用户名: 密码: 验证码:
天然植物黄连提取物的染色性及其功能性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄连上染蚕丝和羊毛的染色标准亲和力用分配系数进行了近似估计,所得亲和力随温度升高而降低,相应的染色热和染色熵均为负值。黄连上染羊毛纤维的标准亲和力,染色热和染色熵的绝对值均小于蚕丝纤维。黄连上染腈纶纤维和棉纤维的吸附等温线分别属于朗缪尔(Langmuir)吸附等温线和佛莱因德利胥(Freundlich)吸附等温线。随染色温度增加,黄连对腈纶的平衡吸附量均升高,对棉纤维的平衡吸附量降低。在较低温度染色时,黄连对蛋白质纤维的亲和性要高于腈纶,而接近沸染时,黄连对腈纶的上染量远高于其他纤维。黄连对棉纤维的上染性能较差。
     从上染率曲线,扩散系数,半染时间和染色速率常数等方面研究了黄连上染各纤维的动力学原理。实验结果表明,除棉纤维外,黄连上染各纤维的扩散系数均随染色温度的升高而提高,较高的染色温度可增加初始阶段的染色速率,半染时间则随染色温度的升高而降低。
     研究了黄连上染蚕丝织物,毛织物和腈纶纤维的染色工艺,分析了染液浓度,染色温度,上染时间,染液pH值,媒染剂等染色条件对染色织物颜色特征值的影响,通过正交实验确定了较优工艺参数。在黄连染蚕丝织物的直接染色和同浴媒染中,染液的pH值对色差的影响最大;在预媒处理和后媒处理中,温度和媒染剂用量都是相对较重要的因素,预媒染的增深作用较明显。在各媒染剂中,硫酸铜的增深效果相对较好。黄连染毛织物的直接染色实验中,pH值对染色结果影响最大,pH值越高,染色织物的颜色越深浓;预媒染实验中,温度是影响染色结果的的最显著因素,媒染剂,尤其是铁盐有明显的增深效果。在黄连染腈纶纤维的直接染色和同浴媒染中,染色温度具有显著的影响,染色纤维的色差均随染色温度的升高而增加;在铁盐的预媒处理和后媒处理中,媒染剂用量是最为重要的影响因素;而在铜盐的预媒处理和后媒处理中,温度则是最为重要的因素;媒染剂铁盐和铜盐对黄连染腈纶有明显的增深作用。黄连染色丝绸和毛织物的摩擦牢度尚可,而皂洗牢度普遍较差。媒染剂对皂洗牢度的改善程度不高。黄连染色腈纶的耐洗牢度和摩擦牢度均在4级以上。
     黄连无损伤地上染到织物上后,其抗菌保健作用的获得或保持要受环境因素的制约。通过观察黄连染色织物在自然光照射下色差的变化情况,得知黄连的耐太阳光牢度较差,但某些助剂的加入可提高其耐光牢度。媒染剂硫酸铜明显可以降低光褪色速度,抗氧化剂尤其是没食子酸能显著提高黄连的日晒牢度。另外,染液浓度的增加也可减缓黄连的光褪色速率。棉、毛、丝等织物经黄连染色后对其抗紫外线性能有明显提高。织物染色前用没食子酸进行预处理可以明显提高其抗紫外性能。
     通过黄连染色织物的静态,动态释放实验和洗衣机洗涤实验,研究了黄连的释放规律。结果表明染色纤维中黄连的释放量和速度均受温度和释放介质的影响。高温作用和酸性释放介质会明显增加黄连的释放速度和释放量,NaCl的加入也会促进黄连的释放;电解质Na2HPO4则对黄连的释放有一定的延缓作用。Higuchi方程均能较好地表征在动态释放过程中各种释放条件下蛋白质纤维中黄连的释放过程和释放动力学特征。黄连染色腈纶的释放率远低于黄连染色蛋白质纤维。丝绸和羊毛织物的机洗褪色曲线均符合递减的指数规律。
     ATR红外光谱分析表明染色纤维表面黄连色素的存在。通过黄连水提取液和黄连染色织物释放液冷冻粉的ATR红外光谱分析,明确了小檗碱作为最主要的色素来源,其在提取,上染和水浴释放过程中的一致性和无损伤性。
     抗菌测试结果表明黄连染色丝绸有明显的抗菌效果,且抗菌效果较稳定。
     研究了黄连对等离子体改性毛织物的染色性能。采用电晕法对毛织物表面进行改性,可使纤维表面活性基团增多,表面浸润性得到改善,从而改善了对黄连的上染性能。在空气气氛中,采用介质阻挡放电对毛织物表面进行改性处理,用黄连对改性毛织物进行染色,结果表明介质放电等离子体处理方式可提高毛纤维对黄连的平衡吸附量及染色织物的K/S值,提高放电电压,或延长处理时间,或增大处理电流都能使改善效果更加明显。
     研究了黄连对改性棉织物的染色性能。用柠檬酸作为交联剂使丝胶顺利附着在棉织物表面,用黄连对丝胶改性棉织物进行染色,结果表明上染率比未经过处理的棉织物有明显提高,染色织物颜色更鲜艳,且水洗牢度和耐摩擦牢度有所提高。通过高碘酸钠对棉纤维进行选择性氧化,可固着丝肽,从而改善了棉纤维对黄连的上染性能。
Multifunctional fabrics, especially the fabrics with physiological function, physical therapy function, health protection function and security function have been paid more and more attention to in modern consciousness and opinions on wearing characteristics. A large number of plant medicines used in Traditional Chinese Medicine possess evident antibacterium, physical therapy and health care functions. Among them, many plant medicines can be boiled for a long time and used as bright-coloured pigment. If the medicine is extracted with proper process and the extract is used to dye fabrics, at the same time, the medical function is kept and the dyeing process is cleanly, the fabrics with medical functions will be obtained and dyeing problem will be solved simultaneously.
