用户名: 密码: 验证码:
电化学方法研究阳离子C_nTAB及其复配体系的聚集行为和性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂混合体系的研究中,检测表面活性剂浓度的动态连续变化或平衡状态下稀溶液浓度的估算是研究者比较关心的一个问题。溶液中表面活性剂单体的浓度可以通过平衡渗析、超过滤、微量热滴定和表面活性剂离子选择性电极等手段来测定。以表面活性剂离子选择性电极为基础的电动势法,具有测定设备简单廉价、所需样品量少且不需要预处理、不易受其它加入物的干扰,良好的灵敏度和重现性等优点而受到不少研究者的青睐。最近十多年来,该方法已被成功应用到两亲分子溶液化学的研究中。有关表面活性剂离子选择性电极的研究报道,国内的文献主要集中于环境水体中表面活性剂的检测,国外的文献多集中于表面活性剂与高聚物的相互作用的研究。到目前为止,关于表面活性剂离子选择性电极在阴/阳离子表面活性剂复配体系研究中的应用,国内外均未见文献报道。这可能与阴/阳离子表面活性剂溶液的配制方法有关,因为只有维持恒定的离子强度时,测得的一系列电动势数据才具有可比性。
     论文主要利用电化学方法,并结合表面张力和流变学等手段研究了具有恒定离子强度的阴/阳离子表面活性剂复配体系的相行为,阳离子表面活性剂(CnTAB)与非离子三嵌段共聚物PluronicF127(PEO97-PPO69-PEO97)在不同盐度、高聚物浓度及温度下的相互作用等,具体内容分为五章:
     第一章概述了离子选择性电极的研究背景和表面活性剂离子选择性电极在表面活性剂混合体系中的研究进展,及其在表面活性剂复配体系、表面活性剂与聚合物相互作用研究领域的重要意义。结合实验工作,总结了表面活性剂离子选择性电极在使用过程中遇到的一些问题及相应处理措施等。
     第二章利用四苯硼钠(NaBQ4)、十二烷基硫酸钠(SDS)与长链烷基三甲基溴化铵(CnTAB)生成的中性离子对(CnTA-BQ4、CnTA-DS)作为电活性物质,以邻苯二甲酸二辛酯(DOP)为增塑剂、低分子量的聚氯乙烯粉(PVC)为成膜载体,以电动势和表面张力为主要测试手段,筛选制备具有最佳性能的表面活性剂离子选择性电极。实验结果表明:以BQ4-为反离子制备的中性离子对作为电活性剂物质,DOP含量为112.5 mg/mL, PVC含量为75mg/mL,电活性物质浓度为0.63mmol/L时制得的表面活性剂离子选择性电极性能最佳。通过对表面活性剂离子选择性电极稳定性、重现性的测试,发现制得的表面活性剂离子选择性电极的稳定性较好,在2 h的连续测定中数据偏差不超过1 mV。另外通过十六烷基三甲基溴化铵(CTAB)和十一酸钠(SU)、月桂酸钠(SL)得到的中性离子对CTA-U、CTA-L作为电活性物质,分别制得了对十一酸钠和月桂酸钠有响应的阴离子表面活性剂选择性电极,但遗憾的是这类电极的电动势测试结果并不能与表面张力测试结果完全吻合,Nernst响应斜率偏低,这可能与所用电活性物质的溶解性有关。尽管存在Nernst响应斜率低、电位漂移、膜电极的记忆效应等影响因素,但每次测试前只要充分清洗膜表面,都可获得较为满意的结果。可以应用于随后的表面活性剂混合体系的单体组分测定中。
     第三章采用电动势测定、电导率测定、偏光显微镜观察和流变学研究等方法考察了十四烷基三甲基溴化铵(TTAB)、十六烷基三甲基溴化铵(CTAB)分别和10-十一烯酸钠(10-SU)、十一酸钠(SU)所形成的复配体系TTAB/10-SU,TTAB/SU, CTAB/10-SU的相行为,将TTAB、CTAB、SU等表面活性剂离子选择性电极应用于该复配体系中,分别测得了总浓度不同时体系中游离表面活性剂的浓度,得出了游离表面活性剂浓度随体系组成的变化关系。研究结果表明:在恒定总浓度的混合体系中,随阳离子表活性剂组成Xn的增加,溶液经历了L1相、Lα相、Lαv相及粘稠L1相的转变过程。在聚集态转变过程中测得相应表面活性剂单体的浓度逐渐增加,在由L1相向Lα及粘稠的L1相等转变的区域,游离的表面活性剂浓度变化最明显,整个测定范围内其浓度曲线呈S型变化。对于TTAB/10-SU和TTAB/SU复配体系而言,其Xn(TTAB)为0.3,0.4,0.5,0.7时所对应的典型样品的流变学数据表明,在不同摩尔比例下得到的L1相体现出粘性特征,而对于CTAB/10-SU复配体系,其Xn(CTAB)为0.3,0.4,0.5,0.7时的样品也同样以粘性为主;随总浓度的增大,粘性增大,当Xn(CTAB)在0.7附近时体系表现出明显的弹性行为。
     第四章采用电化学法研究了非离子三嵌段共聚物Pluronic F127溶液的临界胶束温度(CMT)及其与阳离子表面活性剂CnTAB的相互作用。提出了利用循环伏安法测定非离子型聚合物溶液CMT的实验方法,借助具有疏水性能的电化学探针2,2,6,6-四甲基-1-哌啶氧自由基(TEMPO)在混合溶液中扩散系数的测定,比较了达饱和吸附浓度乃时CnTAB/F127混合溶液的疏水性能。采用表面活性剂离子选择性电极,测定了不同浓度的NaBr存在时CnTAB和F127相互作用的电动势曲线,结果发现随烷基链长的增加,与F127发生协同作用的程度增强,而且发生协同结合作用时的浓度T1基本与F127浓度无关;F127溶液浓度越高,协同结合作用结束时的浓度T2越大。而增加盐浓度和升高温度,对CnTAB和F127间的协同结合作用有不利影响。同时还发现在较低盐浓度下(1 mmol/L NaBr),或在较低的F127浓度(0.5 g/L)下,CTAB、TTAB与F127发生协同结合作用之前存在非协同结合现象。
     第五章采用循环伏安法研究了维生素K3(VK3)包覆在酸处理过的多壁碳纳米管(MWNTs)、壳聚糖(CHIT)所形成的单一膜以及混合膜中时,在磷酸盐缓冲溶液中的电化学性质及对多巴胺(DA)的电催化氧化。结果表明由于CHIT和MWNTs的存在,VK3在玻碳电极表面上的吸附大大增强,循环伏安响应明显增强,VK3的耐碱蚀能力得到极大提高,即使在pH=12的强碱性环境下,也存在氧化还原响应。通过改变溶液pH值以及改变扫描速率时的循环伏安测试,提出了吸附在固体表面上的VK3的氧化还原机理,计算出了电极表面与固定VK3的MWNTs/CHIT混合膜之间,以及电极表面与固定VK3的MWNTs膜之间的表观电荷转移速率常数ks和电子转移系数α分别为21.4s-1,0.49和3.2s-1,0.47。采用循环伏安法对DA的电催化氧化进行实验,结果表明VK3-MWNTs-CHIT混合膜修饰电极对DA具有较好的电催化性质。运用微分脉冲方法对溶液中的DA进行测定,在2-100μmol/L浓度范围内,稳态氧化峰电流和DA的浓度成线性关系,检测限为0.18μmol/L。
In the research of surfactant mixtures solutions, monitoring of the continued change in surfactant concentration or its estimation in a dilute solution under equilibrium condition is a matter of concern to researchers. The isolated surfactant concentration can be determined by some methods such as the equilibrium dialysis, ultrafiltration, isothermal titration calorimetry (ITC) and surfactant ion-selective electrodes (SISEs). Compared to the other determination methods, the electromotive force method based on SISEs is favored by many researchers because of its advantages of low cost, high sensitivity, reproducibility, without disturbing by additions and need little amount of sample with almost no pretreatment. In the past decades, this method was applied successfully to the research of amphiphilic molecules systems in solution. Domestic papers involved in SISEs mainly focused on analytic determination environmental waste water samples, and external papers mainly focused on the research domain of interaction between surfactants and polymers. So far, no papers have been published about SISEs in the research of cationic/anionic surfactant system, the reason may be the preparation of cationic/anionic binary systems where ionic strength was usually inconsistent. Only when the samples maintain the same ionic strength, have the electromotive force (EMF) data comparability.
