hess F D. The biochemical mechanism of action of the dinitroaniline herbicide oryzlin[J]. Pesticide Biochemistry and Physiology, 1983, 20:141-150
    Sun M. Engineering crop to resist weeds killers[J]. Science, 1986, 231(4744): 1360-1361
    Tal A., Kotouil-Syka E. and Rubin B. Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides[J]. Crop Protection, 2000, 19:467-472
    Tal A. and Rubin B. Molecular characterization and inheritance of resistance to ACCase-inhibiting herbicides in Loliwn rigidim[J]. Pest Management Science, 2004, 60:1013-1018
    Tardif F J., Holtum J A M. and Powles S B. Occurrence of a herbicide-resistant acetyl-coenzyme A cartylboxylase mutant in annual ryegrass (Loliwn rigidum) selected by sethoxydim[J]. Planta, 1993, 190:176-181
    Tosapon P., Parnuwat M. and Kenji U. The role of altered acetyl-CoA carboxylase in conferring resistance to fenoxaprop-P-ethyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees)[J]. Pest Management Science, 2006, 62:1109-1115(7)
    Valverde B E., Charles R R. and John C C. Prevention and management of herbicide resistant weeds in rice: experiences from Central America with Echinochloa colona [M]. 2000:33
    Vaughn K C. Characterization of Triazine-resistant and susceptible isolines of canola (Brassica napus L.)[J]. Plant Physiology, 1986, 82:859-863
    Vaughn K C. and Gossett B J. A biotype of goosegrass (Eleusine indica) with an intermediate level of dinitroaniline herbicide resislance[J]. Weed Technology, 1990, 4:157-162
    Volenberg D. and Stoltenberg D. Altered acetyl-coenzyme A carboxylase confers resistance to clethodim, fluazifop and sethoxydim in Setaria faberi and Digitaria sanguinalis[J]. Weed Research, 2002, 42: 342-350
    Walker K A., Ridley S M., Lewis T., et al. A new class of herbicide which inhibits acetyl-CoA carboxylase in sensitive plant species[J]. Journal of Biochemistry, 1990, 29 (12): 3743-3747
    Wu F B., Zhang G P. and Dominy P. Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity[J]. Environmental and Experimental Botany, 2003, 50:67-78
    Yim M B., Chock P B. and Stadtman E R. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Proceedings of National Academy of Sci, USA, 1990, 87: 5006-5010
    Yun M S., Yogo Y., Miura R., et al. Cytochrome P-450 monooxygenase activity in herbicide-resistant and -susceptible late watergrass (Echinochloa phyllopogon)[J]. Pesticide Biochemistry and Physiology, 2005, 83:107-114
    Zabalza A., Gaston S., Sandalio L M., et al. Oxidative stress is not related to the mode of action of herbicides that inhibit acetolactate synthase[J]. Environmental and Experimental Botany. 2007, 59 (2): 150-159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700