     In this paper, plant medicine rhizoma coptidis was selected as research objective. Extract processs of rhizoma coptidis and the stability of the extract were studied; the dyeing performance and technics of rhizoma with different fibers were investigated; the light fastness and release properties of the fabrics dyed with rhizoma coptidis under different conditions and the undamage of rhizoma coptidis were discussed; and the methods to improve the dyeing properties of wool fibers and cotton fibers with rhizoma coptidis were explored.
     Main coloring matter of rhizoma coptidis extract was confirmed as berberine by UV-visble spectrometry and thin layer chromatography analysis. Rhizoma coptidis was extracted using conventional water extract processs and optimal extract process was selected by orthogonal scheme. The orthogonal analysis results showed extract times was the most important factor, extract time, soak time and material-liquid ratio followed. The optimum extract conditions are that soak time is 60min, rhizoma coptidis and water ratio is 1:100, rhizoma coptidis is decocted twice and for 50min each time. Extraction ratio was 50.2%, R.S.D was 1.086%.The stability of rhizoma coptidis extract under different conditions was invesitgated by spectrometry analysis and color change observation. The results showed rhizoma coptidis extract was stable to general temperature, indoor natural light, weak acid and alkalid environment and common metal ion such as Na+, K+, Ca2+. The absorbance of rhizoma coptidis extract would decrease when under long-time high temperature.The addition of Fe2+ and Cu2+ increased absobency value and color value of the extract. Strong acid environment reduced absorbance value of the extract, while alkalid environment resulted in the dissimilation of the absorbance peak and the change of absorbance value.
     The thermodynamic principles of rhizoma coptidis dyeing with silk, wool, acrylic and cotton fibers have been studied in terms of adsorption isotherm, standard affinity, enthalpy change and entropy change. The results showed the adsorption isotherm of rhizoma coptidis on silk and wool fibers belonged to Nernst type and accorded with assignment law when dyed with low concentration, while the whole trend can be assigned as a Langmuir type, and equilibrium absorbance decreased with the increase of dyeing temperature. The standard affinity of rhizoma coptidis to silk and wool fibers was estimated with partition coefficient. The gained affinity decreased with the increase of dyeing temperature, and the calculated enthalpy change value and entropy change value both were negative, which indicated the adsorption of rhizoma coptidis on silk and wool fibers was an exothermic process. Silk fibers showd higher affinity to rhizoma coptidis dye than wool fibers. The adsorption isotherm of rhizoma coptidis on acrylic and cotton fibers belonged to Langmuir type and Freundlich type respectively. The dye uptake saturation of acrylic fibers increased with the increase of dyeing temperature, while cotton fibers'decreased. When dyed at lower temperature, the affinty of rhizoma coptidis to protein fibers was higher than to acylic fibers, however, when dyeing temperature reached 95℃, the equilibrium dye uptake in acylic fibers was much higher than that in the other fibers. Rhizoma coptidis showed poor affinity to cotton fiber.
     The kinetic mechanism of rhizoma coptidis dyeing with silk, wool, acrylic and cotton fibers have been investigated in terms of dye uptake rate curves, diffusion coefficient, time of half dyeing and dyeing rate constant. The results showed that for silk, wool and acrylic fiber, dyeing rate at the early stage and the diffusion coefficient increased and time of half dyeing decreased with the increae of dyeing temperature.
     Dyeing process of rhizoma coptidis wth different fibers has been studied. Color evaluation was characterized with color difference(ΔE)、lightness(L*)、redness-greenness (a*)、yellowness-blueness (b*)、saturation of color (c*)、hue value (H°)、K/S. The effects of dyeing conditions such as dye concentration, dyeing temperature, dyeing time, pH value of dyebath and mordant dyeing on color characters of the dyed fabrics and fibers were discussed, and optimal dyeing process was selected by orthogonal experimental. For silk fabric dyeing with rhizoma coptidis, pH value was the most important influencing factor andΔE value increased with pH value increase during direct dyeing and mordant dyeing; dyeing temperature and mordant content play much important role onΔE during pre-mordant-dyeing and after-mordant-dyeing; pre-mordant-dyeing deepened the colour particularly; and copper mordant deepened the colour much effectively. For wool fabric dyeing with rhizoma coptidis, pH value was the most important influencing factor onΔE during direct dyeing and higher pH value deepened the colour clearly; the most important influencing factor was dyeing temperature during pre-mordant-dyeing; mordant, especially iron deepened the colour evidently. For acrylic fibers dyeing with rhizoma coptidis, dyeing temperature was the most important influencing factor during direct dyeing, mordant dyeing and copper salt after-mordant-dyeing and pre-mordant-dyeing, andΔE value increased clearly with the increase of dyeing temperature; the most important influencing factor was mordant content during iron salt after-mordant-dyeing and pre-mordant-dyeing; and mordant deepened the colour clearly. The color fastness test showed that rhizoma coptidis in silk and wool fabric had poor washing fastness and better rub fastness. Mordant gave no evident improvement in the washfastness and rubfastness. Washfastness and rubfastness of the dyed acrylic are both above 4 grade.
