用户名: 密码: 验证码:
大型冷却塔流固耦合分析与结构缩减模型应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型冷却塔广泛地应用于电力等各个工业领域。由于冷却塔本身是大尺寸、几何复杂的薄壁结构,因此风荷载成为主要的控制载荷。目前对于大型冷却塔的风致响应主要基于规范的风压分布系数、风洞测试和计算流体力学分析。但是这些方法很少考虑结构变形对于风载荷的影响,因此可能导致较大误差。
     本文首先提出基于压力迭代方法来研究大型双曲冷却塔稳态风载下的结构性能,同时以两个冷却塔为例考察了风荷载作用下的群塔间相互的影响。计算表明,规范方法相对保守;外部空气流动对塔体结构的影响起控制作用;前塔对后塔的影响较大,而后塔对前塔的影响很小。其次,采用流固耦合方法分析非稳态风载下冷却塔结构响应,在初始阶段冷却塔结构受到冲击,响应较大,结构顺风向响应占主导作用。
     在保证计算精度的前提下,如何提高分析效率是复杂结构分析面临的长期挑战。模型缩减近似技术为降低计算成本和提高设计效率提供了一条有效的途径。本文研究了基于梁刚体元近似模型与基于柔度修正的结构缩减模型,提出了弱流固耦合分析的近似方法。三维圆柱壳结构风载荷下的动力分析结果表明,基于两种结构模型的弱流固耦合方法结果比较一致,不考虑耦合作用误差较大;与ANSYS的弹性流固耦合模型的分析结果也一致。另外,基于不同流体求解器所造成的差异还需要进一步研究:对于考虑流固耦合影响下的结构响应,随着风速的升高,结构顶部横风向位移峰值也呈非线性增大。
     结构优化需要不断对结构进行重分析,因此计算效率一直是大型复杂结构优化设计面临的难点。本文基于实验设计构造替代模型,提出了大型冷却塔风载下抗风优化设计的两级优化策略,先采用多岛遗传算法进行全局寻优,再利用序列二次规划法进行局部寻优,以进一步寻找更满意的优化解。在基于替代模型的两级优化中,第一级优化采用规范方法进行风荷载计算以提高计算效率,得到初步的优化解;第二级优化中,以第一级优化的结果作为初始设计点,采用精度更高的基于压力迭代修正的结构抗风分析方法,并根据设计变量的重要性,在第一级优化空间基础上对第二级优化的设计变量空间进行适当减缩。
     最后,本文利用结构缩减模型对含局部非线性问题的结构问题进行了探索。对带有局部非线性阻尼构件的结构系统,传统的结构缩减模型不能直接处理。因此本文在基于柔度修正的模型缩减方法基础上,考虑非线性阻尼构件对主体结构的影响,提出了一种快速的局部非线性动力求解方法。
     通过计算表明,该方法具有很高的精度和效率,同时该方法能考虑阻尼器构件的失效对结构响应的影响。适当控制阻尼器最大失效变形和最大失效轴力,能在安装阻尼器构件的基础上进一步保护主体结构。
The natural draught cooling tower is widely used in thermal power stations and other industrial fields. The wind load is the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. Currently, the wind pressure distribution is generally employed in the wind load effect assessment for the large-scale cooling tower, which is based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis. In practice, these methods neglect the structural deformation effect on the wind load, which can cause irrational results.
     Firstly, the multiphysics analysis method based on the iterative pressure has been used to study the response of the large hyperbolic cooling tower under steady wind load, and the interaction between cooling towers subjected to wind load has been studied. It is found that the code-based method is conservative, and the wind load on the outer surface of the tower is dominated, and the front tower has much more influence on the behind tower. Secondly, the method of Fluid-Solid Interaction (FSI) has been used for structure analysis under the unsteady wind load. For the cooling tower under the unsteady wind load, the transient responses in the initial several seconds are relatively stronger.
