用户名: 密码: 验证码:
低氮诱导表达基因、氮转运基因的功能研究以及水稻OsRHC基因家族分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界重要的粮食作物。目前,随着全球耕地面积的不断减少,粮食危机逐渐显现,为了满足粮食需求,人们大量地向农田施入各种化学肥料以保证产量,特别是氮肥,因为氮肥是影响和制约粮食产量的最为重要的因素之一。然而,大量施入氮肥带来了许多负面影响,例如生产成本增加、经济浪费以及环境污染。传统的育种手段已经无法满足人们日益增长的粮食需求。因此,利用分子生物学技术快速高效地获得氮高效吸收和利用的转基因水稻新品种对我国水稻生产甚至是整个农业发展起着十分重要的意义。另外,各种非生物逆境(干旱、冷害和高盐等)对植物尤其是作物的生长和发育也有着非常重要的影响,因此研究和逆境相关的基因对提高作物对干旱、高盐和低温等逆境的耐受能力具有重要意义。本研究通过超量表达低氮诱导表达基因、铵盐转运蛋白基因(AMT)和硝酸盐转运蛋白基因(NR乃,对转基因植株进行表型分析和生理生化研究,以获得氮高效吸收和利用的转基因水稻新品种;通过对C3HC4类型的锌指蛋白家族成员进行生物信息学分析以及胁迫条件下的表达分析,找到一些和逆境相关的锌指蛋白成员。主要结果如下:
     1.使用生物信息学方法在NCBI数据库搜索获得水稻低氮诱导表达基因、铵盐转运蛋白基因(AMT)和硝酸盐转运蛋白基因(NRT)的序列信息;并通过cDNA文库和PCR扩增获得基因。以载体pCAMBIA1301S为基础,构建超量表达载体,以35S启动子启动基因在水稻中进行组成型大量表达。通过Southern和Northern杂交,对转基因植株进行转基因拷贝数和表达量的检测,来获得超量表达的单拷贝转基因植株。对转基因植株进行水培筛选和田间鉴定,找到和野生型植株表型有差异的转基因植株进行下一步研究。
     2.用Real-time PCR的方法检测水稻全生育期27个组织和器官中10个铵盐转运子基因(OsAMT1;1,OsAMT1;2, OsAMT1; 3,OsAMT2;1, OsAMT2;2, OsAMT2;3,OsAMT3;1, OsAMT3;2, OsAMT3;3,OsAMT4;1)的表达水平。结果表明:OsAMT1;1, OsAMT1;2, OsAMT2;1和OsAMT4;1在27个组织或器官中广泛表达,属于组成型表达的铵盐转运子,然而另外6个铵盐转运子基因特异地在某些组织或器官中表达如根,幼穗、胚乳等等。
     3.用Real-time PCR的方法检测氮饥饿以及不同氮源处理条件下铵盐转运子基因的表达变化。结果表明在缺氮条件下6个铵盐转运子(OsAMT1;3,OsAMT2;1, OsAMT2;3,OsAMT3;1,OsAMT3;2,OsAMT4;1)在地上部和地下部中的表达不发生改变,另外在不同的时间点5个基因在地上部或地下部的表达发生变化。另外,经过不同氮源处理后植株根中除了OsAMT1;1外,其他的铵盐转运子基因在转录水平发生改变。这些结果表明大多数的铵盐转运子基因在转录水平上至少能被一种氮源所影响,并且在氮饥饿条件下,一部分铵盐转运子基因的转录水平会快速发生改变使得植株能够适应外界改变的环境。
     4.利用农杆菌介导的遗传转化的方法将OsAMT2;1和OsAMT2;3这两个基因分别导入到水稻中花11中进行超量表达。经过水培筛选发现,和野生型对照中花11,超表达OsAMT2;1的转基因植株长势瘦弱,鲜重和分蘖数和对照相比分别减少30%,转基因植株根内游离铵含量和总氮含量大约上升了10%。超表达OsAMT2;3的转基因植株同样长势瘦弱,植株的鲜重和分蘖数与对照相比减少了大约30%,转基因植株根内的游离铵含量下降了10%。通过15N的吸收实验同样证明了超表达OsAMT2;3的转基因植株吸收铵的能力大约下降了10-15%。
     5.水稻中典型的C3HC4类型的锌指蛋白OsRHC一共有29个成员,对它们的基因结构、顺式作用因子、染色体定位、进化关系、以及表达作了系统的分析,并通过Real-time PCR对部分OsRHC基因在激素处理和逆境胁迫条件下的表达变化做出研究。分析结果表明29个OsRHC基因中有5个C3HC4型锌指蛋白成员特异地在生殖器官中表达,在非生物胁迫下12个基因在苗期受到激素或逆境的调节。这些结果对阐述C3HC4型锌指蛋白在植物生长发育和逆境响应中的作用非常有帮助。
Rice is the most important crop in the world. At present, the cultivated land in China is decreasing day by day. Various chemical fertilizers especially nitrogen fertilizer were applied into the field in order to satisfy people's demand for food. As we all know nitrogen is the most important nutrient element for crop production. However, the substantial inputs of nitrogen fertilizer have taken negative effects such as the increased production cost and environment pollution. Obviously, the conventional breeding methods can't keep up with the increasing food demand of the people. It will play a very important role in rice production and even the entire agricultural development in our country by using transformation method to obtain the new rice variety of high efficiency of nitrogen absorption and untilization. In addition, abiotic stress, such as drought, salt, and low temperature, frequently influences rice growth, development. It becomes more and more urgent to study the genes related to abiotic stress to improve rice tolerance to these abiotic stresses. In this study genes including nitrogen-induced genes, ammonium transpoter(AMT) and nitrate transporter (NRT) were over-expressed in rice plants, the phenotype and metabolic level of transgenic plants were analyzed by molecular biology and physiology methods in order to obtain the transgenic rice plant with the higher efficiency of nitrogen absorption and untilization. The C3HC4-type zinc finger proteins were studied by informatics and the expression level of OsRHCs were analyzed under various stresses. Finally some OsRHCs related to abiotic stress were found. The main results are as follows:
     1. The sequence information of genes including nitrogen-induced genes, ammonium transpoter(AMT) and nitrate transporter (NRT) were obtained from NCBI database using bioinformatic methods. And the genes were isolated by PCR amplification or cloned from cDNA library in our lab. The pCAMBIA1301S vector which contained 35S promoter were used to overexpress the target gene by an Agrobacterium tumefaciens-mediated transformation method. The copy numbers and expression level of transformed genes in transgenic plants were also checked by Southern and Northern blot respectively. In order to find the differences between the transgenic plants and wild-type plants, the overexpressed transgenic plants with one or two copies were studied in hydroponic culture condition and in field.
     2. The ammonium transporter (AMT) family contains ten members(OsAMT1;1, OsAMT1;2, OsAMT1;3, OsAMT2;1, OsAMT2;2, OsAMT2;3, OsAMT3;1, OsAMT3;2, OsAMT3;3, OsAMT4;1) in rice (Oryza sativa). Here we systemically examined 27 rice tissues or organs of whole-life time by Real-PCR method. The results showed that OsAMT1;1, OsAMT1;2,OsAMT2;1,OsAMT4;1 were widely expressed in 27 tissues or organs, while other six genes were specifically expressed in some tissues or organs, such as root, panicle, endosperm and so on.
     3. Expression levels of OsAMT genes with nitrogen deprivation or different nitrogen forms treatments by Real-PCR method. The results showed that among the ten OsAMT genes, the expression levels of five genes (OsAMT1;3,OsAMT2;1, OsAMT2;3, OsAMT3;1, OsAMT3;2 and OsAMT4;1) did not change under the N deprivation both in root and shoot under nitrogen deprivation,and the expression level of the other five genes were up-or down-regulated at different time point. In addition, all genes except OsAMT1;1 were influenced by different nitrogen forms. The results suggested that most ammonium transporters were affected by at least one nitrogen form and could quickly respond to the nitrogen deprivation condition at the transcriptional level to adapt the complicated environment.
     4.OsAMT2;1 and OsAMT2;3 were overexpressed respectively in rice Zhonghua 11 (Oryza sativa L. ssp japonica) by an Agrobacterium tumefaciens-mediated transformation method. The results showed that overexpression of OsAMT2;1 in rice results in enhanced ammonium uptake but impaired growth under normal nitrogen condition, the tiller number and fresh weight of transgenic plants were about 30% lower than that of control (Zhonghua 11) and the free ammonium in root of transgenic plants were more than 10% higher than that of control(Zhonghua 11), respectively. Similarly, overexpression of OsAMT2;3 in transgenic rice decreases the ammonium uptake and impaired growth. 15N-labeled ammonium uptake experiment was also proven that approximately 10-15% decrease in root uptake capacity for N-labeled ammonium.