     After rhizoma coptidis dye was absorbed into fabrics, the realization of its antibacterium relied on environmental factors to some extent. Photodegradation characteristics of rhizoma coptidis were studied on the basis of solar radiant treatment. The effect of mordant and dyeing concentration and antioxidants on the light fastness of the dyed fabrics were evaluated. Rhizoma coptidis was observed to have poor light fastness. However, mordant CUSO4 decreased light fading rate obviously and antioxidants especially gallic acid improved light fastness of rhizoma coptidis effectively. In addition, the increase of dyeing concentration slowed down lightness fading rate. Anti-UV properties of the dyed fabrics were evaluated and the results showed the dyed fabrics exhibited good anti-UV abilities. Pre-treatment of fabrics with vitamin acid and gallic acid can increase UV absorbance obviously.
     Releasing behavior of rhizoma coptidis on the dyed fabrics was studied through satic and dynamic release experiment and machine washing test. The results showed the release amount and rate were both affected by bath temperature and release medium. The addition of NaCl, and especially acidic medium and higher bath temperature increased release amount and rate obviously; conversely the addition of Na2HPO4 delayed the release of rhizoma coptidis. Higuchi equation could effectively characterize the release process and kinetics of rhizoma coptidis in protein fibers under different temperature and medium. The accumulated release amount of the dyed acrylic fibers was much lower than that of the dyed protein fibersColour fading curves of the dyed silk and wool fabrics were accorded with degression exponent rule.
     ATR infra-red spectrum analysis indicated rhizoma coptidis dye existence in fiber surface. The rhizoma coptidis extract and release solution was freezed into powder under vacuum and the freezed powder was analyzed by ATR infra-red spectrum. And the results showed that berberine, as main source of pigment, was confirmed the consistency and undamage during extracting, dyeing and releasing process.
     Anti-bacterium testing results showed the silk dyed with rhizoma coptidis had evident anti-bacterium effect to Staphylococcus aureus and it was stable.
     The dyeing properties of the wool fabrics treated by plasma with rhizoma coptidis were investigated. After the wool fabric was treated by corona discharge, some epicuticle scales on the wool surface became loose and some oxygen groups such as -OH and -COOH was incorporated into the wool surface and therefore the wetting properties and hydrophilicity of the wool fabric were improved. As a result the dyeing rate and dye exhaustion increased after corona treatment. Wool fabrics were treated in air by using dielectric barrier discharge plasma. The treated fabrics were dyed with rhizoma coptidis extract and corresponding dyeing rate and K/S value were measeured. The results indicated that dielectric barrier discharge plasma treatment was a effective way in improving final dye exhaustion and color depth of the wool fabric. The increase of the discharge voltage and treating time and electrical current all can make evident improvement.
     The dyeing properties of the modified cotton fabrics with rhizoma coptidis were studied. Sericin protein was adhered to the cotton fabric through cross-linking agent citric acid. The modified cotton fabrics were dyed with rhizoma coptidis extract and corresponding measurement showed that final dye exhaustion and the color difference and saturation increased obviously after modification, in addition, washing fastness and rub-fastness were improved. Cotton fibre was selectively oxidized with NaIO4 and treated by silk peptide solution that covered cotton fibre, which improved dyeing performance of the cotton fiber with rhizoma coptidis.
引文
[1]周启澄,屠恒贤,程文红.纺织科技史导论[M].上海:东华大学出版社,2003.
    [2]孙云嵩.植物与染色[J].丝绸,1997,(3):50-53.
    [3]吴宏仁.对世界化纤工业生产的回顾与展望(上)[J].纺织科学研究,1998,(1):1-4.
    [4]G. Kerry G, C. David T. Dyes from plants:Past usage, present understanding and potential[J]. Plant Growth Regulation,2001,34:57-69
    [5]Yuranova T., Rincon A. G., Bozzi A., et al. Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver[J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,161 (1):27-34.
    [6]Kumar V., Bhardwaj Y.K., Rawat K.P., et al. Radiation-induced grafting of vinylbenzyltri-methylammonium chloride (VBT) onto cotton fabric and study of its anti-bacterial activities [J]. Radiation Physics and Chemistry,2005,73(3):175-182.
    [7]Shindy H.A., El-Maghraby M.A., Eissa F. M.. Synthesis, photosensitization and antimicrobial activity of certain oxadiazine cyanine dyes[J]. Dyes and Pigments,2006,70 (2):110-116.
    [8]Kawabata A., Taylor J.A.. The effect of reactive dyes upon the uptake and anti bacterial action of poly (hexamethylene biguanide) on cotton. Part 2:Uptake of poly (hexamethylene biguanide) on cotton dyed with β-sulphatoethylsulphonyl reactive dyes[J]. Dyes and Pigments,2006,68 (2-3):197-204.
    [9]郑丽莎.罗布麻纤维抗菌性能及机理研究[D].硕士论文,青岛大学,2004.
    [10]孙小寅,管映亭,温桂清,朱宝瑜.大麻纤维的性能及其应用研究[J].纺织学报,2001,22(4):34-36.
    [11]文永奋.医用及保健纺织品的开发[J].高科技及产业化,2005,(1-2):93-96.