     The focus of this thesis have been on the following aspects:Construction of a series of cationic/anionic surfactant systems with almost the same ionic strength, i.e. TTAB/SU. TTAB/10-SU and CTAB/10-SU system, whose phase behaviors were studied in detail by conductivity, polarized light, EMF and rheology techniques, some important evidence for these binary systems were obtained. Detailed study on the interaction between long-chain alkyltrimethylammonium bromide CnTAB (n=16, CTAB;n=14, TTAB;n=12, DTAB) and nonionic triblocked copolymer Pluronic F127 (PEO97-PPO69-PEO97) under various NaBr salinity, different polymer concentration and different temperature were performed using EMF measurement based on SISEs and cyclic voltammetry (CV) measurement. The present dissertation includes five chapters.
     In chapter I, the research background about ion selective electrodes (ISEs), the study progress and the importance on SISEs applying to study of compounded system composed of cationic/anionic surfactants, polymers or biomacromolecules are summarized, including some problems about SISEs and corresponding settlement encountered during the testing procedure in our own research work.
     In chapter II, sodium tetraphenylborate (NaBQ4) and sodium dodecyl sulfate (SDS) respectively interact with n-cetyl-N, N, N-trimethylammonium bromide (CTAB) cationic surfactant by electrostatic force, which forms a series of neutral ion-pair complexes (CTA-BQ4, CTA-DS) as electroactive substance. Then, combining with bis-(2-ethylhexyl) phthalate (DOP) as plasticiser and polyvinyl chloride (PVC) with low molecular weight as film materials, SISEs were fabricated. The performance of SISEs was compared through EMF and surface tension measurements, and the results indicate that, when the ion pairs containing BQ4- as counter ion are selected as electroactive species, and the concentrations of DOP, PVC and the electroactive specie are respectively 112.5 mg/mL,75 mg/mL and 0.63 mmol/L, the SISEs perform best. Correspondingly, the SISEs show good stability and reproducibility, and the inaccuracy is less than 1 mV in 2 h continuous testing. In addition, the SISEs which are sensitive to anionic surfactant such as sodium undecanoate (SU) and sodium laurate (SL), were also fabricated by using the netural ion-pairs complexes (CTA-U and CTA-L) formed by CTAB interacting with SU and SL, respectively, as electroactive species, respectively. However, the EMF data of these electrodes can not completely coincide with the results of the surface tension. The response slope of Nernst is somewhat low, which may be relevent with the solubility of the ion-pairs complexes and the properties of the aqueous fatty acid sodium solution. Though largely influenced by low response slope of Nernst, potential drift and memory effect of membrane electrode, after carefully cleaning of the film surface, the SISEs can still be well applied in the monomer composition measurement of the surfactant mixtures.
     In chapter III, the phase behavior of catanionic surfactant mixtures, composed of alkyltrimethylammonium bromide (TTAB, CTAB) and fatty acid sodium salts (10-SU, SU), was researched by EMF and electrical conductivity measurements, observation through polarizing microscope, and rheological study. Then the SISEs sensitive to TTAB, CTAB and SU were used to determine the surfactant monomer concentration, in order to confirm a correlation between surfactant mole fraction in whole solution and its isolated monomer concentration. The results indicate that, with the increase of cationic surfactants at fixed concentration of mixtures, a series of phase changes were observed in sequence:a clear dilute micellar solution (L1-phase), a micellar/vesicular two-phase region (L1/La-phase), a single vesicle phase (Lav-phase), and a viscous micellar solution (L1-phase). Accompanied with the ordinal phase transitions, the concentration of the surfactant monomer gradually increases, especially for the transitions from L1-phase to Lav-phase to viscous L1-phase. For TTAB/10-SU and TTAB/SU mixed systems, the rheology behavior was studied when the molar fraction of TTAB (Xn(TTAB)) is 0.3,0.4,0.5, and 0.7, respectively, which reveals that the L1-phases all show viscosity at different Xn(TTAB)-For CTAB/10-SU mixture, the solution also obviously shows viscous characteristic at Xn(CTAB)=0.3,0.4,0.5, and 0.7. Furthermore, the viscosity increases with the increase of the total concentration, and the mixed solution exhibits elastic behavior when Xn(CTAB) is near 0.7.
     In chapter IV part, potentiometric method based on SISEs and CV method have been used to study the interactions between a homologous series of n-alkyl trimethyl ammonium bromides (CnTAB) and triblock copolymer pluronic F127. The CV method was firstly introduced to determine the critical micelle temperature (CMT) of nonionic polymer solution. The hydrohpobic behavior of CnTAB/F127 mixture solutions were discussed by comparing the variation of the diffusion coefficient of electroactive probe 2,2,6,6-tetramethyl-l-piperidinyloxy (TEMPO) in mixture solutions. Using SISEs, the EMF data of CnTAB/F127 systems were obtained under different salinity of NaBr. From these data, it is shown that the synergistic interactions between CnTAB and F127 were enhanced with the increase of surfactant chain-length, the concentration of CnTAB when the synergistic interact begin (noted as T1) were almost independent of the F127 concentration, the surfactant concentration where the polymer is saturated with surfactant (noted as T2) increases as the F127 concentration increases. But the increase of salinity and temperature has a negative influence on the synergistic interaction between CnTAB and F127. From the EMF data, uncooperative binding process of CTAB/F127 and TTAB/F127 systems was detected before the synergistic interactions in solutions with low salinity (lmmol/L NaBr) or with low F127 concentration (0.5 g/L).
     In chapter V, the electrochemical characteristics of vitamin K3 (denoted VK3) incorporated in acid-treated multiwalled carbon nanotubes (MWNTs) film, chitosan (CHIT) film and MWNTs-CHIT hybrid films in phosphate buffer solutions were studied respectively and the electrocatalytic oxidation of dopamine (DA) was investigated by cyclic voltammetry method. The results shown that the adsorbility of VK3 on the surface of a GC electrode was greatly enhanced by CHIT and MWNTs, and the redox peak currents of VK3 increased dramatically with the addition of MWNTs in cyclic voltammogram. Because of the existence of CHIT, the alkali resistance of VK3 get a great improvement, even if in pH=12 strong alkali solution, there are also redox response of VK3 in cyclic voltammogram. By changing pH of solutions and scan rate of cyclic voltmmetry measurements, the proton number and electron number involved in redox process were calculated, and the redox mechanism of VK3 incorporated in hybrid films was given. The apparent charge-transfer rate constant ks and transfer coefficient a for electron transfer between the electrode surface and immobilized VK3 in MWNTs-CHIT hybrid films and in MWNTs films were calculated as 21.4 s-1,0.49 and 3.2 s-1,0.47, respectively. The electrocatalytic oxidation of DA evaluated by cyclic voltammetric measurements indicates that VK3-MWNTs-CHIT hybrid film modified electrodes have good electrocatalytic property to DA. The differential pulse voltammograms were used to detect the DA concentration. A linear relationship between steady-state current and DA concentration was obtained over the range of 2-100μmol/L with a detection limit of 0.18μmol/L.
引文
[1]Camman K., In working with ion-selective electrodes [M]. Berlin:Springer-Verlag (ed),1979.
    [2]Bobacka J., Ivaska A., Lewenstam A., Potentiometric ion sensors [J]. Chem. Rev. 2008,108,329-351.