     On the premise of ensuring the accuracy, how to improve the efficiency of the analysis is the long-term challenges for the complex structures. The structural reduction method is always one of the important means in improving the computational efficiency. The applicability of the structural approximate model has been performed in this paper. Two weak FSI models, based on the structural approximate models by the rigid-beam element and the flexibility modification, have been developed to improve the efficiency of structure dynamic analysis. The results of3D cylindrical structure under fluid load show that results of the weak FSI are comparable for the two structural approximate models. The difference will increase regardless of the interaction between fluid and structure. In general, the results of approximate models proposed in this paper are comparable with the resulits of ANSYS FSI elastic model. Moreover, differences by the fluid models of different fluid solvers require further study. For the structural responses, the top maximum across-wind displacement will increase nonlinearly with the increase of wind speed.
     The optimization is an iterative process, so the computation efficiency is key to the large scale and complex structure. For the large hyperbolic cooling tower under steady wind load, a 2-level optimization strategy has been developed in this paper, which employs the design of experiments (DOE) to build up a numerical approximation of complex structure. Firstly, Multi-island genetic algorithm is used for global optimization and then the sequential quadratic programming-NLPQL technique is used to obtain more satisfying optimal results. During the optimization, the preliminary results can be obtained quickly by the effective code-based method in the1st level optimization, based on which, more satisfying optimal results are assessed by the iterative method in the2nd level optimization. At the same time, the design space can be reduced properly and rebuilt near the1st level optimal results.
     Finally, based on the proposed approximate model, the local nonlinear problem has been investigated in this paper. It is generally known that the approximate model can improve the structural computational efficiency, but the traditional approximate model can't handle the local nonlinear problem directly. In this paper, the approximate model based on flexibility modification is used as a fast solution method in view of local nonlinear dampers. The analysis results demonstrate that the proposed method has high accuracy and efficiency, which can consider the effects of damper failure on the structural responses. It is found that the proper control strategy for damper designs can protect the primary components of structures.
引文
[1]赵振国.冷却塔[M].北京:中国水利水电出版社,2001.
    [2]Busch D, Harte R, Kratzig W B, et al. New natural draft cooling tower of 200m of height [J]. Engineering Structures,2002,24:1509-1521.
    [3]Chen W F, Eric M L. Handbook of structural engineering [M]. Boca Raton New York: CRC Press,2005.
    [4]郭维胜.超大型冷却塔结构设计中值得关注的问题[J].电力建设,2009,30(3):45-50.
    [5]Noh H C. Nonlinear behavior and ultimate load bearing capacity of reinforced concrete natural draught cooling tower shell [J]. Engineering Structures,2006,28:399-410.
    [6]Waszczyszyn Z, Pabisek E, Pamin J, et al. Nonlinear analysis of a RC cooling tower with geometrical imperfections and a technological cut-out[J]. Engineering Structures,2000,22: 480-489.
    [7]Viladkar M N, Karisiddappa P, Bhargava, et al. Static soil-structure interaction response of hyperbolic cooling towers to symmetrical wind loads [J]. Engineering Structures,2006, 28:1236-1251.
    [8]Noorzaei J, Naghshineh A, Abdul Kadir M R, et al. Nonlinear interactive analysis of cooling tower-foundation-soil interaction under unsymmetrical wind load[J]. Thin-Walled Structures,2006,44:997-1005.
    [9]建筑结构载荷规范[M].GB 50009-2001.
    [10]工业循环水冷却设计规范[M].GB/T 50102-2003.
    [11]Hashish M G, Abu-Sitta S H. Response of hyperbolic cooling towers to turbulent wind[J]. ASCE Journal of Structural Engineering,1974,100:1037-1051.
    [12]Abu-Sitta S H, Hashish M G. Dynamic wind stresses in hyperbolic cooling towers[J]. Journal of the Structural Division,1973,99(ST9):1823-1835.
    [13]Farell C, Guven O, Maisch F. Mean Wind Loading on Rough-walled Cooling Towers[J], Journal of the engineering Mechanics division, ASCE,1976,102:1059-1081.