    [12]周宇鹏.有机硅表面活性剂在日化及纺织行业的应用[J].有机硅材料,2002,16(1):24-26.
    [13]Ilya R., David M. R., Slavko K., et al. Plants and human health in the twenty-first century[J]. Trends in Biotechnology,2002,20 (12):522-531.
    [14]赵家祥等编著.医用功能纤维[M].北京:中国石化出版社,1996,4-9.
    [15]Featherstone C.. Healthcare:integrated in the fabric of life[J]. Complementary Therapies in Nursing and Midwifery,2000,6(1):14-18.
    [16]关燕清,邱李莉,廖瑞雪,等.高分子药物的研究进展[J].华南师范大学学报,2005,(2):125-135.
    [17]Engelberg I., Kohn J.. Physico-mechanical properties of degradable polymers used in medical applications:A comparative study [J]. Biomaterials,1991,12 (3):292-304.
    [18]Thome J., Hollander A., Jaeger W., et al. Ultrathin antibacterial polyammonium coatings on polymer surfaces[J]. Surface and Coatings Technology,2003,174-175:584-587.
    [19]Zhang Y.Q.. Applications of natural silk protein sericin in biomaterials[J]. Biotechnology Advances,2002,20 (2):91-100.
    [20]Nelson G. Application of microencapsulation in textiles[J]. International Journal of Pharmaceutics,2002,242 (1-2):55-62.
    [21]Jitsuo T., Toshikai S.. Quilt enveloping Japanese cypress powder[P]. Japan, JP08228904, 1996.
    [22]Takashi N.. Nonwoven fabric using silk as main material and clothes using the same[P]. Japan, JP08209517,1996.
    [23]Ma M., Sun Y., Sun G.. Antimicrobial cationic dyes:part 1:synthesis and characterization [J]. Dyes and Pigments,2003,58:27-35.
    [24]Ma M., Sun Y., Sun G. Antimicrobial cationic dyes. Part 3:simultaneous dyeing and antimicro-bial finishing of acrylic fabrics [J]. Dyes and Pigments,2005,66:33-41.
    [25]戴承渠,虞永珍.新型卫生纤维材料:——AB抗菌防菌防臭纤维和织物[J].新纺织,2000,(12):11-13.
    [26]Popa A., Davidescu C. M., Trif R., et al. Study of quaternary'onium'salts grafted on polymers:antibacterial activity of quaternary phosphonium salts grafted on'gel-type' styrene-divinylbenzene copolymers[J]. Reactive and Functional Polymers,2003,55 (2): 151-158.
    [27]Qian L., Sun G. Durable and Regenerable Antimicrobial Textiles:Synthesis and Applications of 3-Methylol-2,2,5,5-tetramethyl-imidazolidin-4-one (MTMIO) [J]. Journal of Applied Polymer Science,2003,89:2418-2425.
    [28]Sun Y.Y., Sun G... Durable and regenerable antimicrobial textile materials prepared by a continuous grafting process[J]. Journal of Applied Polymer Science,2002,84:1592-1599.
    [29]杨英贤,王广阔.纳米材料特性及其在保健功能纤维中的应用[J].高科技纤维与应用,2005,30(2):34-36.
    [30]师利芬,张一心.抗菌纤维及其最新研究进展[J].纺织科技进展,2005,(1):4-6.
    [31]Welham A.. The theory of dyeing[J]. Journal of the Society of Dyers and Colourists,2000, 116:140-143.
    [32]Hancock M., Boxworth A.. Potential for colorants from plant sources in England & Wales, http://www.marz-kreations.com/WildPlants/CRUC/Docs/Colourants. pdf.
    [33]陈荣圻.以对氨基偶氮苯为中间体染料的生态问题[J],印染,2005,(12):24-27.
    [34]Kumar J.K., Sinha A.K.. Resurgence of natural colourants:a holistic view[J], Natural Product Research,2004,18 (1):59-84.
    [35]Ishigami Y., Suzuki S.. Development of biochemicals-functionalization of biosurfactants and natural dyes [J]. Progress in Organic Coatings,1997,31 (1-2):51-61.
    [36]Vankar P. S.. Chemistry of natural dyes[J]. Resonance,2000, (10):1-8.
    [37]陈建国.我国民族植物色素的应用[J].中国野生植物资源,2000,19(2):21-24.
    [38]Shen Z.. Production and standards for chemical non-wood forest products in China[J]. Center for International Forestry Research,1995, (6):1-18.
    [39]Ros-Tonen M. A. E. The role of non-timber forest products in sustainable tropical forest management[J]. European Journal of Wood and Wood Products,2000,58 (3):196-201.
    [40]Akira M.. Antimicrobial Agent[P]. Japan, JP2001064163,2001.
    [41]Singha R., Jainb A., Panwarb S., et al. Antimicrobial activity of some natural dyes [J]. Dyes and Pigments,2005,66:99-102.
    [42]孙小兵,盛家荣,王定培.南板蓝根化学成分及药理作用研究[J].广西师范学院学报(自然科学版),2008,25(4):66-69.
    [43]杨璧玲.植物靛蓝染色传统工艺原理及应用现状[J].染整技术,2008,30(3):13-15.
    [44]邓文通.蓝靛瑶蓝靛文化中的科学技术[J].广西民族学院学报,1996,2(2):80-84.