    [3]吕建晓,王栋,周集体.EMF和电导率法对SDS胶束体系热力学性质研究[J].大连理工大学学报2006,46,661-666.
    [4]姚慧琴,高作宁.用氯离子电极同时测定阳离子表面活性剂的CMC及反离子缔合度[J].化学研究与应用2004,16,543-544.
    [5]张淑敏,赫春香,汪秀龄.诺氟沙星离子选择性电极的研制和应用[J].分析实验室1999,18,95-97.
    [6]连军,李向军,张勇.洛美沙星离子选择电极的研制及应用[J].分析化学1999,27,1117-1120.
    [7]李东辉,孙挺,丁扬栋,聚氯乙烯膜普鲁卡因选择电极的研制与应用[J].分析测试学报2003,22,104-105.
    [8]黄超伦,栗瑞芬,张兰桐.新型PVC膜涂丝诺氟沙星选择电极的研制与应用[J].分析测试学报2004,23,46-49.
    [9]孙挺,李东辉.新型涂碳式双嘧达莫选择电极的研制与应用[J].分析科学学报2005,21,649-651.
    [10]黄超伦,修荣,刘智勇.基于Ag/AgCl丝双涂膜曲马多离子选择电极的研制与应用[J].分析科学学报2005,21,48-50.
    [11]Hassouna M. E. M, Elsuccary S. A. A., PVC membrane electrode for the potentiometric determination of ipratropium bromide using batch and flow injection techniques [J]. Talanta 2008,75,1175-1183
    [12]Gavach C., Seta P., Dosage potentiometrique des ions alkyl-trimethyl-ammonium a longue chaine et tetrabutyl-ammonium [J]. Anal. Chim. Acta 1970,50, 407-412.
    [13]Gavach C., Bertrand C., Electrodes specifiques d'anions a longue chaine hydro-carbonee:Application au dosage potentiometrique de detergents anioniques [J]. Anal. Chim. Acta 1971,55,385-393.
    [14]Birch B. J., Clarke D. E., Leer S., Oakes J., Surfactant-selective electrodes. Part III. Evaluation of a dodecyl sulphate electrode in surfactant solutions containing polymers and protein [J]. Anal. Chim. Acta 1974,70,417-423.
    [15]Birch B. J., Clarke D. E., Surfactant selective electrodes. Part I. An improved liquid ion exchanger [J]. Anal. Chim. Acta 1973,67,387-393.
    [16]Morelli J. J., Szajer G. Analysis of surfactants:Part I [J]. J. Surfact. Det.2000,3, 539-552.
    [17]Morelli J. J., Szajer G. Analysis of surfactants:Part II [J]. J. Surfact. Det. 2001,4, 75-81.
    [18]Dubravka M. C., Milan S. B., Olivera G., Nikola S., Ruzica M. P. Determination of cationic surfactants in pharmaceutical disinfectants using a new sensitive potentiometric sensor[J]. Talanta 2008,76,259-264.
    [19]Battaglini G. T. Assay of quaternary ammonium antimicrobial compounds by aqueous potentiometric titration [J]. J. Surfact. Det.2002,5,117-121.
    [20]黄德陪,沈子琛,吴国梁等编著,离子选择电极的原理及应用[M],北京:新时代出版社,1982.
    [21]俞汝勤编著,离子选择性电极分析法[M],北京:人民教育出版社,1980.
    [22]Kadi M., Hansson P., Almgren M. Determination of isotherms for binding of surfactants to vesicles using a surfactant-selective electrode [J]. J. Phys. Chem. B, 2004,108,7344-7351.
    [23]Shaneen A., Kaur I., Mahajan R. K. Potentiometric studies of micellization behavior of cationic surfactants in the presence of glycol additives and triblock polymer (pluronic F68), using surfactant-selective sensors based on neutral ion-pair complexes [J]. Ind. Eng. Chem. Res.2007,46,4706-4709.
    [24]夏春镗,张悠敏,吴大中译,陆欣生校,离子选择电极[M],上海:上海科学技术文献出版社,1987.
    [25]R.赞恩主编,表面活性剂溶液研究新方法[M],唐善或,程绍进译.北京:石油工业出版社,1992:435-446.
    [26]Wan Yunus W. M. Z., Taylor J., Bloor D. M., Hall D. G. Electrochemical measurements on the binding of sodium dodecyl sulfate and dodecyltrimethylammoniurn bromide with a and P cyclodextrins [J]. J. Phys. Chem.1992,96,8979-8982.
    [27]Takisawa N., Thomason M., Bloor D. M., Wyn-Jones E. Ultrasonic relaxation and electrochemical studies of the micellization of sodium decyl sulfate and decyltrimethylammonium bromide in glycerol/water mixtures [J]. J. Colloid Interface Sci.1993,157,77-81.
    [28]Palepu R., Gharibi H., Bloor D. M., Wyn-Jones E. Electrochemical studies associated with the micellization of cationic surfactants in aqueous mixtures of ethylene glycol and glycerol [J]. Langmuir 1993,9,110-112.
    [29]Mwakibete H., Bloor D. M., Wyn-Jones E., Determination of the complexation constants between alkylpyridinium bromide and a and β cyclodextrins using electromotive force methods [J]. Langmuir 1994,10,3328-3331.
    [30]Bloor D. M., Holzwarth J. F., Wyn-Jones E., Polymer/surfactant interactions:the use of isothermal titration calorimetry and emf measurements in the sodium dodecyl sulfate/poly(n-vinylpyrrolidone) system [J]. Langmuir 1995,11, 2312-2313.
    [31]Wan-Badhi W. A., Lukas T., Bloor D. M., Wyn-Jones E. Ultrasonic relaxation and electrochemical measurements of the micellization of sodium dodecyl sulfate and sodium dihexylsulfosuccinate [J]. J. Colloid Interface Sci.1995,169, 462-467.
    [32]Ghoreishi S. M., Li Y., Bloor D. M., Wart J., Wyn-Jones E. Electromotive force studies associated with the binding of sodium dodecyl sulfate to a range of nonionic polymers [J]. Langmuir 1999,15,4380-4387.
    [33]Ghoreishi S. M., Fox G. A., Bloor D. M., Holzwarth J. F., Wyn-Jones E. EMF and microcalorimetry studies associated with the binding of the cationic surfactants to neutral polymers [J]. Langmuir 1999,15,5474-5479
    [34]Li Y, Ghoreishi S. M., Warr J., Bloor D. M., Holzwarth J. F., Wyn-Jones E. Interactions between a nonionic copolymer containing different amounts of covalently bonded vinyl acrylic acid and surfactants:EMF and microcalorimetry studies [J]. Langmuir 1999,15,6326-6332.
    [35]Ghoreishi S. M., Li Y., Holzwarth J. F., Khoshdel E., Ware J., Bloor D. M., Wyn-Jones E. The interaction between nonionic dendrimers and surfactants-electromotive force and microcalorimetry studies [J]. Langmuir 1999, 15,1938-1944.
    [36]Li Y, Xu R., Bloor D. M., Penfold J., Holzwarth J. F., Wyn-Jones E. Moderation of the interactions between sodium dodecyl sulfate and poly(vinylpyrrolidone) using the nonionic surfactant hexaethyleneglycol mono-n-dodecyl ether C12~EO6: an electromotive force, microcalorimetry, and small-angle neutron scattering study [J]. Langmuir 2000,16,8677-8684.
    [37]Li Y, Xu R., Bloor D. M., Holzwarth J. F., Wyn-Jones E. The binding of sodium dodecyl sulfate to the ABA block copolymer pluronic F127 (EO97~PO69~EO97): an electromotive force, microcalorimetry, and light scattering investigation [J]. Langmuir 2000,16,10515-10520.