    [14]Sun T F, Gu Z F, Zhou L M, et al. Full-scale measurement and wind-tunnel testing of wind loading on two neighboring cooling towers[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,41-44:2213-2224.
    [15]Niemann H J, Kopper H D. Influence of Adjacent Buildings on Wind Effects on Cooling Towers[C],4th International Symposium on Natural Draught Cooling Towers, Wittek&Kratzig (eds),1996 Balkema, Rotterdam,83-91.
    [16]Armitt J. Wind Loading on Cooling Towers[J]. Journal. Structural Division,1980,106 (ST3):623-641.
    [17]许林汕,赵林,葛耀君.超大型冷却塔随机风振响应分析[C].第十三届全国结构风工程学术会议论文集,大连,2007:887-893.
    [18]许林汕,赵林,葛耀君.超大型冷却塔风致干扰效应试验研究[C].第十三届全国结构风工程学术会议论文集,大连,2007:894-900.
    [19]Niemann H J. Zur stationaren Windbelastung rotationssymmetrischer Bauwerke im Bereich transkritischer Reynoldszahlen[C]. Mitt. Nr.71-2, Tech:wissensch. Mitt., Institut fur Konstr. Ing.-ban, Ruhr-Universitat Bochum, West Germany,1971.
    [20]AlWaked R, Behnia M. CFD simulation of wet cooling towers[J]. Applied Thermal Engineering,2006,26:382-395.
    [21]Carter R L, Robinson A R, Schnobrich W C. Free vibrations of hyperboloidal shells of revolution[J]. Journal of the Engineering Mechanics Division,1969,95(EMS):1033-1052.
    [22]Juhasova E, Bittnar Z, Fischer O. Vibration characteristics of a cooling-tower shell[J]. Journal of Wind Engineering and Industrial Aerodynamics,1983,12:145-154.
    [23]Noorzaei J, Naghshineh A, Abdul K M R, et al. Nonlinear interactive analysis of cooling tower-foundation-soil interaction under unsymmetrical wind load.Thin-Walled Structures[J], 2006,44:997-1005.
    [24]Borghi A, Wood N B, Mohiaddin R H, et al. Fluid-solid interaction simulation of flow and stress pattern in thoracoabdominal aneurysms:A patient-specific study[J]. Journal of Fluids and Structures,2008,24(2):270-280.
    [25]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [26]崔尔杰.流固耦合力学研究与应用进展.钱学森科学贡献暨学术思想研讨会论文集[C],2001,144-145.
    [27]王晓亮,单雪雄,陈丽.平流层飞艇流固耦合分析方法研究[J].宇航学报,2011,32(1):22-28.
    [28]Liu J M, Lu C J, Xue L P. Investiagtion of airship aeroelasticity using fluid-structure interaction[J]. Jouranal of Hydrodynamics,2008,20(2):164-171.
    [29]Li H, Chen W L, Xu F, et al. A numerical and experimental hybrid approach for the investigation of aerodynamic forces on stay cables suffering from rain-wind induced vibration[J]. Journal of Fluids and Structures,2010,26:1195-1215.
    [30]沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展[J].建筑科学与工程学报,2006,23(1):1-9.
    [31]Luciano G, Rodrigo R P, Mario A S. Fluid-structure interaction study of the start-up of a rocket engine nozzle[J]. Computers & Fluids,2010,39:1208-1218.
    [32]张阿漫,戴绍仕.流固耦合动力学[M].北京:国防工业出版社,2011.
    [33]Khala K A, Will Iamson C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluid and Structures.1999,13:813-851.
    [34]Wei R, Seking A, Shinuar M. Numerical analysis of 2D vortex-induced oscillation of a circular cylinder[J]. International Journal for Numerical Method in Fluids,1995,21: 993-1005.
    [35]United States, Naval Facilities Engineering Command.Shoch testing the Seawolf submarine[M]. ADA346334,1998.