    [45]曹云丽,黄强,班春兰,蒋元力.对中药大黄中蒽醌类物质的提取分离方法的研究[J].云南中医中药杂志,2005,26(1):36-38.
    [46]程万里,王艳,张蕙.大黄对真丝织物的染色性能研究[J].染整技术,1997,19(3):16-19
    [47]吕丽华,邓丽丽,赵明.阳离子改性棉的大黄染料染色性能[J].2004,(18):7-9
    [48]榕嘉.茜草的性能和染色试验[J].丝绸,2002,(2):28-29.
    [49]Goverdina C. H. Derksen, Teris A. van Beek, Ede de Groot, Anthony Capelle. High-performance liquid chromatographic method for the analysisof anthraquinone glycosides and aglycones in madder root (Rubia tinctorum L.) [J]. Journal of Chromatography A,1998,816 (2):277-281.
    [50]杨东洁,郑光洪.茜草在天然纤维染色中的应用[J].丝绸,2000,(12):19-21.
    [51]Teli M. D., Adivarekar R.V., Pardeshi P. D.. Deying of pretreated cotton substrated with madder extract[J]. Colourage,2004,51 (2):23-24,26-28,30-32.
    [52]吴得意.红花红色素的提取工艺及产品质量控制[J].化工进展,2003,22(1):26-28.
    [53]余志成.红花色素在苎麻、蚕丝织物上的染色性能研究[J].纺织学报,2004,25(5):19-21.
    [54]孙云嵩.植物染色技术[J].丝绸,2000,(10):24-29.
    [55]余志成,陶尧定,周秋宝.天然植物染料槐米的染色性能研究[J].丝绸,2001,(6):10-11.
    [56]张穗坚.中国地道药材鉴别使用手册[M].广东:广东旅游出版社,2000.
    [57]Kim T.K., Yoon S.H., Son Y.A.. Effect of reactive anionic agent on dyeing of cellulosic fibers with a berberine colorant[J]. Dyes and Pigments,2004,60 (2):121-127.
    [58]董绍伟,周秋宝.天然石榴皮染料的提取及在真丝织物上的应用[J].印染,2004,(18):4-6.
    [59]贾呐.中国传统植物染料、染色方法及应用前景初探[J].2004,(6):4142.
    [60]程万里.天然染料苏木在真丝绸上的应用[J].丝绸,2000,(10):21-24.
    [61]林杰,张波,路艳华.天然苏木植物染料在大豆蛋白纤维染色中的应用[J].辽宁丝绸,2004,(2):14-16.
    [62]余志成,周秋宝.五倍子色素对真丝的染色机理及性能研究[J].纺织学报,2003,24(3):187-189.
    [63]武煜,顾振纶.茶多酚的药理学作用及其机制研究进展[J].中成药,2005,27(6):272-275.
    [64]黄旭明,王燕,蔡再生.茶叶染料对真丝绸染色性能初探[J].丝绸,2005,(6):31-33.
    [65]Wilson B., Abraham G., Manju V.S., et al. Antimicrobial activity of curcuma zedoaria and curcuma malabarica tubers [J]. Journal of Ethnopharmacology,2005,99 (1):147-151.
    [66]孙云嵩.黄色植物染料及染色[J].丝绸,2003,(1):31-33.
    [67]程万里.天然染料姜黄对真丝织物的染色性能研究[J].印染助剂,2002,19(1):31-34.
    [68]焦林.天然染料姜黄对涤纶织物染色的研究[J].2005,(4):7-10.
    [69]周秋宝,余志成.姜黄染料在毛织物染色中的应用[J].毛纺科技,2003,(4):25-28.
    [70]郑光洪,飞雪,李振华等.姜黄在苎麻染色中的应用研究[J].成都纺织高等专科学校学报,1999,16(4):13-18.
    [71]吕丽华,吴坚,叶方.姜黄染料用于阳离子改性纤维素纤维织物的染色性能研究[J].印染助剂,2005,22(6):21-24.
    [72]谢学建,张俊慧,马爱华.中药栀子研究进展[J].时珍国医国药,2000,11(10):943-945.
    [73]Choi H.J., Park, Y. S., Kim M. G., et al. Isolation and characterization of the major colorant in Gardenia fruit[J]. Dyes and Pigments,2001,49 (1):15-20.
    [74]龚熠,余志成.栀子色素的提取及其在真丝上的染色性能[J].丝绸,2004,(6):28-29.
    [75]M. Liakopoulou-Kyriakides, Tsatsaroni E., Laderos P., Georgiadou K.. Dyeing of cotton and wool fibres with pigments from crocus sativusm:effect of enzymatic treatment [J]. Dyes and Pigments,1998,36 (3):215-221
    [76]Chang L. H., Jong T.T., Huang H.S.. Supercritical carbon dioxide extraction of turmeric oil from curcuma longa Linn and purification of turmerones [J]. Separation and Purification Technology,2006,47 (3):119-125.
    [77]Senthikumar P., et al.棉织物用neem叶子的超声波染色[J].纺织文摘,2003,(3):74.
    [78]Yussef B.M., Mashaly H., Kamel M.M., et al. Ultrasonic assisted dyeing Ⅲ. Dyeing of wool with lac as a natural dye [J]. Dyes and Pigments,2005,65:103-110.
    [79]V. Tiwari著,陈怡译.用微波和声波发生器加紫草根根部树皮进行非常规天然染色[J].国外纺织技术,2002,(2):23-24.
