用户名: 密码: 验证码:
金刚石定位排布的热压孕镶钻头研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国热压孕镶金刚石的研制始于六十年代后期,已经有四十余年的历史。由于热压孕镶金刚石钻头的性能可调范围广,对岩石的适应能力强,钻进效率高,使用寿命较长等特点,被广泛应用于地质钻探、工程地质勘查、岩土钻掘施工等领域。但是,由于钻头制造工艺的原因,金刚石在钻头胎体中的分布是不均匀的,从而极大地影响了钻头的使用效果。近年来,在金刚石锯切工具行业,使金刚石在胎体中能够均匀分布的技术(简称金刚石均布技术)得到快速发展,采用该技术制造的金刚石锯切工具,性能得到显著改善,从而使金刚石均布技术成为金刚石工具行业的研究热点。
     本论文提出的金刚石定位排布的热压孕镶金刚石钻头研究,是在金刚石工具行业先进的均布技术基础上,结合热压孕镶金刚石钻头的特点,通过胎体配方、钻头结构、制造工艺等关键技术研究,在热压孕镶钻头胎体中实现金刚石按设计的位置进行准确定位排布,从而达到改善钻头工作性能的目的。定位排布技术是改善金刚石钻头性能的全新的技术手段,开展这方面的研究工作,对于提高金刚石钻头品质,促进相关行业技术进步有十分重要的意义。
     论文从胎体配方、金刚石参数和钻头结构等方面详细介绍了国内外孕镶金刚石钻头的研究进展;对金刚石均布排布技术在国内外金刚石工具行业的应用情况及工艺现状进行了全面分析;论述了进行金刚石定位排布技术研究的重要性,明确了主要的研究内容,确定了论文的研究思路和采用的技术路线。
     论文从孕镶钻头的结构入手,分析了孕镶金刚石钻头胎体的作用,详细介绍了胎体的主要成份构成、各组份的作用以及衡量胎体性能的主要技术指标,指出了定位排布钻头对胎体粉料的特殊要求;对胎体块的烧结工艺进行了深入分析,采用中频炉烧结法,烧结温度为1000℃、升温速度为100-120℃/min、保温时间为5min的烧结工艺参数;分别对采用铜基单体粉配方、铜镍锰预合金配方和铁基预合金配方进行了胎体硬度和耐磨性的测试,对三种胎体配方的性能进行了分析,总结出了不同配方对胎体性能的影响规律。
     论文对孕镶金刚石钻头的钻进机理和金刚石的破碎形式进行了探讨,对钻头的磨损情况以及金刚石在底唇面的分布对钻进的影响进行了深入分析,明确了金刚石定位排布的优越性,为定位排布钻头设计提供了理论基础。论文首次采用轴向间距、周向间距和径向间距三个参数来衡量金刚石在胎体中的位置,分析了不同参数对钻头性能的影响。论文对金刚石在钻头底唇面上的定位排布方式进行了系统研究,并根据钻头底唇面内外径磨损快、中间部位磨损慢的特点,采用了把钻头分为内、中、外三个不同的环型区带,并分别在这三个环形区带内采用不同的金刚石定位参数进行钻头设计,从而达到使钻头均衡磨损的技术方法。确定了地质钻探常用粒度的金刚石定位参数:采用粒度为40/45目的钻头,金刚石的轴向间距设计为0.4mm,在内、外环带,周向间距和径向间距均为1.0mm,在中间环带,周向间距为1.2mm,径向间距为1.0mm;采用粒度50/60目金刚石的钻头,金刚石轴向间距为0.3mm,在内、外环带,径向和周向间距为0.7mm,在中间环带,周向间距为1.0mm,径向间距为0.7mm。新的钻头设计方法,使孕镶钻头设计更加精确,提高了钻头的设计水平。
     论文结合定位排布金刚石钻头的特点,在传统热压金刚石钻头制造工艺的基础上,通过增加金刚石定位排布孕镶胎体块制造工序,制定了金刚石定位排布钻头制造的工艺流程。在定位排布钻头制造中,关键的金刚石定位排布孕镶胎体块制造环节主要采用薄片压制设备、真空模板排布金刚石设备和冷压成型及自动脱模设备,分为胎体薄片的压制、金刚石定位排布和冷压成型三个工艺步骤。论文对压片模具、冷压组合钢模、烧结石墨模具等对钻头制造影响较大的模具设计和加工进行了深入的研究。确定了钻头的热压烧结工艺参数为:单体粉末配方的烧结温度为1000℃、预合金配方为930℃、压力均为150kgf/cm2、保温时间均为6分钟。论文采用的钻头制造工艺流程和设备是根据定位排布钻头的特点,通过优化设计、功能改进、系统集合而成,在国内地质钻探行业首次采用,具有金刚石定位准确、机械化程度高、批量生产能力强的特点。
     试制了8只钻头在四川邻水孔家山井田煤矿和广西横县孟村铅锌矿等2个矿区3类地层进行了野外钻进试验,并对试验结果进行了全面分析。新型的钻头在燧石含量极高的灰岩中钻进,寿命和钻进时效较普通钻头分别提高34.38%和16.7%;在砂泥岩中的钻进时,在胎体磨损高度仅为0.5mm的情况下,进尺33.06米,平均钻速3.59米/小时;在花岗岩中钻进,较普通钻头的时效提高50%,寿命提高100%以上。试验结果表明,金刚石定位排布的热压孕镶钻头性能大幅改善,钻进效率和使用寿命大幅提高,其技术成果具较高的实用价值。
It has been 40 years since the study on hot-pressed diamond bits had begun in the late 1960s in China. Widely employed in the fields of geological drilling, geological exploring, geotechnical drilling and construction,the hot pressing technology has long been the major methodology for the manufacturing of diamond bits which enjoy more flexibility in the adjustment of bit properties, stronger adaptability to different rocks, longer