    [38]Ghoreishi Y L., Warr J., Bloor D. M., Holzwarth J. F., Wyn-Jones E. Binding of sodium dodecyl sulfate to some polyethyleneimines and their ethoxylated derivaties at different pH values, electromotive force and microcalorimetry studies [J]. Langmuir 2000,16,3093-3100.
    [39]Xu R., Bloor D. M., Preparation and properties of coated-wire ion-selective electrodes for anionic and cationic surfactants [J]. Langmuir 2000,16, 9555-9558.
    [40]Li Y., Xu R., Couderc S., Bloor D. M., Holzwarth J. F., Wyn-Jones E. Binding of tetradecyltrimethylammonium bromide to the ABA block copolymer pluronic F127 (EO97-PO69-EO97):electromotive force, microcalorimetry, and light scattering studies [J]. Langmuir 2001,17,5742-5747.
    [41]Li Y., Xu R., Couderc S., Bloor D. M., Warr J., Penfold J., Holzwarth J. F., Wyn-Jones E. Structure of the complexes formed between sodium dodecyl sulfate and a charged and uncharged ethoxylated polyethyleneimine:small-angle neutron scattering, electromotive force, and isothermal titration calorimetry measurements [J]. Langmuir 2001,17,5657-5665.
    [42]Li Y., Xu R., Couderc S., Bloor D. M., Wyn-Jones E., Holzwarth J. F. Binding of sodium dodecyl sulfate (SDS) to the ABA block copolymer pluronic F127 (EO97-PO69-EO97):F127 aggregation induced by SDS [J]. Langmuir 2001,17, 183-188.
    [43]Li Y., Xu R., Couderc S., Ghoreishi S. M., Warr J., Bloor D. M., Holzwarth J. F. Interactions between sodium dodecyl sulfate and six nonionic copolymers containing 10 mol of different covalently bonded derivatives of vinyl acrylic acid: electromotive force and microcalorimetry studies [J]. Langmuir 2003,19, 2026-2033.
    [44]Sidhu J., Bloor D. M., Couderc-Azouani S., Penfold J., Holzwarth J. F., Wyn-Jones E. Interactions of poly(amidoamine) dendrimers with the surfactants SDS, DTAB, and C12EO6:an equilibrium and structural study using a SDS selective electrode, isothermal titration calorimetry, and small angle neutron scattering [J]. Langmuir 2004,20,9320-9328.
    [45]Couderc-Azouani S., Sidhu J., Georgiou T. K., Charalambous D. C., Vamvakaki M., Patrickios C. S., Bloor D. M., Penfold J., Holzwarth J. F., Wyn-Jones E., Binding of sodium dodecyl sulfate to linear and star homopolymers of the nonionic poly(methoxyhexa(ethylene glycol) methacrylate) and the polycation poly(2-(dimethylamino)ethyl methacrylate):electromotive force, isothermal titration calorimetry, surface tension, and small-angle neutron scattering measurements [J]. Langmuir 2004,20,6458-6469.
    [46]Couderc-Azouani S., Sidhu J., Thurn T., Xu R., Bloor D. M., Penfold J., Holzwarth J. F., Wyn-Jones E., Binding of sodium dodecyl sulfate and hexaethylene glycol mono-n-dodecyl ether to the block copolymer L64: electromotive force, microcalorimetry, surface tension, and small angle neutron scattering investigations of mixed micelles and polymer/micellar surfactant complexes [J]. Langmuir 2005,21,10197-10208
    [47]Treiner C., Mannebach M. H., Counter ion condensation on mixed cationic/nonionic micellar systems:Bjerrum's electrostatic condition [J]. Colloid Polym sci.1990,268,88-95.
    [48]Treiner C., Fromon M., Mannebach M. H. Evidences for noncondensed counterions in the nonionic-rich composition domain of mixed anionic/nonionic micelles [J]. Langmuir 1989,5,283-286.
    [49]Treiner C., Khodja A. A., Fromon M. Counterion condensation on mixed anionic/nonionic surfactant micelles:Bjerrum's limiting condition [J]. J. Colloid Interface Sci.1989,128,416-421.
    [50]Gharibi H., Javadian S., Sohrabi B., Behjatmanesh R. Investigation of interaction parameters in mixed micelle using pulsed field gradient NMR spectroscopy [J]. J. Colloid Interface Sci.2005,285,351-359.
    [51]Chan W.H., Shiu K.K., Gu X.N. Ion-selective electrodes in organic analysis: primary amine selective polymeric membrane electrodes based on a calix [6] arene ionophore [J]. Analyst 1993,118,863-867.
    [52]Meszaros R., Varga I., Gilanyi T. Effect of polymer molecular weight on the polymer/surfactant interaction [J]. J. Phys. Chem. B 2005,109,13538-13544.
    [53]Dai S., Tam K. C., Wyn-Jones E., Jenkins R. D. Isothermal titration calorimetric and electromotive force studies on binding interactions of hydrophobic ethoxylated urethane and sodium dodecyl sulfate of different molecular masses [J]. J. Phys. Chem. B 2004,108,4979-4988.
    [54]Yuan S.L., Cai Z.T., Xu G.Y., Jiang Y.S., Mesoscopic simulation study on the interaction between polymer and C12NBr or C9phNBr in aqueous solution [J]. Colloid Polym Sci.2003,281,1069-1075.
    [55]Shirahama K., Himuro A., Takisawa N., Binding of hexadecylammonium surfactants to water-soluble neutral polymers [J]. Colloid Polymer Sci.1987,265, 96-100.
    [56]Gharibi H., Rafati A.A., Feizollahi A., Razavizadeh B.M., Safarpour M.A., Thermodynamic studies of interaction between cationic surfactants and polyvinyl pyrrolidone using potentiometric techniques [J]. Colloids Surf, A 1998,145, 47-60.
    [57]Gharibi H., Rafati A. A. Electrochemical and kinetic studies of micellization of sodium tetradecyl sulfate in the presence of poly(vinylpyrrolidone) [J]. Langmuir 1998,14,2191-2196.
    [58]Ghoreishi S. M., Behpour M., Golestaneh M. Study of inclusion complex formation between a cationic surfactant, two cyclodextrins and a drug. [J]. J Incl Phenom Macrocycl Chem.2008,62,279-284.
    [59]Bao H. Q., Li L., Gan L. H., Zhang H. B. Interactions between ionic surfactants and polysaccharides in aqueous solutions [J]. Macromolecules 2008,41, 9406-9412.
    [60]Griffiths P. C., Roe J. A., Howe A. M., Pitt A. R. Decreased surfactant activity coefficients in polymer-surfactant mixtures [J]. Colloid Polym Sci.2004,282, 1160-1164.
    [61]Wang C., Tam K. C. Interactions between poly (acrylic acid) and sodium dodecyl sulfate:isothermal titration calorimetric and surfactant ion-selective electrode studies [J]. J. Phys. Chem. B 2005,109,5156-5161.
    [62]Thalberg K., Lindman B., Bergfeldt K. Phase behavior of systems of polyacrylate and cationic surfactants [J]. Langmuir 1991,7,2893-2898.
    [63]Kosmella S., Ktz J., Shirahama K., Liu J. Cooperative nature of complex formation in mixed polyelectrolyte-surfactant Systems [J]. J. Phys. Chem. B 1998,102,6459-6464.
    [64]Treeby M., Chitanu G. C., Kogej K. J. Association of cationic surfactants with maleic acid copolymers:dependence of binding on the nature of the neutral comonomer unit [J]. J. Colloid Interface Sci.2005,288,280-289.
    [65]Lofroth J. E., Johansson L., Norman A.C., Wettstrom K. Interactions between surfactants and polymers, I:HPMC [J]. Progr Colloid Polym Sci.1991,84, 73-77.
    [66]Lee J., Moroi Y. Solubilization of n-alkylbenzenes in aggregates of sodium dodecyl sulfate and a cationic polymer of high charge density (II) [J]. Langmuir 2004,20,6116-6119.