    [80]Beltrame P. L., Castelli A., Selli E., et al. Dyeing of cotton in supercritical carbon dioxide [J]. Dyes and Pigments,1998,39 (4):335-340.
    [81]吕丽华,邓丽丽,赵明.阳离子改性棉的大黄染料染色性能[J].印染,2004,(18):7-9.
    [82]王吉华,崔俊巧.天然染料的应用及其研究进展[J].染料工业,1995,32(5):14-20.
    [83]R.Paul著,周秀会译.天然染料的分类、提取和牢度性能[J],国外纺织技术,1997,(10):27-31.
    [84]Oda H.. Improvement of the light fastness of natural dyes:the action of singlet oxygen quenchers on the photofading of red carthamin [J]. Coloration Technology,2001,117 (4): 204-208.
    [85]Oda H.. Improvement of the light fastness of natural dyes. Part 2:Effect of functional phenyl esters on the photofading of carthamin in polymeric substrate [J]. Coloration Technology,2001,117 (5):257-261.
    [86]Lee J. J., Lee H. H., Eom S. I., Kim J. P.. UV absorber aftertreatment to improve lightfastness of natural dyes on protein fibres [J], Coloration Technology,2001,117 (3):137-138.
    [87]Cristea D., Vilarem G. Improving light fastness of natural dyes on cotton yarn [J]. Dyes and Pigments,2006,71:39-46.
    [88]张志清,刘剑,李娟.中药抑菌作用研究进展[J].中药材,2002,25(9):688-690.
    [89]肖珊珊,金郁,孙毓庆.板蓝根化学成分、药理及质量控制研究进展[J].沈阳药科大学学报,2003,20(6):455-459.
    [90]程国强,冯年平.黄岑苷对眼科常见病原菌的体外抗菌作用[J].中国医院药学杂志,2001,21(6):347-348.
    [91]刘国声.十五年来中药抗生作用的研究概况[J].中药通报,1958,4(4):116-120.
    [92]陈琼华,郑武飞,苏学良,等.中药大黄的综合研究:大黄中葸醌衍生物抗菌效价的研究[J].药学学报。1962,9:757-762.
    [93]Gupta D., Khare S., Laha A.. Antimicrobial properties of natural dyes against Gram-negative bacteria [J]. Coloration Technology,2004,120 (4):167-171.
    [94]王莘,苏玉春,董浩,等.9种中药提取物对乙型溶血性链球菌的抑菌作用比较[J].中草药,2004,35(3):903.
    [95]Han S. Y., Yang Y. Q.. Antimicrobial activity of wool fabric treated with curcumin [J]. Dyes and Pigments,2005,64:157-161.
    [96]何中琴泽.植物染料抗菌活性的检测[J].国外丝绸,2005,(1):13-16.
    [97]林明霞,吴坚,赵明.羊毛织物的天然植物染料姜黄染色研究[J],印染,2004,(10):4-7.
    [98]Hussein S.A.M., Barakat H.H., Merfort I., Nawwar M.A.M.. Tannins from the leaves of punica granatum[J]. Photochemistry,1997,45:819-823.
    [99]Singh R., Jain A., Panwar S., Gupta D., et, al. Antimicrobial activity of some natural dyes [J]. Dyes and Pigments,2005,66:99-102.
    [100]王华.传统天然植物药与纺织品的保健抗菌整理[J].纺织学报,2004,25(1):109-111.
    [101]冯新星,陈建勇,许丹,张建春.天然染料大黄防紫外性能的研究[J].纺织学报,2004,25(1):13-15.
    [102]Ajoy K. S.. An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants[J]. BMC Dermatology,2004,4:15.
    [103]叶建红.中医外治法机理的理论模型[J].数理医药学杂志,2002,15(6):492-493.
    [104]吴震西.药物外治的吸收及机理[J].中医杂志,1991,32(5):7-8.
    [105]陈建广.药物外治法作用机理浅探[J].医学理论与实践,1993,5(8):33-34.
    [106]李颖.中药药代动力学研究方法概况[J].安徽中医学院学报,2005,24(3):62-64.
    [107]Wang X., Wang R., Xing D.. Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract[J]. Life Sciences, 2005,77:3058-3067.
    [108]杨明,杨荣平.中药缓释剂的药代动力学研究[J].世界科学技术—中医药现代化,2004,6(3):19-22.
    [109]颜敏,刘建平.中药药物动力学研究进展[J].药学进展,2005,29(6):260-271.
    [110]de Lange E. C.M., de Boer B.A.G., Breimer D. D., Microdialysis for pharmacokinetic ananalysis of drug transport to the brain[J]. Advanced Drug Delivery Reviews,1999,36 (2/3):211-227.
    [111]郑筱萸,廖清江.药学前沿[M].北京:中国医药科技出版社,2001,60-70.
    [112]http://www.100md.com--中草药有效成分的提取.
    [113]蔡艳华,赵红卫,钟本和.中草药中生物碱的提取与分离[J].四川化工,2005,8(1):39-42.
    [114]刘成梅,游海.天然产物有效成分的分离和应用[M].北京:化学工业出版社,2003.
    [115]刘辉琳,唐明林,安莲英,等.中草药化学成分提取新技术[J].广州化学,2003,28(2):59-64.