lifetime and higher working efficiency. However, with the traditional manufacturing technology, the distribution of diamonds in bit matrix is still uneven, which has greatly affected the bit’s working efficiency. In recent years, the uniform distribution technology for diamond drilling bit, which has greatly improved the bit efficiency, has developed rapidly and come into the core of the study in this area.
     On the basis of the uniform distribution technology, this paper has conducted the research into the diamond positioning distribution technology in hot-pressed impregnated diamond drilling bit, by exploring the properties of hot-pressed impregnated diamond bit and studying the matrix formula, positioning arrangement of the bit, and the bit manufacturing process involved, so as to largely promote the quality of diamond bit. Since the diamond positioning distribution technology is a brand-new technique in promoting the quality of diamond, doing research in this field is of great significance in promoting the quality of diamond and the technological advancement in the related industries.
     This paper starts from the introduction of the domestic and foreign researches on the matrix formula, the positional parameters of diamond, and the structure of the hot-pressed impregnated diamond bit; it, then, proceeds to demonstrate the status quo of the uniform distribution technology and its application in manufacturing diamond tools at home and abroad; elaborating on the significance of studying the diamond positioning distribution technology, this paper adopts the following methodology in the present research.
     Firstly, the structure of hot-pressed impregnated diamond bit has been studied, with an analysis of its matrix in terms of primary matrix components and each of their effects, required matrix performance, and the major technical indicators in measuring its performance; with the further study of bit sintering process, the research has experimented on the IF furnace sintering in producing bit matrix, with a sintering temperature at 1000℃, the heating rate at 100-120℃/min, and the holding time of 5min; therefore, matrix hardness and wear resistance have been tested with the three matrix formulae, i.e. the Cu elemental powder formula, the pre-alloyed copper-nickel-manganese formula, and the pre-alloyed basis iron formula. Based on the above experiments, it has been justified that the change in matrix components leads to varied matrix performances.