     5. Here, we report the identification and characterization of 29 typical OsRHC genes in rice, describing the gene structure, cis-elements, genome localization, phylogenetic relationship of each member and gene expression. We have used Real-time PCR to perform a characterization of the hormone-regulated and abiotic stress-regulated OsRHC genes. These results help us to understand the function of OsRHC genes for plants' growth and development and the responses to abiotic stress
引文
1. 陈新平,邹春琴,刘亚萍,张福锁.菠菜不同品种累积硝酸盐能力的差异及其原因.植物营养与肥料学报,2000,6(1):30-34
    2.练兴明.水稻氮胁迫基因表达谱研究及耐低氮特性数量性状分析.[博士学位论文].武汉:华中农业大学图书馆,2005
    3. 陆景陵.植物营养学.北京:中国农业大学出版社,2002,23-35
    4. 马立珊.农田氮素管理与环境质量和作物品质.见:朱兆良,文启孝主编,中国土壤氮素.南京:江苏科学技术出版社,1992,267-287
    5.潘瑞炽,董愚得主编.植物生理学.北京:高等教育出版社,1995
    6.宋松泉,王永锐,傅家瑞.高等植物中硝酸还原酶的研究进展.作物杂志,1993,4:32-35
    7. 田华,段美洋,王兰.植物硝酸还原酶功能的研究进展.2009,25(10):96-99
    8. 吴平,印莉萍,胡彬.植物氮素营养分子生理.见:吴平主编,植物营养分子生理学.北京:科学出版社,2001,1-98
    9.严小龙,张福锁.植物营养遗传学.北京:中国农业出版社,1997,92-98
    10.闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响,土壤学报,2005,42:440-446
    11.余叔文,汤章城主编.植物生理与分子生物学(第二版).北京:科学出版社,1998
    12.张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,2008,45:915-924
    13.刘文国,范学科,马安良.植物体对氮吸收和同化过程的研究进展.2001,1:15-19
    14. Akashi H, Miyagishi M, Taira K. RNAi Expression Vectors in Plant Cells. Methods Mol Biol,2004,252:533-544.
    15. Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ,2005,28: 500-512.
    16. Almagro A, Lin SH, Tsay YF.Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell,2008,20: 3289-3299.
    17. Amarasinghe BH, de Bruxelles GL, Braddon M, Onyeocha I, Forde BG, Udvardi MK. Regulation of GmNRT2 expression and nitrate transport activity in roots of soybean (Glycine max). Planta,1998,206:44-52.
    18. Araki R, Hasegawa H. Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction. Breeding Science 2006,56:295-302.
    19. Bajguz A, Hayat S. Effects of brassinosteroids on the plant, responses to environmental stresses. Plant Physiol Biochem,2009,47:1-8.
    20. Balbi V, Devoto A. Jasmonate signalling network in Arabidopsis thaliana:crucial regulatory nodes and new physiological scenarios. New Phytol,2008,177:301-318.
    21. Ben-Neriah Y. Regulatory functions of ubiquitination in the immune system. Nat Immunol,2002,3:20-26.
    22. Borden KL, Freemont PS. The RING finger domain:a recent example of a sequence-structure family. Curr Opin Struct Biol,1996,6:395-401.
    23. Borgnia M, Nielsen S, Engel A, Agre P. Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem,1999,68:425-458.
    24. Britto DT, Siddiqi MY, Glass AD, Kronzucker HJ. Futile transmembrane NH4+ cycling:a cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci U S A,2001,98:4255-4258.
    25. Callis J, Vierstra RD. Protein degradation in signaling. Curr Opin Plant Biol,2000,3: 381-386.
    26. Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A. Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol,2001,127:262-271.
    27. Chen YM, Ferrar TS, Lohmeier-Vogel EM, Morrice N, Mizuno Y, Berenger B, Ng KK, Muench DG, Moorhead GB. The PII signal transduction protein of Arabidopsis thaliana forms an arginine-regulated complex with plastid N-acetyl glutamate kinase. J Biol Chem,2006,281:5726-5733.
    28. Cheong YH, Yoo CM, Park JM, Ryu GR, Goekjian VH, Nagao RT, Key JL, Cho MJ, Hong JC. STF1 is a novel TGACG-binding factor with a zinc-finger motif and a bZIP domain which heterodimerizes with GBF proteins. Plant J,1998,15:199-209.