    [116]席国萍,何照范.黄连中小檗碱的提取工艺[J].山地农业生物学报,2004,23(6):502-506.
    [117]方阵,吴健,王康才.止交实验筛选黄连水提工艺[J].时珍国医国药,2001,12(11):982-983.
    [118]张来新,杨琼,李小卫.黄连中提取黄连素[J].贵州化工,2003,28(2):30-32.
    [119]张乐佳,夏新华.黄连提取工艺的研究[J].中成药,2001,23(6):398-400.
    [120]于俊林,杨文娣,王朝辉.鲜黄连生物碱成分研究[J].中药材,2003,26(10):727-728.
    [121]刘芳,刘斌,王毅.常规统计学方法在优化中药提取工艺中的应用[J].中南药学,2009,(7)8:615-617.
    [122]郭晏华,贾天柱,林桂梅.均匀设计和回归分析优化补骨脂微波炮制工艺[J].中国中药杂志,2007,32(12):1167-1170.
    [123]王统一,赵兵,王玉春.正交试验-人工神经网络模型优化龙眼多糖的超声提取工 艺[J].中草药,2006,37(10):1514-1516.
    [124]刘军海,任惠兰,官波.响应面分析法优化白术多糖提取工艺[J].中成药,2008,30(5):667-670.
    [125]刘圣,唐丽琴,陈礼明,等.正交试验优选黄连中小檗碱提取工艺的研究[J].中国药房,2004,15(1):18-20.
    [126]邢俊波,刘云.正交设计优选黄柏中小檗碱的提取工艺[J].时珍国医国药,2003,14(3): 169.
    [127]邓一民,张高军,凌国宇,等.桑叶天然染料的萃取和稳定性研究[J].苏州大学学报(工科版),2005,25(1):23-25.
    [128]吕换地,史奕,张景,等.黄连中盐酸小檗碱含量检验方法的对比与研究[J].科技信息,2007,(17):29-30.
    [129]陈栓虎,王翠玲,董发,等.柿子红色素的提取及稳定性研究[J].西北大学学报(白然科学版),2004,34(6):677-679.
    [130]王志华.分析化学[M].北京:化学工业出版社,2008.
    [131]许沛虎,高媛,张雪琼,等.黄连总生物碱纯化工艺研究[J].时珍国医国药,2007,18(12):3079-3080.
    [132]蔡苏英,曹红梅.金属离子媒染对天然染料色光的影响[J].针织工业,2009,(7):53-55.
    [133]张德华,李茹,王永梅,等.生物碱的分类和鉴定方法研究进展[J].皖西学院学报,2010,26(5):69-73.
    [134]郑彦慧.黄连活性成分的光谱性质及中药中小檗碱的环糊精敏化荧光法测定[D].河北师范大学,2006.
    [135]蔡苏英,田恬.染整工艺原理(第三册)[M].北京:中国纺织出版社,2004,80(a),91(b),81(c),91-94(d)
    [136]薛朝华.颜色科学与计算机测色配色实用技术[M].北京:化学工业出版社,2004.
    [137]张海燕.混纺织物同浴染色上染速率的测定[J].印染,2002,(6):32-33.
    [138]王菊生,孙铠.染整工艺原理[M].北京:中国纺织出版社.1983,145.
    [139]Kongkachuichaya P., Shitangkoonb A., Chinwongamorna N.. Thermodynamics of adsorption of laccaic acid on silk[J]. Dyes and Pigments,2002,53:179-185.
    [140]Kurogi N. Theory of Chemistry of Dyeing. Japan,1966.
    [141]Kima T. K., Sonb Y. A., Limc Y. J.. Thermodynamic parameters of disperse dyeing on several polyester fibers having different molecular structures [J]. Dyes and Pigments,2005, 67:229-234.
    [142]马晶,张建英,张建波,张林.牛奶蛋白纤维染色热力学研究[J].毛纺科技,2009,37(1):9-13.
    [143]马晶,张建波.牛奶蛋白纤维染色动力学和热力学研究[J].染整技术,2009,31(5):1-7.
    [144]钟绵国,赵涛.灵菌红素对羊毛纤维的染色动力学与热力学研究[J].毛纺科技,2010,38(7):15-18.
    [145]戴丽,耿信鹏.计量置换理论用于染料在腈纶上吸附的热力学研究[J].纺织高校基础科学学报,2007,20(1):83-87.
    [146]许长海.竹纤维染色性能与理论研究[D].青岛大学,硕十论文,2004.
    [147]王菊生,孙恺.染整工艺原理第三册[M].中国纺织出版社,2001.185-218.
    [148]金咸穰著.染整工艺试验[M].北京:纺织工业出版社,1993:86-91.
    [149]傅忠君,郑化,郭中,于鲁汕.聚乳酸纤维染色动力学[J].印染,2007,(10):6-9.
    [150]隋淑英,郭娟,朱平.再生麻纤维的染色动力学[J].印染,2009,(11):13-16.
    [151]王福武,宋铖.提高印花织物耐日晒牢度的研究[J].上海毛麻科技,2010,(3):29-32.
    [152]黄琳.色牢度测试标准比较及常见色牢度问题分析[J].2010,(7):36-40.
    [153]李惠民.影响植物染料色牢度的研究[J].科技情报开发与经济,2006,16(8):145-146.
    [154]魏长志.黄芩 黄连黄柏体外抗金黄色葡萄球菌和痢疾杆菌对比实验[J].辽宁中医药大学学报,2009,11(3):159-161.