     Next, the drilling mechanism and the matrix fragmentation have been elaborated. Therefore, the in-depth analysis of stress and abrasion of bit end, as well as the drilling effect of diamond distribution on bit bottom lip, has well justified the superiority in diamond positioning distribution, thus providing the theoretical support for the design of positioning distribution. To locate the diamond in the matrix, the study has initiated the use of three parameters, i.e. axial spacing, circumferential spacing and radial spacing, to analysis different effects on drilling bit performance caused by different parameters. After a systematic study on the diamond distribution on the bit bottom lip, in accordance with greater wear effects in inner-most and outer-most surfaces and the least wear effects in the middle part, this study has proposed the three-layered circular distribution of diamond grain,and different diamond parameters were used in inner, middle and outer ring of three different zones for the design of bits, so as to avoid unbalanced wear of bits. Positioning parameters for bit diamonds generally used in geological drilling have been designed, for diamond in particle size of 40/45 mesh, and for the diamond in particle size of 50/60 mesh, respectively. As to the positioning of the diamond in particle size of 40/45 mesh, the axial spacing is set as 0.4mm, radial spacing 1.0mm, with circumferential spacing of 1.2mm and radial spacing of 1.0mm in the middle layer; meanwhile, as to the distribution of the diamond in particle size of 50/60 mesh, the axial spacing is set as 0.3mm, radial spacing 0.7mm, with circumferential spacing of 1.0mm and radial spacing of 0.7mm in the middle layer. With the above new positioning of bit diamonds, the design of diamond bit is brought under control, more accurate and effective. Employing the diamond positioning distribution, the study has redesigned the manufacturing process of hot-pressed diamond bit, by adding to the manufacturing process of impregnated bit matrix a new procedure of diamond positioning distribution. The equipment involved in the new procedure of diamond positioning distribution include the equipment for pressing tablet mold, for the vacuum modeling of diamond distribution, for the cold composition and automatic ejection, which are used in respective procedure thus concerned. Based on a further study of the most widely used mold in bit manufacture, such as the tablet mold, the cold steel composition, and the sintering graphite mold, the sintering technology has been proposed with the sintering temperature of 1000℃for elemental powder formula and of 930℃for pre-alloy formula, and with an average stress at 150kgf/cm2 and the average holding time of 6min. In this study, the bit manufacturing process together with the equipment for diamond positioning distribution becomes an integrated system for optimal design and efficiency enhancement, which has been first utilized in geological drilling, featuring accurate positioning, high degree of mechanization and great productivity.
     Finally, 8 diamond bits, thus produced with positioning distribution technology, have been experimented in the field drilling tests at the coal-mining site in the Kongjia Hill of Linshui County in Sichuan Province, and that in Meng Village of Heng County in Guangxi Province. It has been found that the diamond bit, gains a longer lifetime by 34.38% and a higher drilling rate by 16.7% than conventional bit, when drilling the limestone layer with high content of flint; while drilling in shale layer, it reaches 33.06m in lifetime and 3.59m/h in drilling rate with an abrasion extent of 0.5mm; when drilling in granite layer, bit lifetime has increased by 100%, and the drilling rate increased by 50%. In this way, the bit performance has been greatly promoted by the application of bit positioning distribution technology. The experiments have shown that the performance and quality of hot-pressed impregnated diamond drilling bit have been improved significantly, and the diamond positioning distribute technology is of high practical value and wide prospect.
引文
[1]武汉地质学院.钻探工艺学[M].北京:地质出版社,1980.
    [2]张绍和,熊湘君,等.金刚石与金刚石工具[M].长沙:中南工业大学出版社,2005.
    [3] Drew Mark Butler,et al.Process of drill bit manufacture [P]:2008/0314203A1, 2008,12.
    [4] K.Shayne Drivdahl,et al.Drill bits with notches and enclosed slots [P]: 2010/0012381 A1,2010-1.
    [5] K.Shayne Drivdahl,et al.Drill bits with increased crown height [P]:2010/0012382 A1,2010-1.
    [6]周红心.热压金刚石钻头:中国,201155300Y[P].2008-11-26.
    [7]陈章文.适合金川矿区的特种孕镶金刚石钻头研制[D].长沙:中南大学,2008.
    [8]张士博.钻头与钻具设计制造新工艺新技术与质量验收标准规范实务全书[M].北方工业出版社, 2005.