    [36]Parka I K, Kima J C, et al. Measurement of naval ship responses to underwater explosion shock loading[J]. Shock and Vibration,2003(10):365-377.
    [37]居荣初,曾心传.弹性结构与液体的耦联振动理论[M]1版.北京:地震出版社,1983.
    [38]戴大农,往勖成,杜庆华.流固耦合系统动力响应的模态分析理论[J].固体力学学报,1990,11(4):305-312.
    [39]Frederic J. Blorm. A monolithical fluid-structure interaction algorithm applied to the piston problem[J]. Computer Methods in Applied Mechanics and Engineering,1998,167:369-391.
    [40]Zha G C, Yang M T. High cycle fatigue prediction for mistuned bladed disk with fully coupled fluid-structural interaction[C]. F49620-03-1-0253,2006.
    [41]Le Tallec P, Mouro J. Fluid structure interaction with large structural displacements[J]. Computer Methods in Applied Mechanics and Engineering,2001,190:3039-3067.
    [42]Yang J, Preidikman S, Balaras E. A strongly coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies[J], Journal of Fluids and Structures,2008,24:167-182.
    [43]岳宝增,刘延柱,王照林.非线性流固耦合问题的ALE分布有限元数值方法[J].力学季刊.2001,22(1):34-39.
    [44]刘云贺,俞茂宏,陈厚群.流体固体动力祸合分析的有限元法[J].工程力学.2005,22(6):1-6.
    [45]张立翔,杨柯.流体结构互动理论及其应用[M].北京:科学出版社,2004.
    [46]Libersky L D, Petschech A G, Garney T C, et al. High strain lagrangian hydrodynamics-a three dimensional SPH code for dynamic material response[J]. Journal of Computational Physics.1993,109:67-75.
    [47]武岳.考虑流固耦合作用的索膜结构风致响应研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2003.
    [48]徐枫,欧进萍.低雷诺数下弹性圆柱体涡激振动及影响参数分析[J].计算力学学报,2009,26(5):613-619.
    [49]Felippa C A, Park K C, Farhat C. Partitioned analysis of coupled mechanical systems[J], Computer Methods in Applied Mechanics and Engineering,2001,190:3247-3270.
    [50]Jaiman R, Geubelle P, Loth E, et al. Combined interface boundary condition method for unsteady fluid-structure interaction[J]. Computer Methods in Applied Mechanics and Engineering,2011,200:27-39.
    [51]Yellapragada L S, Phan A V, Kaplan T. A sequential fluid-solid weak coupling analysis of the SPE ins tressed Si layers[J]. Mechanics Research Communications,2007,34:545-552.
    [52]喻萌.基于ANSYS的输流管道流固耦合特性分析[J].中国舰船研究,2007,2(5):54-57.
    [53]王春江,李向民,陈锋.长单索结构的多参数流固耦合分析[J].力学与实践,2010,32(4):22-25.
    [54]张来平,邓小刚,张涵信.动网格生成技术及非定常计算方法发展综述[J],力学进展,2010,40(4):424-447.
    [55]刘伟.细长机翼摇滚机理的非线性动力学分析及数值方法研究[D].长沙:国防科学技术大学,2004.
    [56]谢昱飞.细长圆锥超声速扰流的非对称分离及其诱导之等速锥转运动的计算分析[D].绵阳:中国空气动力研究与发展中心,2005.
    [57]袁先旭.非定常流动数值模拟及飞行器动态特征分析研究[D].绵阳:中国空气动力研究与发展中心,2004.
    [58]Benek J A, Buning P G, Steger J L. A 3D Chimera grid embedding technique[J]. AIAA85-1523,1985.
    [59]Maple R C, Belk D M. Automated set up blocked, patched, and embedded grids in the BEGGEAR flow slover[C]. Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, Pine Ridge Press.,1994.305-314.
    [60]Lijewski L E. Comparison of transonic store separation trajectory prediction using the Pegasus/DXEAGLE and BEGGER Codes[J]. AIAA 97-2202,1997.