    [67]Nizri G., Lagerge S., Kamyshny A., Major D. T., Magdassi S. Polymer surfactant interactions:Binding mechanism of sodium dodecyl sulfate to poly (diallyl dimethyl ammonium chloride) [J]. J. Colloid Interface Sci.2008,320,74-81.
    [68]Liu J., Takisawa N., Shirahama K. The interaction of mixed surfactants with polyelectrolytes [J]. Colloid Polym Sci.1999,277,247-251.
    [69]Kuntz D. M., Walker L. M. Characterization of surfactant partitioning in polyelectrolyte-surfactant nanorod aggregates observed with a surfactant-specific electrode [J]. Ind. Eng. Chem. Res.2009,48,2430-2435.
    [70]Thongngam M., Julian McClements D. Influence of pH, ionic strength, and temperature on self-association and interactions of sodium dodecyl sulfate in the absence and presence of chitosan [J]. Langmuir 2005,21,79-86.
    [71]Fruhner H., Kretzschmar G. The interaction of anionic surfactants with gelatin [J]. Colloid Polym Sci.1992,270,177-182.
    [72]Henriquez M., Abuin E., Lissi E. Interactions of ionic surfactants with gelatin in fluid solutions and the gel state studied by fluorescence techniques, potentiometry, and measurements of viscosity and gel strength [J]. Colloid Polym Sci.1993,271,960-966.
    [73]Maulik S., Dutta P., Chattoraj D.K., Moulik S.P. Biopolymer-surfactant interactions:5 Equilibrium studies on the binding of cetyltrimethyl ammonium bromide and sodium dodecyl sulfate with bovine serum albumin, b-lactoglobulin, hemoglobin, gelatin, lysozyme and deoxyribonucleic acid [J]. Colloids Surf., B 1998,11,1-8.
    [74]Fruhner H., Kretzschmar G. Effect of pH on the binding of alkyl sulfates to gelatin [J]. Colloid Polym Sci.1989,267,839-843.
    [75]Wfistneck R., Wetzal R., Buder E., Hermel H. The modification of the triple helical structure of gelatin in aqueous solution I. The influence of anionic surfactants, pH-value, and temperature [J]. Colloid Polym Sci.1988,266, 1061-1067.
    [76]Wfistneck R., Buder E., Wetzel R., Hermel H. The modification of the triple helical structure of gelatin in aqueous solution III. The influence of cationic surfactants [J]. Colloid Polym Sci.1989,267,429-433.
    [77]Inoue K., Sekido T., Sano T. Binding of sodium alkyl sulfates to human erythrocyte studied with a surfactant ion selective electrode [J]. Langmuir 1996, 12,4644-4650.
    [78]Melnikov S. M., Sergeyev V. G., Yoshikawa K. Transition of double-stranded DNA chains between random coil and compact globule states induced by cooperative binding of cationic surfactant [J]. J. Am. Chem. Soc.1995,117, 9951-9956.
    [79]Mokus M., Kragh-Hansen U., Letellier P., Maire P., Moller J.V. Construction and use of a detergent-sensitive electrode to measure dodecyl sulfate activity and binding [J]. Anal. Biochem.1998,264,34-40.
    [80]Bordbar A.K., Sohrabi N., Gharibi H. Binding set analysis for interaction of human serum albumin with cethyl trimethylammonium bromide [J]. Bull. Korean Chem. Soc.2004,25,791-795.
    [81]Bordbar A.K., Taheri-Kafrani A. Binding and fluorescence study on interaction of human serum albumin (HSA) with cetylpyridinium chloride (CPC) [J]. Colloids Surf., B 2007,55,84-89.
    [82]Gorelov A., Kudryashov E., Jacquier J. C., McLoughlin D., Dawson K. Complex formation between DNA and cationic surfactant [J]. Physica A 1998,249, 216-255.
    [83]Melnikov S. M., Sergeyev V. G., Yoshikawa K. Discrete coil-globule transition of large DNA induced by cationic surfactant [J]. J. Am. Chem. Soc.1995,117, 2401-2408.
    [84]Murata H., Satake I., Hayakawa K., Tanokura M. Conformational phase diagram of poly(L-lysine) in sodium alkanesulfonate aqueous solutions at various temperatures [J]. Colloid Polym Sci.2006,284,725-732.
    [85]Arrigler V., Kogej K., Majhenc J. Sasa. Interaction of cetylpyridinium chloride with giant lipid vesicles [J]. Langmuir 2005,21,7653-7661.
    [86]Ghoreishi S.M., Behpour M., Ghafari Farsani A. Study of interaction between a cationic surfactant and two anionic azodyes by ion-selective electrode technique and spectrophotometry [J]. Dyes and Pigments 2007,74,585-589.
    [87]Simoncic B., Kert M. Influence of the chemical structure of dyes and surfactants on their interactions in binary and ternary mixture [J]. Dyes and Pigments 2008, 76,104-112.
    [88]Kert M., Simoncic B., The influence of nonionic surfactant structure on the thermodynamics of anionic dyeecationic surfactant interactions in ternary mixtures [J]. Dyes and Pigments 2008,79,59-68.
    [89]Shimizu T., Cooperative binding of surfactant ions by small oligomers of opposite charge [J]. J. Phys. Chem. B 2003,107,8228-8231.
    [90]Lucassen-Reynolds E. (ed.), Anionic Surfactants, Marcel Dekker, New York, 1981.
    [91]Saito S., Kitamura K., Counterion effect of tetraalkylammonium and long-chain alkylammonium salts in the interaction with nonionic polymers [J]. J. Colloid Interface Sci.1971,35,346-353.
    [92]Schwuger M.J. Mechanism of interaction between ionic surfactants and polyglycol ethers in water [J]. J. Colloid Interface Sci.1973,43,491-498.
    [93]Alizadeh N., Mahmodian M. A new dodecylsulfate ion-selective sensor based on electrochemically prepared polypyrrole and PVC [J]. Electroanalysis 2000,12, 509-512.
    [94]Fox G. J., Bloor D. M., Holzwarth J. F., Wyn-Jones E. Use of isothermal titration microcalorimetry to monitor the adsorption/desorption processes of sodium dodecyl sulfate with neutral polymers [J]. Langmuir 1998,14,1026-1030.
    [95]Li Y., Bloor D. M., Wyn-Jones E. Polymer/surfactant interactions:The controlled desorption of sodium dodecyl sulfate (SDS) from a polymer/SDS complex in aqueous solution [J]. Langmuir 1996,12,4476-4478.
    [96]Wang C., Tam K. C., Tan C. B. Binding of dodecyltrimethylammonium bromide to pH-responsive nanocolloids containing cross-linked methacrylic acid-ethyl acrylate copolymers [J]. Langmuir 2004,20,7933-7939.
    [97]Bloor D.M., Gray J., Hughes J., Tiddy G. J. T. Surfactant-specific electrode measurements of mesophases. Electrode and X-ray measurements of hexadecyltrimethylammonium bromide/hexadecanol gel (L) dispersions show large, nonequilibrium dissolution effects [J]. Langmuir 2001,17,6127-6131.
    [98]Satake I., Yang J.T. Interaction of sodium decyl sulfate with poly(L-ornithine) and poly(L-lysine) in aqueous solution [J]. Biopolymers 1976,15,2263-2275.
    [99]Holmberg K., Jonsson B., Lindman B. Surfactants and polymers in aqueous solution [M]. Chichester:John Wiley & Sons,1998,1-120.
    [100]Kwak J. C. T. Polymer-surfactant systems [M]. New York:Marcel Dekker, 1998,239-256.
    [101]Onesippe C., Lagerge S. Study of the complex formation between sodium dodecyl sulfate and chitosan [J]. Colloids Surf. A 2008,317,100-108.
    [102]Monteux C., Williams C. E., Meunier J. Adsorption of oppositely charged polyelectrolyte/surfactant complexes at the air/water interface:formation of interfacial gels [J]. Langmuir 2004,20,57-63.