    [9]王好国.热压金刚石钻头胎体材料对钻头性能的影响[J].放射性地质1981(03),270-273.
    [10]李子章,等.热压铁基孕镶金刚石钻头的实验研究[J].探矿工程(岩土钻掘工程), 2008, (7): 94-96.
    [11]杨洋,潘秉锁,等.热压高磷铁基金刚石钻头及其制备:中国,101144370A[P]. 2008-03-19.
    [12]邹德永.适合弱研磨性硬地层的孕镶金刚石钻头胎体材料:中国,101403067A[P]. 2009-04-08.
    [13]王祖南.关于金刚石钻头胎体材料及其系列化问题的商榷[J].探矿工程,1980(06),33-37.
    [14]贾美玲,等.大陆科学钻探用新型镶嵌式钻头的研究[J].探矿工程,2003(增刊):289-291.
    [15]拉尔夫.M.霍顿,罗伊斯.A.安东.用作基体岩石钻头中浸渗粘接剂的低熔点铜-锰-锌合金:中国,1055771A[P].1991-10-30.
    [16]张绍和.钻头预合金胎体粉末制备与应用[J].探矿工程(岩土钻掘工程),2001(3):54-56.
    [17]李基焕,等.提高胎体金属与金刚石粘接性能的研究[J].探矿工程,1991(4):8-11.
    [18]冯清文,等.对热压金刚石钻头胎体粘接金属的几点认识[J].煤田地质与勘探,1980(02):72-75.
    [19]孙毓超,等.稀土元素在金刚石工具中应用研究的新进展[J].金刚石与磨料磨具工程,2003(2):1-4.
    [20]杨凯华,等.稀土在热压人造金刚石工具中的应用研究[J].地质科技情报,2001,20(3):110-112.
    [21]戴秋莲,等.混合稀土和TiH2对金刚石工具用铁基胎体性能的影响[J].中国工程机械学报,2004,2(3):285-289.
    [22]汤凤林,等.关于提高金刚石钻进效果的实验研究[J].地球科学-中国地质大学学报,2002,27(5):544-548.
    [23]汤凤林,等.提高金刚石钻头工作能力的实验研究[J].地球科学-中国地质大学学报,2000,25(3):324-328.
    [24]李忠林,王成军,等.一种预合金胎体粉末:中国,101462162A[P].2009-06-24.
    [25]杨展,等.提高金刚石钻头耐磨性和降低烧结温度的实验研究[J].金刚石与磨料磨具工程,2005(5):34-36.
    [26]陆洪智,等.钻进打滑地层用孕镶金刚石钻头设计探讨[J].西部探矿工程,2004(11):130-131.
    [27]孙毓超,刘一波,等.金刚石工具与金属学基础[M].中国建材工业出版社,1999,10:104-105.
    [28]刘宝昌,等.纳米材料及其在碎岩工具材料中的应用前景[J].探矿工程,2003(增刊):272-275.
    [29]鲁凡.混装金刚石工作原理及高性能制品设计[J].工业金刚石,2000,10:13-17.
    [30]王殿江,等.两级磨料新型孕镶金刚石钻头[J].探矿工程,1998(6):41-42.
    [31]田小波,等.砂卵石层孕镶金刚石钻头设计与制造的思考[J].西部探矿工程,2002(3):97-98.
    [32]张绍和,鲁凡,王殿江.弱包镶强耐磨胎体钻头[J].探矿工程,1997(2):P35-36.
    [33]罗爱云,等.打滑地层新型孕镶金刚石钻头[J].地质科技情报,2007(26):109-112.
    [34]罗爱云,等.强弱混镶新型金刚石钻头的研究[J].金刚石与磨料磨具工程,2003(134):48-50.
    [35]孙友宏,等.可再生水口的金刚石取芯钻头:中国,101353946A[P].2009-1-28.
    [36]杨俊德.金刚石钻头和金刚石锯片磨损机理、设计及性能测试研究[D].长沙:中南大学,2004.