    29. Cheung MY, Zeng NY, Tong SW, Li FW, Zhao KJ, Zhang Q, Sun SS, Lam HM. Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. J Exp Bot,2007,58: 4147-4159.
    30. Chiu CC, Lin CS, Hsia AP, Su RC, Lin HL, Tsay YF. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol,2004,45:1139-1148.
    31. Chopin F, Orsel M, Dorbe MF, Chardon F, Truong HN, Miller AJ, Krapp A, Daniel-Vedele F. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell,2007,19:1590-1602.
    32. Chuang CF, Meyerowitz EM. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A,2000,97: 4985-4990.
    33. Church GM, Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A,1984,81: 1991-1995.
    34. Ciechanover A. The ubiquitin-proteasome pathway:on protein death and cell life. Embo J,1998,17:7151-7160.
    35. Ciftci-Yilmaz S, Mittler R. The zinc finger network of plants. Cell Mol Life Sci,2008, 65:1150-1160.
    36. Coruzzi G, Last R. Amino acids. In BB Buchanan, W Gruissem, RL Jones, eds, Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD.2000,1250-1318.
    37. D'Apuzzo E, Rogato A, Simon-Rosin U, El Alaoui H, Barbulova A, Betti M, Dimou M, Katinakis P, Marquez A, Marini AM, Udvardi MK, Chiurazzi M. Characterization of three functional high-affinity ammonium transporters in Lotus japonicus with differential transcriptional regulation and spatial expression. Plant Physiol,2004,134: 1763-1774.
    38. Daniel-Vedele F, Filleur S, Caboche M. Nitrate transport:a key step in nitrate assimilation. Curr Opin Plant Biol,1998,1:235-239.
    39. Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. Ann Bot (Lond), 2007,99:787-822.
    40. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,411:494-498.
    41. Engineer CB, Kranz RG. Reciprocal leaf and root expression of AtAmt1.1 and root architectural changes in response to nitrogen starvation. Plant Physiol,2007,143: 236-250.
    42. Fan J, Quan S, Orth T, Awai C, Chory J, Hu J. The Arabidopsis PEX12 gene is required for peroxisome biogenesis and is essential for development. Plant Physiol, 2005,139:231-239.
    43. Filleur S, Daniel-Vedele F. Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta,1999,207:461-469.
    44. Filleur S, Dorbe MF, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F. An arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett,2001,489:220-224.
    45. Forde BG. Nitrate transporters in plants:structure, function and regulation. Biochim Biophys Acta,2000,1465:219-235.
    46. Fraisier V, Dorbe MF, Daniel-Vedele F. Identification and expression analyses of two genes encoding putative low-affinity nitrate transporters from Nicotiana plumbaginifolia. Plant Mol Biol,2001,45:181-190.
    47. Freemont PS. The RING finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci,1993,684:174-192.
    48. Frink CR, Waggoner PE, Ausubel JH. Nitrogen fertilizer:retrospect and prospect. Proc Natl Acad Sci U S A,1999,96:1175-1180.
    49. Galvan A, Fernandez E. Eukaryotic nitrate and nitrite transporters. Cell Mol Life Sci, 2001,58:225-233.
    50. Glass AD, Shaff JE, Kochian LV. Studies of the Uptake of Nitrate in Barley:Ⅳ. Electrophysiology. Plant Physiol,1992,99:456-463.
    51. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science,2002,296:92-100.
    52. Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J. PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell,2005,17:3500-3512.
    53. Granato TC, Raper CD, Jr. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate. J Exp Bot,1989,40:263-275.
    54. Greco R, Ouwerkerk PB, Sallaud C, Kohli A, Colombo L, Puigdomenech P, Guiderdoni E, Christou P, Hoge JH, Pereira A. Transposon insertional mutagenesis in rice. Plant Physiol,2001,125:1175-1177.
    55. Guo AY, Zhu QH, Chen X, Luo JC. [GSDS:a gene structure display server]. Yi Chuan,2007a,29:1023-1026.
    56. Guo FQ, Wang R, Chen M, Crawford NM. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell,2001,13: 1761-1777.
    57. Guo FQ, Young J, Crawford NM. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell,2003,15:107-117.
    58. Guo S, Zhou Y, Shen Q, Zhang F. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations. Plant Biol (Stuttg),2007b,9:21-29.