    [103]Winnik M. A., Bysstryak S. M., Chassenieux C. Study of interaction of poly(ethylene imine) with sodium dodecyl sulfate in aqueous solution by light scattering, conductometry, NMR, and microcalorimetry [J]. Langmuir 2000,16, 4495-4510.
    [104]李国宝,马洪敏,李干佐,郝京诚.水相和特殊介质中有序聚集体的结构、性质和应用(V)——离子选择性电极在表面活性剂研究体系中的应用.日用化学工业2009,39,428-435.
    [105]Liu J., Takisawa N., Shhirahama K. Binding of binary surfactants to sodium poly(1-glutamate) as studied by potentiometric titration and circular dichroism [J]. J Phys. Chem. B 1998,102,6696-6701.
    [106]栾玉霞,徐桂英,陈爱民.选择性膜电极研究表面活性剂与大分子的相互作用[J].物理化学学报2003,19,185-192.
    [107]李一鸣,徐桂英,陈爱民.介观动力学模拟和结合等温线研究十二烷基氧丙基-p-羟基三甲基溴化铵与黄原胶相互作用[J].科学通报2007,56,1991-1996.
    [108]Vinetsky Y., Magdassi S. Formation and surface properties of microcapsules based on gelatin-sodium dodecyl sulphate interactions [J]. Colloids Surf. A 1996,122,227-235.
    [109]Li Y., Kwak C. T. Rheology and binding studies in aqueous systems of hydrophobically modified acrylamide and acrylic acid copolymers and surfactants [J]. Colloids Surf. A 2003,225,169-180.
    [110]何煦,李宏波,黄建滨.10-十一烯酸衍生物混合体系有序溶液与聚集体研究[J].高等学校化学学报2002,23,287-290.
    [111]Hao J., Yuan Z., Liu W. In situ vesicle formation by a kinetic reaction in aqueous mixtures of single-tailed catanionic surfactants [J]. J. Phys. Chem. B 2004,108,5105-5112.
    [112]Silvander M., Karlsson G., Edwards K. Vesicle solubilization by alkyl sulfate surfactants:a Cryo-TEM study of the vesicle to micelle transition [J]. J. Colloid Interface Sci.1996,179,104-113.
    [113]Gustafsson J., Oradd G., Nyden M. Defective lamellar phases and micellar polymorphism in mixtures of glycerol monooleate and cetyltrimethyl ammonium bromide in aqueous solution [J]. Langmuir 1998,14,4987-4996.
    [1]赞恩R.主编,表面活性剂溶液研究新方法[M],唐善或,程绍进译.北京:石油工业出版社,1992:435-446.
    [2]Botre C., Crescenzi V., Liquori A. Proceedings of the third international congress on surface active substance active substances, All 3, No.1960,49,302.
    [3]Kovacs B., Csoka B., Nagy G., Ivaska A. All-solid-state surfactant sensing electrode using conductive polymer as internal electric contact [J]. Anal. Chim. Acta 2001,437,67-76.
    [4]Langmaier J., Samcova E., Same Z. Potentiometric sensor for heparin polyion: Tentiometric sensor for heparin polyion:ransient behavior and response mechanism [J]. Anal. Chem.2007,79,2892-2900.
    [5]Sandeep R. P., Animesh K. R. Membrane electrode sensitive to a cationic surfactant n aquo-organic media [J]. Anal. Chim. Acta 2004,518,87-91.
    [6]Rosatzin T., Bakker E., Suzuki K., Simon W. Lipophilic and immobilized anionic additives in solvent polymeric membranes of cation-selective chemical sensors [J]. Anal. Chim. Acta 1993,280,197-208.
    [7]Gabrielli C., Hemery P., Letellier P., Masure M., Perrot H., Rahmi M.I., Turmine M. Investigation of ionic surfactant-selective electrodes by EIS [J]. Electrochim. Acta 2002,47,2117-2126.
    [8]Panda A.K., Possmayer F., Petersen N.O., Nage K., Moulik S.P. Physico-chemical studies on mixed oppositely charged surfactants:Their uses in the preparation of surfactant ion selective membrane and monolayer behavior at the air water interface [J]. Colloids Surf., A 2005,264,106-113.
    [9]Shaheen A., Kaur I., Mahajan R. K. Potentiometric studies of micellization behavior of cationic surfactants in the presence of glycol additives and triblock polymer (Pluronic F68), using surfactant-selective sensors based on neutral ion-pair complexes [J]. Ind. Eng. Chem. Res.2007,46,4706-4709.
    [10]Javadian S., Gharibi H., Bromand Z., Sohrabi B. Electrolyte effect on mixed micelle and interfacial properties of binary mixtures of cationic and nonionic surfactants [J]. J. Colloid Interface Sci.2008,318,449-456.
    [11]Wang C., Tam K. C. Interactions between poly (acrylic acid) and sodium dodecylsulfate:Isothermal titration calorimetric and surfactant ion-selective electrode studies [J]. J. Phys. Chem. B 2005,109,5156-5161.
    [1]Kaler, E. W.; Herrington, K. L.; Murthy, A. K.; Zasadzinski, J. A. N. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 1989, 245,1371-1374.
    [2]Kaler, E. W.; Herrington, K. L.; Murthy, A. K. Phase behavior and structure of mixtures of anionic and cationic surfactants. J. Phys. Chem.1992,96,6698-6707.
    [3]Yatcilla M. T.; Herrington, K. L.; Brasher, L. L.; Kaler, E. W.; Chiruvolu, S.; Zasadzinski, J. A. Phase behavior of aqueous mixtures of cetyltrimethyl ammonium bromide (CTAB) and sodium octyl sulfate (SOS). J. Phys. Chem. 1996,100,5874-5879.
    [4]Zhao, G.-X.; Xiao, J.-X. Rheological properties of the aqueous mixtures of cationic-anionic surfactants. Colloid & Polymer Sci.1995,273,1088-1094.
    [5]Huang, J.-B.; Zhao, G. X. Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant. Colloid & Polymer Sci.1995, 273,156-164.
    [6]Jung H.T.; Coldren B.; Zasadzinski J.A.; Iampietro D.J; Kaler E.W. The origins of stability of spontaneous vesicles [J]. Proc Natl Acad Sci.2001,98,1353-1357.
    [7]Bergstrom M.; Pedersen J.S. A small-angle neutron scattering study of surfactant aggregates formed in aqueous mixtures of sodium dodecyl sulfate and didodecyldimethylammonium bromide [J]. J Phys Chem B 2000,104,4155-4163.
    [8]Kondo Y.; Uchiyama H.; Yoshino N.; Nishiyama K.; Abe M. Spontaneous vesicle formation from aqueous solutions of didodecyldimethylammonium bromide and sodium dodecyl sulfate mixtures [J]. Langmuir,1995,11,2380-2384.
    [9]Chen W. J.; Zhai L. M.; Li G. Z.; Li B. Q.; Xu J. Spontaneous vesicle formation and vesicle-tubular microstructure transition in aqueous solution of a poly-tailed cationic and anionic surfactants mixture [J]. J Colloid Interface Sci.,2004,278, 447-452.
    [10]Hao J. C.; Yuan Z. W.; Liu W. M.; Hoffmann H. In situ vesicle formation by a kinetic reaction in aqueous mixtures of single-tailed catanionic surfactants [J]. J. Phys. Chem. B 2004,108,5105-5112.
    [11]Namani T.; Walde P. From decanoate micelles to decanoicacid/dodecylbenzene sulfonate vesicles [J]. Langmuir 2005,21,6210-6219.
    [12]Baglioni P.; Rivara-Minten E.; Dei L.; Ferroni E. ESR study of sodium dodecyl sulfate and dodecyltrimethylammonium bromide micellar solutions:effect of urea [J]. J. Phys.Chem.1990,94,8218-.8222.