    [61]Wang Z J, Parthasarathy V. A fully automated Chimera methodology for multiple moveing body problems[J]. International Journal for Numerical Methods in Fluids.2000,33:919-938.
    [62]Krist S L. CFL3D user's Manual [M](Version 5.0). NASA/TM-1998-208444,1998.
    [63]Nakahashi K, Togashi F. An intergrid-boundary definition method for overset unstructured grid approach[J]. AIAA 99-3304,1999.
    [64]Grtlbe B, Carstens V. Computational of unsteady transonic flow in harmonically oscillating turbine cascades taking into account viscous effectt[J]. ASME Journal of Turbomachinery 1998,120(1):104-111.
    [65]Mouroutis Z S, Markou G A, Charmpis D C, et al. An efficient mesh updating technique for fluid structure interaction problems[C]. International Conference on Computational Methods for Coupled Problems in Science and Engineering, Santorini,2005.
    [66]Ethier C R, Zeng D H. A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains[J]. Finite Elements in Analysis and Design, 2005,41(11-12):1118-1139.
    [67]王红,陈红全,马志华等.动边界问题无网格算法及其动态点云[J].南京航空航天大学学报,2009,41(3):296-301.
    [68]Liu X Q, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics,2006,211(2):405-423.
    [69]Hassan O, Morgan K, Weatherill N. Unstructured mesh methods for the solution of the unsteady compressible flow equations with moving boundary components[J]. Philosophical Transactions of the Royal Society Mathematical Physical and Engineering Sciences,2007, 365(1859):2531-2552.
    [70]Zhang L P, Chang X H, Duan X P, et al. A block LUSGS implicit unsteady incompressible flow solver on hybrid dynamic grids for 2D external bio-fluid simulations[J]. Computers & Fluids,2008,38(2):290-308.
    [71]Qu Z Q, Jung Y, Selvan R P. Model condensation for non-classically damped system-part I: static condensation[J]. Mechanical Systems and Signal Processing,2003,17(5):1003-1016.
    [72]郑淑飞,丁桦.基于变形修正的局部刚体化动力模型简化方法[J].力学与实践,2008,30(6):31-34.
    [73]程保荣,郑兆昌.三维梁系结构刚体元-柔性连接元动力分析模型[J].清华大学学报.1996,36(3):12-17.
    [74]邵永松,刘洪波,谢礼立等.平面与空间钢框架结构的简化柱梁模型[J].工程力学,2004,21(1):1-8.
    [75]Robert J. Guyan reduction of stiffness and mass matrices[J]. AIAA Journal,1965,3(2):680.
    [76]Irons B. Structural eigenvalue problems:elimination of unwanted variables[J]. AIAA Journal, 1965,3(5):961-962.
    [77]Edward J K, Clyde V S. Dynamic transformation method for modal synthesis[J]. AIAA Journal,1974,12(5):627-678.
    [78]O'Callahan J C. A procedure for an improved reduced system(IRS) model[C]. Proceedings of 7th International Model Analysis Conference, Las Vegas, January 1989,17-21.
    [79]瞿祖清,华宏星,傅志方.基于逆迭代法的结构动力缩聚技术[J].计算力学学报,1999,16(2):227-232.
    [80]张德文,魏阜旋.模型修正与破损诊断[M].北京:科学技术出版社,1999.
    [81]楼梦麟.结构动力分析的子结构法[M].上海:同济大学出版社,1997.
    [82]Balmes E, Ravary F, Langlais D. Uncertainty propagation in modal analysis[C]. Proceedings of IMAC-XXII:A Conference and Exposition on Structural Dynamics, Dearborn, MI,2004, IMAC-XXII-57.
    [83]Hang G, Castanier M P, Pierre C. Integration of component-based and parametric reduced-order modeling methods for probabilistic vibration analysis and design[C]. Proceedings of the Sixth European Conference on Structural Dynamics, Paris, France, 2005:993-998.
    [84]Park K. Component-based vibration modeling methods for fast reanalysis and design of complex structures[D]. University of Michigan,2008.