    59. Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science,1999,286:950-952.
    60. Hardtke CS, Okamoto H, Stoop-Myer C, Deng XW. Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J, 2002,30:385-394.
    61. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem,1998,67: 425-479.
    62. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.). mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J,1994,6:271-282.
    63. Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Res,1999,27:297-300.
    64. Hirochika H. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol,2001,4:118-122.
    65. Hoque M, Masle J, Udvardi M, Ryan P, Upadhyaya N. Over-expression of the rice OsAMT1;1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Funct Plant Biol 2006,33: 153-163.
    66. Howitt SM, Udvardi MK. Structure, function and regulation of ammonium transporters in plants. Biochim Biophys Acta,2000,1465:152-170.
    67. Hsieh MH, Lam HM, van de Loo FJ, Coruzzi G. A PⅡ-like protein in Arabidopsis: putative role in nitrogen sensing. Proc Natl Acad Sci U S A,1998,95:13965-13970.
    68. Huang NC, Chiang CS, Crawford NM, Tsay YF. CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell,1996,8:2183-2191.
    69. Huang NC, Liu KH, Lo HJ, Tsay YF. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell,1999,11:1381-1392.
    70. Huibregtse JM, Scheffner M, Howley PM. Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol,1993,13:4918-4927.
    71. Husted S, Schjoerring JK. Ammonia Flux between Oilseed Rape Plants and the Atmosphere in Response to Changes in Leaf Temperature, Light Intensity, and Air Humidity (Interactions with Leaf Conductance and Apoplastic NH4+ and H+ Concentrations). Plant Physiol,1996,112:67-74.
    72. Jensen RB, Jensen KL, Jespersen HM, Skriver K. Widespread occurrence of a highly conserved RING-H2 zinc finger motif in the model plant Arabidopsis thaliana. FEBS Lett,1998,436:283-287.
    73. Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G. T-DNA insertional mutagenesis for functional genomics in rice. Plant J,2000,22: 561-570.
    74. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R. X-ray structure of a voltage-dependent K+ channel. Nature,2003,423:33-41.
    75. Joazeiro CA, Weissman AM. RING finger proteins:mediators of ubiquitin ligase activity. Cell,2000,102:549-552.
    76. Jorgensen R. Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol,1990,8:340-344.
    77. Kaiser BN, Rawat SR, Siddiqi MY, Masle J, Glass AD. Functional analysis of an Arabidopsis T-DNA "knockout" of the high-affinity NH4+ transporter AtAMT1;1. Plant Physiol,2002,130:1263-1275.
    78. Kaiser WM, Huber SC. Post-translational regulation of nitrate reductase:mechanism, physiological relevance and environmental triggers. J Exp Bot,2001,52:1981-1989.
    79. Kang J, Turano FJ. The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci USA,2003,100:6872-6877.
    80. King BJ, Siddiqi MY, Ruth TJ, Warner RL, Glass A. Feedback Regulation of Nitrate Influx in Barley Roots by Nitrate, Nitrite, and Ammonium. Plant Physiol,1993,102: 1279-1286.
    81. Kronzucker HJ, Siddiqi MY, Glass A. Kinetics of NH4+ Influx in Spruce. Plant Physiol,1996,110:773-779.
    82. Krouk G, Tillard P, Gojon A. Regulation of the high-affinity NO3- uptake system by NRT1.1-mediated NO3- demand signaling in Arabidopsis. Plant Physiol,2006,142: 1075-1086.
    83. Kumar A, Brent N, Kaiser M, Siddiqi Y, Glass A. Functional characterisation of OsAMT1.1 overexpression lines of rice, Oryza sativa. Funct Plant Biol 2006,33: 339-346.
    84. Kumar A, Silim SN, Okamoto M, Siddiqi MY, Glass AD. Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oryza sativa subspecies indica. Plant Cell Environ,2003,26: 907-914.
    85. Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM. The Molecular-Genetics of Nitrogen Assimilation into Amino Acids in Higher Plants. Annu Rev Plant Physiol Plant Mol Biol,1996,47:569-593.
    86. Lea PJ, Robinson SA, Stewart GA. The Biochemistry of Plants vol.16:Intermediary Metabolism, Academic Press, San Diego,1990,121-157.