    [13]Krishnakumar, S.; Somasundarn, P. Aggregation behavior of aerosol OT in nonaqueous solvents and its desorption—an ESR study [J]. J. Colloid Interface Sci.1994,162,425-430.
    [14]Hao J. C.; Wang T.; Shi S.; Lu R.; Wang H. Electron spin resonance study of effect of urea on microenvironmental properties of alkylbenzenesulfonate micellar solutions [J]. Langmuir 1997,13,1897-1900.
    [15]Marques E. F; Regev O.; Khan A.; da Graca Miquel M.; Lindman B. Vesicle formation and general phase behavior in the catanionic mixture SDS-DDAB-water. The anionic-rich side [J]. J. Phys. Chem. B 1998,102,6746-6758.
    [16]Marques E. F.; Regev O.; Khan A., da Graca Miquel M., Lindman B. Vesicle formation and general phase behavior in the catanionic mixture SDS-DDAB-water. The cationic-rich side [J]. J. Phys. Chem. B,1999,103,8353-8363.
    [17]董姝丽,阳离子碳氟表面活性剂DEFUMAC1及其混合体系聚集特性的NMR研究,山东大学,博士学位论文,2008.
    [18]Horbaschek K.; Hoffmann H.; Hao J. C. Classic La phases as opposed to vesicle phases in cationic-anionic surfactant mixtures [J]. J. Phys. Chem. B 2000,104, 2781-2784.
    [19]Talhout R.; Engberts J. B. F. N. Self-assembly in mixtures of sodium alkyl sulfates and alkyltrimethylammonium bromides:aggregation behavior and catalytic properties [J]. Langmuir 1997,13,5001-5006.
    [20]Yaacob II; Bose A. An investigation of microstructures in cationic/anionic surfactant suspensions by cryogenic transmission electron microscopy [J]. J. Colloid Interface Sci.1996,178,638-647.
    [21]Kadi M.; Hansson P.; Almgren M. Determination of isotherms for binding of surfactants to vesicles using a surfactant-selective electrode [J]. J. Phys. Chem. B 2004,108,7344-7351.
    [22]Arrigler V.; Kogej K.; Majhenc J.; Sasa. Interaction of cetylpyridinium chloride with giant lipid vesicles [J]. Langmuir 2005,21,7653-7661.
    [23]Treiner C.; Fromon M.; Mannebach M. H. Evidences for noncondensed counterions in the nonionic-rich composition domain of mixed anionic/nonionic micelles [J]. Langmuir 1989,5,283-286.
    [24]Gharibi H.; Javadian S.; Sohrabi B.; Behjatmanesh R. Investigation of interaction parameters in mixed micelle using pulsed field gradient NMR spectroscopy [J]. J. Colloid Interface Sci.2005,285,351-359.
    [25]Meszaros R.; Varga I.; Gilanyi T. Effect of polymer molecular weight on the polymer/surfactant interaction [J]. J. Phys. Chem. B 2005,109,13538-13544.
    [26]Nizri G.; Lagerge S.; Kamyshny A.; Major D. T.; Magdassi S. Polymer-surfactant interactions:Binding mechanism of sodium dodecyl sulfate to poly(diallyldimethylammonium chloride) [J]. J. Colloid Interface Sci.2008, 320,74-81.
    [27]Melnikov S. M.; Sergeyev V. G.; Yoshikawa K. Discrete coil-globule transition of large DNA induced by cationic surfactant [J]. J. Am. Chem. Soc.1995,117, 2401-2408.
    [28]Horbaschek K.; Hoffmann H.; Hao J. C. Classic La phases as opposed to vesicle phases in cationic-anionic surfactant mixtures [J]. J. Phys. Chem. B 2000,104, 2781-2784.
    [29]Winterhalter M.; Helfrich W. Bending Elasticity of Electrically Charged Bilayers: Coupled Monolayers, Neutr al Surfaces, and Balancing Stresses [J]. J. Phys. Chem.,1992,96,327-330.
    [30]Koehler, R. D.; Raghavan, S. R.; Kaler, E. W. Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants [J]. J. Phys. Chem. B 2000,104,11035-11044.
    [31]Raghavan, S. R.; Fritz, G.; Kaler, E. W. Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants [J]. Langmuir 2002,18,3797-3803.
    [32]Schubert, B. A.; Kaler, E. W.; Wagner, N. J. The microstructure and rheology of mixed cationic/anionic wormlike micelles [J]. Langmuir 2003,19,4079-4089.
    [33]Hassan, P. A.; Valaulikar, B. S.; Manohar, C.; Kern, F.; Bourdieu, L.; Candau, S. J. Vesicles to micelle transition:rheological investigations [J]. Langmuir 1996, 72,4350-4357.
    [34]Narayanan, J.; Manohar, C.; Kern, F.; Lequeux, F.; Candau, S. L. Linear viscoelasticity of wormlike micellar solutions found in the vicinity of a vesicle-micelle transition [J]. Langmuir 1997,13,5235-5243.
    [35]Cates, M. E. Reptation of living polymers:dynamics of entangled polymers in the presence of reversible chain-scission reactions [J]. Macromolecules 1987,20, 2289-2296.
    [36]李洪光,无盐阴/阳离子表面活性剂中富勒烯的囊泡增溶和碳纳米管的稳定分散,山东大学,博士学位论文,2008.
    [37]Rouse, P. E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers [J]. J. Chem. Phys.1953,21,1272-1280.
    [1]Kronberg B., Surfactant mixtures [J]. Colloid Interface Sci.1997,2,456-463.
    [2]Shiloach A., Blankschtein D., Predicting micellar solution properties of binary surfactant mixtures [J]. Langmuir 1998,14,1618-1636.
    [3]Bohner M., Ring T.A., Rapoport N., Caldwell K.D., Fibrinogen adsorption by PS latex particles coated with various amounts of a PEO/PPO/PEO triblock copolymer [J]. J. Biomater. Sci., Polym.2002,13,733-737.
    [4]Husseini G.A., Myrup G.D., Pitt W.G., Christensen D.A., Rapoport N.Y., Factors affecting acoustically triggered release of drugs from polymeric micelles [J]. J. Controlled Release 2000,69,43-52.
    [5]Mortensen K., Pederson J. S., Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution [J]. Macromolecules 1993,26,805-812.
    [6]Goldmints I., Yu G E., Booth C., Smith K. A., Hatton T. A., Structure of (deuterated PEO)-(PPO)-(deuterated PEO) block copolymer micelles as determined by small angle neutron scattering [J]. Langmuir 1999,15,1651-1656.
    [7]Yang L., Alexandridis P., Steytler D. C., Kositza M. J., Holzwarth J. F., Small-angle neutron scattering investigation of the temperature-dependent aggregation behavior of the block copolymer pluronic L64 in aqueous solution [J]. Langmuir 2000,16,8555-8561.
    [8]Chu B., Structure and dynamics of block copolymer colloids [J]. Langmuir 1995, 11,414-421.
    [9]Alexandridis P., Holzwarth J. F., Hatton T. A., Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions:thermodynamics of copolymer association [J]. Macromolecules 1994,27,2414-2425.
    [10]Alexandridis, P.; Hatton, T. A. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces:thermodynamics, structure, dynamics, and modeling [J]. Colloids Surf., A 1995,96,1-46.
    [11]Almgren, M.; Brown, W.; Hvidt, S. Self-aggregation and phase behavior of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers in aqueous solution [J]. Colloid Polym. Sci.1995,273,2-15.
    [12]Bahadur P., Reiss G., Tenside, Block copolymers:a special class of surfactants [J]. Surf., Deterg. 1991,28,173-179.
    [13]赵国玺朱步瑶著,表面活性剂作用原理[M],北京,中国轻工业出版社,2003年第一版,pp427.