    [37]蒋青光,张绍和,等,新型优质孕镶金刚石钻头研制[J].金刚石与磨料磨具工程,2008,168(6):12-16.
    [38]徐良.硬岩钻进用仿生耦合金刚石取心钻头研究[D],长春:吉林大学,2009.
    [39]李子章,等.油井表镶天然金刚石钻头的研究[J]四川省探矿工程学会第十三次学术年会论文,1991.
    [40]杨国焕.金刚石均布钻头的研究与试验[J].第六届全国探矿工程学术会议优秀论文,57-60.
    [41]张绍和.一种金刚石定位排布孕镶地质钻头及其制造工艺:中国,101285371A [P]. 2008-10-15.
    [42]N.Tohge.D.Ide,Y.Inoue,H.Funahashi, Precise grinding with single layered Metal bonded Diamond Wheel. Intertech 2003,proceeding CD paper.
    [43]RIX:A revolution in the diamond tool industry. The Korea Post News and Business , Vol 17.NO.3 March 2005.
    [44]M.Park. ARIX-a major advance in diamond segment design, IDR 2/05,40-42.
    [45]S.P.Pyun.H.W.Lee.J.H.Park.Study for cutting performance in arrayed diamond saw blade.1st international Industrial Diamond Conference.20-21 Oct 2005.Barcelona Spain CD paper.
    [46]姜超荣,郭和惠.预合金粉末在金刚石工具中的应用,中国超硬材料技术发展论坛论文集[C],2005.9.30,125-129.
    [47]宋健民博士.超硬材料[M],全华科技图书股份有限公司印刷,1989.
    [48]C.M.Sung. Brazed diamond grind: a revolutionary design for diamond saws. Diamond and Related Mataials.8(1999)1540-1543.
    [49]Chien-Min Sung. Brazed Diamond Grid by Infiltration[P].US:6,039,641, 2000-3-21.
    [50]郑汉书,姜荣超,魏洪涛,等.锯切花岗岩用金刚石有序排列锯片的研制[J],石材,2006,11:11-14.
    [51]杨仙.有序排布金刚石锯片的研究[D],长沙:中南大学,2008.
    [52]郭和惠.多层均布金刚石结块及其锯片:中国,200620033694.X[P],2006-4-3.
    [53]吕华伟,马涛,刘志杰,等.金刚石、CBN有序排列及则有取向工具的研发及应用[J],金刚石与磨料磨具工程,2007,158(2):44-47.
    [54]Toshiyuki Ooi,Masayuki Sagawa,Yoshiki Nishioka.New Type CMP PAD Conditioner. Interech 2003,proceeding CD paper.
    [55]Toshiyuki Ooi,Masayuki Sagawa.The development of the diamond CMP congditioner.1st international Industrial Diamond Conference. 20-21 Oct 2005.Barcelona Spain CD paper.
    [56]G.burkhard,M.boretius,B.Zigerlig.Verfahren zum Aufbringen von partikeln anfeinen triager EP1208345A1.
    [57]G.burkhard,M.boretius,B.Zigerlig.Spanen mit definiert angeordnaten diamond order CBN-komern.IDR 36(2002)D.r.z96-102.
    [58]姜荣超.金刚石均匀分布并有序排列是改善金刚石工具性能的有效途径[J].石材,2006,10:28-37.
    [59]郭和惠.真空布料机:中国,200820061656.4[P].2008-1-8.
    [60]李久军.金刚石均匀分布机:中国,201353696Y[P].2009-12-2.
    [61]叶宏煜.多层定向分布有序排列金刚石工具节块:中国,201026656Y[P].2007-2-27.
    [62]段隆臣,等.金刚石工具的设计与制造[M].武汉:中国地质大学(武汉)工程学院,2003.
    [63]鄢泰宁主编.岩土钻掘工程学[M].中国地质大学出版社,2000.
    [64]刘广志主编.金刚石钻探手册[M].地质出版社,1991.
    [65]高允彦.正交及回归试验设计方法[M].北京:冶金工业出版社,1988.
    [66]万隆,陈石林,刘小磐.超硬材料与工具[M].化学工业出版社,2006.