    [155]王玲,吕雪莲,孙令,等.黄连等6味中药提取物对皮肤癣菌的抗真菌活性研究[J].中国皮肤性病学杂志,2008,22(8):498-500.
    [156]石兰萍,田琳琳,王德,等.黄连等中药对氧气湿化液中常见致病菌的体外抗菌效果研究[J].护理研究,2007,21(7):1853-1854.
    [157]陈淑映,罗德祥,何锦钧,李子鸿.100种常用中草药乙醇提取液的防晒性能测定[J].国际医药卫生导报,2005,11(6):67-69.
    [158]姚穆,周锦芳,黄淑珍等.纺织材料学[M].北京,纺织工业出版社,1980,165.
    [159]Giles C.H.. The fading of colouring matters[J]. Applied Chemistry,1965,15:541-550.
    [160]Cox-Crews P. The influence of mordant on the light fastness of yellow natural dyes[J]. Journal of American Institute for Conservation,1982,21 (2):43-58.
    [161]李文林,黄凤洪.天然抗氧化剂研究现状[J].粮食与油脂,2003,(10):10-13.
    [162]潘文,潘金火.灯盏花素双层缓释片的制备及其体外释药行为研究[J].现代中药研究与实践,2008,22(6):62-64.
    [163]徐伟,周建衡,洪振丰,汤须崇.粗叶悬钩子总生物碱骨架缓释片的制备及体外释放特性[J].中国医院药学杂志,2009,29(20):1704-1706.
    [164]武彦文,肖小河,孙素琴,刘红霞.黄连不同提取物的红外光谱研究[J].光谱学与光谱分析,2009,29(1):93-96.
    [165]李英明,王立群,邓芬,等.黄连药材不同部位、不同生长年限和不同海拔高度红外光谱法整体分析与评价[J].中国医学科学院学报,2004,26(6):614-617.
    [166]胡国海,李洪潮,刘芳.黄柏中提取盐酸小檗碱的红外光谱分析[J].文山师范高等专科学校学报,2009,22(2):102-104.
    [167]Kan C. W., Chan K., Yuen C. W. M., Miao M. H.. The effect of low-temperature plasma on the chrome dyeing of wool fibre[J]. Journal of Materials Processing Technology, 1998,82:122-126.
    [168]Kan C. W., Chan K., Yuen C. W. M., Miao M. H.. Surface properties of low-temperature plasma treated wool fabrics[J]. Journal of Materials Processing Technology, 1998,83:180-184
    [169]朱若英,滑钧凯,黄故,忻浩忠.羊毛低温等离子体处理后的染色性能研究.天津工业[J].大学学报,21(4):22-27.
    [170]Sun D., Stylios G. K.. Fabric surface properties affected by low temperature plasma treatment[J]. Journal of Materials Processing Technology,2006,173:172-177.
    [171]Wakida T.. Dyeing properties of wool treated with low-temperature plasma under atmospheric pressure[J]. Text. Res. J.,1993,63 (8):438-442.
    [172]Puydt Y. D., Bertrand P., Novis Y, et al. Surface Analyses of Corona-treated Poly (ethylene terephthalate) [J]. British Polymer Journal,1989,21 (2):141-146.
    [173]任春生,王德真,王友年.空气介质阻挡放电等离子体亚麻表面处理提高接枝率研究[J].大连理工大学学报,2007,47(1):11-14.
    [174]张光先,张凤秀,卢明,敬凌霄.棉织物接枝丝胶蛋白改性及服用性能研究[J].丝 绸,2010,(1):1-4.
    [175]刘义绘,陈国强.用丝胶对棉织物改性及检测鉴定[J].蚕业科学,2007,33(3):433-436.
    [176]何忠琴.丝胶对棉织物的柠檬酸加工固着[J].国外丝绸,2005,(5):7-9.
    [177]王斌,金志浩,丘哲明,刘爱华.电晕处理对高性能PBO纤维的表面性能及其界面粘接性能的影响[J].复合材料学报,2003,20(4):101-106.
    [178]张建春,郭玉海.电晕辐照技术[M].中国纺织出版社,2003,北京.
    [179]王迎,王振.空气等离子体处理提高涤纶织物染色性能[J].大连工业大学学报,2009,28(1):76-78.
    [180]汪前东,冀旭,刘岩,刘必前.低温等离子体处理羊毛织物的染色性能研究[J].毛纺科技,2006,(2):9-12.
    [181]吕立斌,王春霞,邱夷平.常压等离子体处理对锦纶6纤维性能的影响[J].纺织学报,2009,30(11):93-98.
    [182]刘义绘,陈国强.用丝胶对棉织物改性及检测鉴定[J].蚕业科学,2007,33(3):433-436.
    [183]Liu X.D.,万鹏,潘婉莲.壳聚糖涂覆棉纤维的制备及其物理性质[J].国外纺织技术,2001,(6):26-28,16.
    [184]盛家镛,孙锦华,胡汉清.高纯度丝肽粉的微细结构及其性能研究[J].丝绸,2001,(6):5-9.
    [185]雷婷,张铁华.功能性丝肽及其在食品中的应用[J].食品科技,2008,(7):113-116.
    [186]许云辉,黄晨,陈宇岳,等.棉纤维经胶原蛋白涂覆处理后的结构[J].纺织学报,2007,28(6):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700