    [85]Ma X, Vakakis A F. Karhunnen-Loeve analysis and order reduction of the transient dynamics of linear coupled oscillators with strongly nonlinear and attachments[C]. Journal of Sound and Vibration,2008,309:569-587.
    [86]Trindade M A, Wolter C, Sampaio R. Karhunen-Loeve decomposition of coupled axial/bending vibrations of beams subject to impacts[C]. Journal of Sound and Vibration, 2005,279:115-1036.
    [87]Berman, Alex. A mass matrix correction using an incomplete set of measured modes[J]. AIAA Journal,1979,17(10):1147-1148.
    [88]Fox R L, Kappor M P. Rates of change of eigenvalues and eigenvectors[J]. AIAA Journal,1968,6(12):2426-2429.
    [89]黄方林,顾松年.动力缩聚及缩聚模型修正[J].机械强度,1993.15(2):69-72.
    [90]Sullivan J B, Sanjay U. Application of modal superposition in nonlinear rotor dynamic analysis[C]. Proceedings of The 3rd International Modal Analysis Conference,1985: 191-197.
    [91]Chang C J, Mohraz B. Modal analysis of nonlinear systems with classical and non-classical damping[J]. Computers & Structures,1990,36:1067-1080.
    [92]Clough R W, Wilson E L. Dynamic analysis of large structural systems with local nonlinearity[J]. Computer Methods in Applied Mechanics and Engineering,1979,17(18): 107-129.
    [93]谭明安,蔡承文.局部非线性系统动响应分析的子结构方法[J].振动与冲击,1987(23):25-34.
    [94]Iwatsubo T, Shimbo K, Kawamura S. Nonlinear vibration analysis of a rotor system using component mode synthesis method[J]. Archive of Applied Mechanics.2003,72:843-855.
    [95]Saito A, Castanier M P, Pierre C, et al. Efficient nonlinear vibration analysis of the forced response of rotating cracked blades[J]. Journal of Computational and Nonlinear Dynamics, 2009,4:01100501-01100510.
    [96]Fey R H B, Van Campen D H, Kraker D A. Long term structural dynamics of mechanical systems with local nonlinearities[J]. Journal of Vibration and Acoustics,1996,118:147-153.
    [97]Heertjes M F, Van De Molengraft M J G, Kok J J, et al. Vibration reduction of a harmonically excited beam with one-sided spring using sliding computed torque control[J]. Dynamics and Control,1997,7:361-375.
    [98]郝淑英,陈予恕,张琪昌等.连接子结构在非线性动力学分析中的应用[J].天津大学学报,2001,34(3):295-299.
    [99]陈健,陈扬,陆鑫森.人造卫星太阳冀电池阵板非线性动力子结构分析[J].上海交通大学学报,1989,23(6):14-20.
    [100]Kawamura S, Takayoshi N, Hossain M Z, et al. Analysis of nonlinear steady state vibration of a multi-degree-of-freedom system using component mode synthesis method[J]. Applied Acoustics.2008,69 (7):624-633.
    [101]吴先宇,刘睿,罗世彬等.基于替代模型的高超声速前体/进气道一体化优化[J].航空动力学报,2008,23(5):798-802.
    [102]Myers R H, Montgamery D C, Vining G G, et al. Response surface methodology:a retrospective and literature survey[J]. Journal of Quality Technology,2004,36(1):53-77.
    [103]Wackernagel H. Multivariate geo-statistics[M]. Heidelberg:Springer-Verlag,1995.
    [104]李烁,徐元铭,张俊.复合材料加筋结构的神经网络响应面优化设计[J].机械工程学报,2006,42(11):115-119.
    [105]Cressie N A C. Statistics for spatial data [M]. New York:John Wiley & Sons,1993.
    [106]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000.
    [107]席光,王志恒,王尚锦.叶轮机械气动优化设计中的近似模型方法及其应用[J].西安交通大学学报,2007,41(2):125-135.