    [67]株洲硬质合金厂.钢结硬质合金[M].冶金工业出版社,1982.
    [68]Keen.a new concept prealloyed powders[J].IDR 2005(3).
    [69]申思,等.粉末预合金化对金刚石工具胎体性能的影响[J].金刚石与磨料磨具工程,2008,163(1):35-38.
    [70]吕申峰,等.国内外预合金粉末在金刚石工具中的应用[J].金刚石与磨料磨具工程,2006,154(4):81-84.
    [71]田峰等.金刚石胎体Cu-Fe-Sn-Ce预合金粉的研究[J].金刚石与磨料磨具工程,2008,163(1):39-46.
    [72]Bertjan K am phu is Anja Semeels. Cobalite and nickel free bond Powder for diamond tols Cobalite CNF[J].IDR 2004(1):26-32.
    [73]Clark I E,K am phu is B J Cobalite HDR.a new prealloyed matrix powder for diamond costruction tools[J].IDR,2002(3).
    [74]罗锡裕,等.金刚石工具预合金代钴粉末的研究开发及应用[J].金刚石与磨料磨具公差,2006(1):18-24.
    [75]万新梁,等.新型超细预合金粉在金刚石工具中的应用[C],第四届郑州国际超硬材料及制品研讨会论文集:149-152.
    [76]宋月青,等.预合金粉末(TT15)对金刚石粘接性能的研究[J],粉末冶金工业,1999,9,增刊:70-73.
    [77]林雨.岩石破碎机理在孕镶金刚石钻头设计中的应用[J].西部探矿工程,1994,6(6):76-78.
    [78]王发明.适合坚硬地层孕镶金刚石钻头优化设计研究[D],北京:中国石油大学,2009.
    [79]杨俊德,等.金刚石钻头钻进过程中金刚石磨损规律试验研究[J].矿冶工程,2003.23(4):64-70.
    [80]鲁凡,曾仁侠.人造金刚石在孕镶胎体中均匀分布的研究进展[J],地质与勘探,1986(06),64.
    [81]王生福.金刚石钻头非正常磨损和破损形态的分析[J],探矿工程(岩土钻掘工程),2007(9):95-96.
    [82]彭步涛.低唇面高效绳钻金刚石钻头的研制与应用[J].中国西部科技,2007,06:8-10.
    [83]刘井鹏,胡建平.砂卵石地层专用金刚石钻头的研制[J].金刚石与磨料磨具工程,1999.4(112):10-11.
    [84]赵文立.金刚石钻头胎体底唇拉槽的探讨与预防[J].探矿工程,1983.2,44-47.
    [85]孙秀梅,刘建福.坚硬“打滑”地层孕镶金刚石钻头设计与选用[J].探矿工程(岩土钻掘工程)2009(2):75-78.
    [86]郑守本.如何确定孕镶人造金刚石钻头参数[J].地质与勘探,1989(25):52-54.
    [87]张荣清.关于孕镶钻头金刚石浓度、粒度优化设计的探讨[J].地质与勘探,1982(07):68-71.
    [88]金小平,姜荣超编译.金刚石特殊排列的均布金刚石锯片的开发[J].石材,2007,11:27-29.
    [89]刘跳民.孕镶金刚石钻头的设计和使用[J].有色金属矿产与勘查,1995(4):57-61.
    [90]张绍和,邵全军.钻头金刚石浓度设计的定量计算方法[J].地质与勘查,2000(36):79-83.
    [91]叶兰肃,南青民,等.坚硬致密岩层用绳索取心钻头的研制与应用[J].探矿工程(岩土钻掘工程),2009(12):65-68.
    [92]黄培云.粉末冶金原理[M].冶金工业出版社:204-208.
    [93]郑守本.如何确定孕镶人造金刚石钻头参数[J].地质与勘探,1989,25(11):52-54.
    [94]杨凯华,段隆臣,等.新型金刚石工具研究[M].中国地质大学出版社,2001.
    [95]李震.金刚石钻进参数的选择[J].探矿工程,1985(5):33-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700