    87. Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo--cytoplasmic partitioning. Genes Dev,2001,15: 912-924.
    88. Lejay L, Tillard P, Lepetit M, Olive F, Filleur S, Daniel-Vedele F, Gojon A. Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. Plant J,1999,18:509-519.
    89. Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass AD. Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol,2007,143:425-433.
    90. Lillo C, Meyer C, Lea US, Provan F, Oltedal S. Mechanism and importance of post-translational regulation of nitrate reductase. J Exp Bot,2004,55:1275-1282.
    91. Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB, Gojon A, Tsay YF. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell,2008,20: 2514-2528.
    92. Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta,2007a,226:1007-1016.
    93. Liu KH, Huang CY, Tsay YF. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell,1999,11: 865-874.
    94. Liu KH, Tsay YF. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. Embo J,2003,22:1005-1013.
    95. Liu Y, Koornneef M, Soppe WJ. The absence of histone H2B monoubiquitination in the Arabidopsis hubl (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell,2007b,19:433-444.
    96. Loque D, Lalonde S, Looger LL, von Wiren N, Frommer WB. A cytosolic trans-activation domain essential for ammonium uptake. Nature,2007,446:195-198.
    97. Loque D, Yuan L, Kojima S, Gojon A, Wirth J, Gazzarrini S, Ishiyama K, Takahashi H, von Wiren N. Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J,2006,48:522-534.
    98. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A,1999,96:11364-11369.
    99. Louahlia S, Laine PH, Ourry MA, Humphreys M, Boucaud J. Interactions between reserve mobilization and regulation of nitrate uptake during regrowth of Lolium perenne L:putative roles of amino acids and carbohydrates. Can. J. Bot,2008,86: 205-212
    100.Lovering R, Hanson IM, Borden KL, Martin S, O'Reilly NJ, Evan GI, Rahman D, Pappin DJ, Trowsdale J, Freemont PS. Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci U S A,1993,90: 2112-2116.
    101.Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JD, Romeis T. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci U S A,2005,102:10736-10741.
    102.Marini AM, Soussi-Boudekou S, Vissers S, Andre B. A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol,1997,17:4282-4293.
    103.Marini AM, Vissers S, Urrestarazu A, Andre B. Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. Embo J,1994, 13:3456-3463.
    104.Matsuda N, Suzuki T, Tanaka K, Nakano A. Rmal, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. J Cell Sci,2001,114:1949-1957.
    105.Matzke M, Matzke AJ, Kooter JM. RNA:guiding gene silencing. Science,2001,293: 1080-1083.
    106.Mengel, Konrad, Mengel K, Kirkby, Ernest A. Principles of Plant Nutrition.2001
    107.Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM. Nitrate transport and signalling. J Exp Bot,2007,58:2297-2306.
    108.Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. Embo J,1985,4:1609-1614.
    109.Moir JW, Wood NJ. Nitrate and nitrite transport in bacteria. Cell Mol Life Sci,2001, 58:215-224.
    110.Munos S, Cazettes C, Fizames C, Gaymard F, Tillard P, Lepetit M, Lejay L, Gojon A. Transcript profiling in the chll-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell,2004,16:2433-2447.
    111.Nagano Y. Several features of the GT-factor trihelix domain resemble those of the Myb DNA-binding domain. Plant Physiol,2000,124:491-494.
    112.Nakano A, Suzuki G, Yamamoto M, Turnbull K, Rahman S, Mukai Y. Rearrangements of large-insert T-DNAs in transgenic rice. Mol Genet Genomics, 2005,273:123-129.
    113.Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol,2005,56:165-185.
    114.Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell,1990,2:279-289.
    115.Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J,2003,34:137-148.
    116.Neuhauser B, Dynowski M, Mayer M, Ludewig U. Regulation of NH4+ transport by essential cross talk between AMT monomers through the carboxyl tails. Plant Physiol, 2007,143:1651-1659.
    117.Ninnemann O, Jauniaux JC, Frommer WB. Identification of a high affinity NH4+ transporter from plants. Embo J,1994,13:3464-3471.
    118.Nodzon LA, Xu WH, Wang Y, Pi LY, Chakrabarty PK, Song WY. The ubiquitin ligase XBAT32 regulates lateral root development in Arabidopsis. Plant J,2004,40: 996-1006.
    119.Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass AD. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol,2006,140:1036-1046.