    [108]陈立周.稳健设计[M].北京:机械工业出版社,1999.
    [109]Simpson T W, Peplinski J D, Koch P N, et al. Metamodels for computer-based engineering design:survey and recommendations[J]. Engineering with Computers, 2001(17):129-150.
    [110]程耿东.工程结构优化设计基础[M].水利电力出版社,1983.
    [111]邢燕,李杰.混合优化策略在生命线管网拓扑设计中的应用[J].同济大学学报(自然科学版),2008,36(5):569-573.
    [112]陆海燕.基于遗传算法和准则法的高层建筑结构优化设计研究[D].大连:大连理工大学.2009.
    [113]Wong K M, Chan C M. Topological layout optimization of tall residential buildings using a hybrid evolutionary method[C].7th World Congress on Structural and Multidisciplinary Optimization, Korea, May,2007.
    [114]何柳,单鹏.基于环量分布的轴流双级风扇三维数值优化[C].航空动力学报,2010,25(10):2660-2672.
    [115]Jeong H K, SangookJ, Doe Y H, et al. Simulaition aero-structural design optimization for high-aspect-ratio wing with large deflection effect[C].6th China-Japan-Korea joint symposium on optimization of structural and mechanical systems. Kyoto, Japan,2010: 120.
    [116]Wei Y X, Chen X Q, Luo W C. Approximation based combined optimization methodology [C].6th China-Japan-Korea joint symposium on optimization of structural and mechanical systems. Kyoto, Japan,2010:153.
    [117]Kohju I, Koji U. Optimun design of based-isolated structures with one-degree-of-freedom approximation[C].6th China-Japan-Korea joint symposium on optimization of structural and mechanical systems. Kyoto, Japan,2010:111.
    [118]Karisiddappa, Viladkar M N, Godbole P N, et al. Finite element analysis of column supported hyperbolic cooling towers using semi-loof shell and beam elements[J]. International Journal of Structural Engineering,1998,20(1-2):75-85.
    [119]Architectural Institute of Japan, Recommendations for loads on building [S]. Architectural Institute of Japan, Tokyo,1996.
    [120]Piller M, Nobile E, Thomas J. DNS study of turbulent transport at low Prandtl numbers in a channel flow[J]. Journal of Fluid Mechanics,2002,458:289-315.
    [121]Wissink J G. DNS of sparating low Reynolds unmber flow in a turbine cascade with incoming wakes[J]. International Journal of Heat and Fluid Flow,2003,24(4):626-635.
    [122]Rollet-Miet P, Laurence D, Ferziger J. LES and RANS of turbulent flow in tube bundles[J]. International Journal of Heat and Fluid Flow,1999,20(3):241-254.
    [123]Rafat A W. Crosswinds effect on the performance of natural draft wet cooling towers[J]. International Journal of Thermal Sciences,2010,49:218-224.
    [124]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [125]赵顺安.海水冷却塔[M].北京:中国水利水电出版社,2006.
    [126]孙芳锦,殷志祥,顾明.强耦合法在膜结构风振流固耦合分析中的程序实现与应用[J],振动与冲击,2011,30(6):213-217.
    [127]王广勇,薛素铎.基于流固耦合的膜结构风压系数[J].北京工业大学学报.2009,35(2):218-223.
    [128]Dobrev I, Massouh F. CFD and PIV investigation of unsteady flow through Savonius wind turbine[J]. Energy Procedia,2011,6:711-720.
    [129]Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications [J], AIAA-Journal,1994,32(8):1598-1605.
    [130]Mamou M, Cooper K R, Benmeddour A, et al. Correlation of CFD predictions and wind tunnelmeasurements of mean and unsteady wind loads on alarge optical telescope[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96:793-806.
    [131]沈国辉,鲍侃袁,孙炳楠等.单塔和双塔情况下大型冷却塔的表面风压研究[J].华中科技大学学报(自然科学版),2011,39(7):104-108.