    120.Okamoto M, Vidmar JJ, Glass AD. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana:responses to nitrate provision. Plant Cell Physiol,2003,44: 304-317.
    121.Oostinder-Braaksma FJ, Feenstra WJ. Isolation and characterization of chlorate-resistant mutants of Arabidopsis thaliana. Mutat Res,1973,19:175-185
    122.Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ. Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiol,2006,142: 1304-1317.
    123.Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ. Nitrate signaling and the two component high affinity uptake system in Arabidopsis. Plant Signal Behav,2007,2:26026-26032.
    124.Orsel M, Eulenburg K, Krapp A, Daniel-Vedele F. Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration. Planta,2004,219:714-721.
    125.Orsel M, Filleur S, Fraisier V, Daniel-Vedele F. Nitrate transport in plants:which gene and which control? J Exp Bot,2002,53:825-833.
    126.Pepper AE, Chory J. Extragenic suppressors of the Arabidopsis detl mutant identify elements of flowering-time and light-response regulatory pathways. Genetics,1997, 145:1125-1137.
    127.Potuschak T, Stary S, Schlogelhofer P, Becker F, Nejinskaia V, Bachmair A. PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc Natl Acad Sci U S A,1998,95:7904-7908.
    128.Provan F, Lillo C. Photosynthetic post-translational activation of nitrate reductase. Journal of Plant Physiol.1999,605-609.
    129.Quesada A, Galvan A, Fernandez E. Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J,1994,5:407-419.
    130.Raghuvanshi S, Kelkar A, Khurana JP, Tyagi AK. Isolation and molecular characterization of the COP1 gene homolog from rice, Oryza sativa L. subsp. Indica var. Pusa Basmati 1. DNA Res,2001,8:73-79.
    131.Rajasekhar VK, Gowri G, Campbell WH. Phytochrome-Mediated Light Regulation of Nitrate Reductase Expression in Squash Cotyledons. Plant Physiol,1988,88: 242-244.
    132.Rawat SR, Silim SN, Kronzucker HJ, Siddiqi MY, Glass AD. AtAMT1 gene expression and NH4+ uptake in roots of Arabidopsis thaliana:evidence for regulation by root glutamine levels. Plant J,1999,19:143-152.
    133.Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci U S A,2006, 103:19206-19211.
    134.Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995,270: 467-470.
    135.Schumann U, Wanner G, Veenhuis M, Schmid M, Gietl C. AthPEX10, a nuclear gene essential for peroxisome and storage organelle formation during Arabidopsis embryogenesis. Proc Natl Acad Sci U S A,2003,100:9626-9631.
    136.Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics,2002,2:282-291.
    137.Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell,2001,13:61-72.
    138.Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science,1996,274:1900-1902.
    139.Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol,2000,3:217-223.
    140.Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun,1998,250:161-170.
    141.Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol,2004,55:555-590.
    142.Sohlenkamp C, Shelden M, Howitt S, Udvardi M. Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett,2000,467:273-278.
    143.Sohlenkamp C, Wood CC, Roeb GW, Udvardi MK. Characterization of Arabidopsis
    AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiol,2002,130:1788-1796.
    144.Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, Yamaguchi J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol,2003,44:726-734.
    145.Stary S, Yin XJ, Potuschak T, Schlogelhofer P, Nizhynska V, Bachmair A. PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues. Plant Physiol,2003,133: 1360-1366.
    146.Stone SL, Callis J. Ubiquitin ligases mediate growth and development by promoting protein death. Curr Opin Plant Biol,2007,10:624-632.
    147.Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol,2005,137: 13-30.
    148.Su W, Huber SC, Crawford NM. Identification in vitro of a post-translational regulatory site in the hinge 1 region of Arabidopsis nitrate reductase. Plant Cell,1996, 8:519-527.
    149.Suenaga A, Moriya K, Sonoda Y, Ikeda A, Von Wiren N, Hayakawa T, Yamaguchi J, Yamaya T. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol,2003,44:206-211.
    150.Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot,2007,58:2319-2327.
    151.Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol,2007,24:1596-1599.
    152.Teerawanichpan P, Chandrasekharan MB, Jiang Y, Narangajavana J, Hall TC. Characterization of two rice DNA methyltransferase genes and RNAi-mediated reactivation of a silenced transgene in rice callus. Planta,2004,218:337-349.
    153.Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882.
    154.Tong Y, Zhou JJ, Li Z, Miller AJ. A two-component high-affinity nitrate uptake system in.barley. Plant J,2005,41:442-450.
    155.Trueman LJ, Richardson A, Forde BG. Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene,1996,175:223-231.
    156.Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK. Nitrate transporters and peptide transporters. FEBS Lett,2007,581:2290-2300.
    157.Tsay YF, Schroeder JI, Feldmann KA, Crawford NM. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell,1993,72: 705-713.
    158.Tsuge T, Inagaki N, Yoshizumi T, Shimada H, Kawamoto T, Matsuki R, Yamamoto N, Matsui M. Phytochrome-mediated control of COP1 gene expression in rice plants. Mol Genet Genomics,2001,265:43-50.
    159.Veenhoff LM, Heuberger EH, Poolman B. Quaternary structure and function of transport proteins. Trends Biochem Sci,2002,27:242-249.
    160.von Arnim AG, Deng XW. Ring finger motif of Arabidopsis thaliana COP1 defines a new class of zinc-binding domain. J Biol Chem,1993,268:19626-19631.
    161.von Wiren N, Gazzarrini S, Gojon A, Frommer WB. The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol,2000a,3:254-261.
    162.von Wiren N, Lauter FR, Ninnemann O, Gillissen B, Walch-Liu P, Engels C, Jost W, Frommer WB. Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. Plant J,2000b,21: 167-175.
    163.Walbot V. Saturation mutagenesis using maize transposons. Curr Opin Plant Biol, 2000,3:103-107.
    164.Wang MY, Siddiqi MY, Ruth TJ, Glass A. Ammonium Uptake by Rice Roots (II. Kinetics of 13NH4+ Influx across the Plasmalemma). Plant Physiol,1993,103: 1259-1267.
    165.Wang R, Liu D, Crawford NM. The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc Natl Acad Sci U S A,1998,95:15134-15139.
    166.Wang YS, Pi LY, Chen X, Chakrabarty PK, Jiang J, De Leon AL, Liu GZ, Li L, Benny U, Oard J, Ronald PC, Song WY. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell,2006,18: 3635-3646.
    167.Waterhouse PM, Wang MB, Lough T. Gene silencing as an adaptive defence against viruses. Nature,2001,411:834-842.
    168.White KP, Rifkin SA, Hurban P, Hogness DS. Microarray analysis of Drosophila development during metamorphosis. Science,1999,286:2179-2184.
    169.Wirth J, Chopin F, Santoni V, Viennois G, Tillard P, Krapp A, Lejay L, Daniel-Vedele F, Gojon A. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J Biol Chem,2007,282:23541-23552.
    170.Xie K, Zhang J, Xiang Y, Feng Q, Han B, Chu Z, Wang S, Zhang Q, Xiong L. Isolation and annotation of 10828 putative full length cDNAs from indica rice. Sci China C Life Sci,2005,48:445-451.
    171.Xie Q, Frugis G, Colgan D, Chua NH. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev,2000,14: 3024-3036.
    172.Xu Z, Zhou G. [Research advance in nitrogen metabolism of plant and its environmental regulation]. Ying Yong Sheng Tai Xue Bao,2004,15:511-516.
    173.Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol,2008, 59:225-251.
    174.Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T. Metabolic engineering with Dofl transcription factor in plants:Improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci U S A,2004,101:7833-7838.
    175.Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science,2002, 296:79-92.
    176.Yoshida S, Forno DA, Cook JH, Gomez KA. Laboratory manual for physiological studies of rice,3rd ed. International Rice Research Institute, Manila,1976
    177.Yuan L, Loque D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wiren N. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell,2007a,19:2636-2652.
    178.Yuan L, Loque D, Ye F, Frommer WB, von Wiren N. Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1. Plant Physiol, 2007b,143:732-744.
    179.Zhang H, Forde BG. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science,1998,279:407-409.
    180.Zhang Q. Strategies for developing Green Super Rice. Proc Natl Acad Sci U S A, 2007,104:16402-16409.
    181.Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell,2007,19:1912-1929.
    182.Zhou JJ, Theodoulou FL, Muldin I, Ingemarsson B, Miller AJ. Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem,1998,273:12017-12023.
    183.Zhuo D, Okamoto M, Vidmar JJ, Glass AD. Regulation of a putative high-affinity nitrate transporter (Nrt2;lAt) in roots of Arabidopsis thaliana. Plant J,1999,17: 563-568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700