    [132]Theodorsen T. General theory of aerodynamic instability and the mechanism of flutter [M]. NACA TR496,1934
    [133]郭正,刘君.动网格技术在二维非结构网格中的实现[C],第十届全国计算流体力学会议论文集.哈尔滨:哈尔滨工业大学出版社,1996.
    [134]钟万勰.结构动力方程的精细时程积分方法[J].大连理工大学学报,1994,34(2):131-136.
    [135]Shen L, Yue D K P. Large-eddy simulation of free-surface turbulence[J]. Journal of Fluid Mechanics,2001,440:75-116.
    [136]Felten F, Fautrelle Y, Du Terrail Y. Numerical modeling of eletrognetically-riven turbulent flows using LES methods[J]. Applied Mathematical Modeling,2004,28(1):15-27.
    [137]刘彬,丁桦,时忠民.基于柔度修正的局部刚体化结构动力模型简化方法[J].工程力学,2007,24(10):25-29.
    [138]Barton R R. Metamodel for simulation input-output relations[C]. Proceedings of the 1992 winier simulation conference,1992:289-299.
    [139]Faravelli L. Response surface approach for reliability analysis[J]. Journal of Engineering Mechanics,1989,115(12):2763-2781.
    [140]张崎.基于Kriging方法的结构可靠性分析与优化设计[D].大连理工大学,2005.
    [141]Moody J E, Darken C J. Fast learning in networks of locally tuned processing units[J]. Neural Computation,1989,1:281-289.
    [142]缪报通,陈发来.径向基函数网络在散乱数据插值中的应用[J].中国科学技术大学学报,2001,31(2):135-142.
    [143]Luengo J, Garcia S, Herrera F. A study on the use of imputation methods for experimentation with radial basis function network classifiers handling missing attribute values:the good synergy between RBFNs and EventCovering method[J]. Neural Networks, 2010,23(3):406-418.
    [144]Ferrari S, Bellocchio F, Piuri V, Borghese N A. A hierarchical RBF online learning algorithm for real-time 3-D scan-ner[J]. IEEE Transactions on Neural Networks,2010, 21(2):275-285.
    [145]Ye J, Ge L D, Wu Y X. An application of improved RBF neural network in modulation recognition[J]. ActaAutomatica Sinica,2007,33(6):652-654.
    [146]Critianini N, Shawe-taylor J支持向量机导论[M].李国正,王猛,曾华军,译.北京:电子工业出版社,2004.
    [147]韩红桂,乔俊飞,薄迎春.基于信息强度的RBF神经网络结构设计研究[J].自动化学报,2012,38(7):1803-1090.
    [148]Fang K T, Li R Z, Sudjianto A. Desgin and modeling for computer experiments[M]. Boca Raton:CRC Press Inc.,2006.
    [149]Montgomery D C. Design and analysis of experiments,6th Edition[M]. New York:John Wily & Sons, Ine,2005.
    [150]Samer E B, Bruneau M. Buckling restrained braces as structural fuses for the seismic retrofit of reinforced concrete bridge bents[J]. Engineering Structures,2011,33(3):1052-1061.
    [151]Zhou Q, Xu T X. Use of high-efficiency energy absorbing device to arrest progressive collapse of tall building[J]. Journal of Engineering Mechanics,2004,130(10):1177-1187.
    [152]Vargas R, Bruneau M. Analytical response and design of buildings with metallic structural fuses[J]. Journal of Structural Engineering,2009,135:386-393.
    [153]Providakis C P. Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations[J]. Engineering Structures,2008,30(5):1187-1198.
    [154]陈永祁,杜义欣.液体粘滞阻尼器在结构工程中的最新进展[J].工程抗震与加固改造,2006,28(3):65-72.
    [155]汤昱川,张玉良,张铜生.粘滞阻尼器减震结构的非线性动力分析[J].工程力学,2004,21(1):67-71.
    [156]Wilson E L. Three dimensional static and dynamic analysis of structures[M]. Third Edition, California, USA, Computers and Structures, inc. Berkeley,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700