    [14]Hecht E., Hoffman H., Kinetic and calorimetric investigations on micelle formation of block copolymers of the poloxamer type [J]. Colloids Surf.1995,96, 181-197.
    [15]Hecht E., Hoffman H., Interaction of ABA block copolymers with ionic surfactants in aqueous solution [J]. Langmuir 1994,10,86-91.
    [16]Hecht E., Mortensen K., Gradzielski M., Hoffmann H., Interaction of ABA block copolymers with ionic surfactants:influence on micellization and gelation [J]. J. Phys. Chem.1995,99,4866-4874.
    [17]Li Y., Xu R., Couderc S., Bloor D. M., Wyn-Jones E., Holzwarth J. F., Binding of sodium dodecyl sulfate (SDS) to the ABA block copolymer pluronic F127 (EO97PO69EO97):F127 aggregation induced by SDS [J]. Langmuir 2001,17, 183-188.
    [18]Li Y., Xu R., Bloor D. M., Holzwarth J. F., Wyn-Jones E., The binding of sodium dodecyl sulfate to the ABA block copolymer pluronic F127 (EO97PO69EO97):An electromotive force, microcalorimetry, and light scattering investigation [J]. Langmuir 2000,16,10515-10520.
    [19]Ghoreishi S. M., Fox G. A., Bloor D. M., Holzwarth J. F., Wyn-Jones E. EMF and microcalorimetry studies associated with the binding of the cationic surfactants to neutral polymers [J]. Langmuir 1999,15,5474-5479.
    [20]Li Y., Xu R., Couderc S., Bloor D.M., Holzwarth J.F., Wyn-Jones E., Binding of tetradecyltrimethylammonium bromide to the ABA block copolymer pluronic F127 (EO97 PO69 EO97):electromotive force, microcalorimetry, and light scattering studies [J]. Langmuir 2001,17,5742-5747.
    [21]Mahajan R. K., Kaur N., Bakshi M. S., Cyclic voltammetry investigation of the mixed micelles of conventional surfactants with L64 and F127 [J]. Colloids Surf. A 2006,276,221-227.
    [22]Kissinger P. T., Heineman W. R., Cyclic voltammetry [J]. J Chem Edu.,1983,60, 702-706.
    [23]Stackellberg M.V.; Pilgram M.; Toome V.Z.; Bestimmung von diffusionskoeffizienten einiger ionen in wabriger losung in gegenwart von fremdelektrolyten [J]. Electrochemistry 1953,57,342-350.
    [24]Mata J.P., Majhi P.R., Guo C., Liu H.Z., Bahadur P., Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media [J]. J. Colloid Interface Sci.2005,292,548-556.
    [25]O'Lenick T. G., Jiang X. M., Zhao B., Catalytic activity of a thermosensitive hydrophilic diblock copolymer-supported 4-N,N-dialkylaminopyridine in hydrolysis of p-nitrophenyl acetate in aqueous buffers [J]. Polymer 2009,50, 4363-4371.
    [26]Jia L. W., Guo C., Yang L. R., Xiang J. F., Tang Y. L., Liu C. Z., Liu H. Z., Mechanism of PEO-PPO-PEO micellization in aqueous solutions studied by two-dimensional correlation FTIR spectroscopy [J]. J. Colloid Interface Sci. 2010,345,332-337.
    [27]Bakshi M. S., Kaur N., Mahajan R. K., Photophysical evaluation of synergism from critical micelle temperature of mixed triblock polymer micelles [J]. J. Photochem. Photobiol. A 2007,186,349-356.
    [28]Bakshi M. S., Bhandari P., Fluorescence studies on the non-ideal mixing in triblock copolymer binary mixtures under the effect of temperature:A block hydration effect [J]. J. Photochem. Photobiol. A 2007,186,166-172.
    [29]Grant C.D., DeRitter M.R., Steege K.E., Fadeeva T.A., Castner Jr. E.W., Fluorescence probing of interior, interfacial, and exterior regions in solution aggregates of poly(ethyleneoxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers [J]. Langmuir 2005,21,1745-1752.
    [30]Grant C.D., Steege K.E., Bunagan M.R., Castner Jr. E.W., Microviscosity in multiple regions of complex aqueous solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) [J]. J. Phys. Chem. B 2005, 109,22273-22284.
    [31]Patel K., Bahadur P., Guo C., Ma J. H., Liu H. Z., Yamashita Y., Khanal A., Nakashima K., Salt induced micellization of very hydrophilic PEO-PPO-PEO block copolymers in aqueous solutions [J]. Eur. Polym. J.2007,43,1699-1708.
    [32]Kadama Y., Singh K., Marangoni D.G., Ma J. H., Aswal V. K., Bahadur P., Thermodynamic of micelle formation of nonlinear block co-polymer Tetronic(?) T904 in aqueous salt solution [J]. Colloids Surf. A 2010,369,121-127.
    [33]Ma J. H., Guo C., Tang Y. L., Xiang J. F., Chen S., Wang J., Liu H. Z., Micellization in aqueous solution of an ethylene oxide-propylene oxide triblock copolymer, investigated with 1H NMR spectroscopy, pulsed-field gradient NMR, and NMR relaxation [J]. J. Colloid Interface Sci.2007,312,390-396.
    [34]Ma J. H., Guo C., Tang Y. L., Wang J., Zheng L. L., Liang X. F., Chen S., Liu H. Z., Microenvironmental and conformational structure of triblock copolymers in aqueous solution by'H and 13C NMR spectroscopy [J]. J. Colloid Interface Sci.2006,299,953-961.
    [35]Desai P. R., Jain N. J., Sharma R. K., Bahadur P., Effect of additives on the micellization of PEO/PPO/PEO block copolymer F127 in aqueous solution [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2001,178, 57-69.
    [36]alvarez-Ramirez J. G., Fernandez V. V. A., Macias E. R., Rharbi Y., Taboada P., Gamez-Corrales R., Puig J. E., Soltero J. F. A., Phase behavior of the Pluronic P103/water system in the dilute and semi-dilute regimes [J]. J. Colloid Interface Sci.2009,333,655-662.
    [37]Wen S. Y., Knoll., Knoll H., Comparison of the characteristic behavior of two azo dyes on temperature dependent microstructure changes in micelles and vesicles [J]. J. Colloid Interface Sci.2005,291,244-250.
    [38]Nandni D., Vohra K. K., Mahajan R. K., Study of micellar and phase separation behavior of mixed systems of triblock polymers [J]. J. Colloid Interface Sci. 2009,338,420-427.
    [39]Mahajan R. K., Vohra K. K., Shaheen A., Aswal V. K., Investigations on mixed micelles of binary mixtures of zwitterionic surfactants and triblock polymers:A cyclic voltammetric study [J]. J. Colloid Interface Sci.2008,326,89-95.
    [40]Mahajan R. K., Kaur N., Bakshi M. S., Cyclic voltammetry investigation of the mixed micelles of cationic surfactants with pluronic F68 and TritonX-100 [J]. Colloids Surf., A 2005,255,33-39.
    [41]Ding Y. H., Wang Y., Guo R., Aggregation properties of amphiphilic poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymer studied by cyclic voltammetry [J]. J. Surfactants Deterg.2004,7,379-385.
    [42]Cai C., Gao Z. N., Study on micelle diffusion coefficient of aqueous cationic surfactants solution system and their first, and second critical micell concentration (CMC) by electrochemistry [J]. Chemical Research and Appication.2004,16,643-645.
    [43]Zhang X. L.,Wang A. J., Zhang X.S., Xu P., Critical micelle concentration of tetraethylammonium hydroxide aqueous solution [J]. Chin. J. Appl. Chem.2007, 24,374.
    [44]Yang J. Z., Jin Y., Pan W., Study on electrochemistry of FeCl3 in room temperature ionic liquid:BPBF4 [J]. Acta Chim. Sinica 2004,62,2035.
    [45]Ganguly R., Aswal V.K., Hassana P.A., Room temperature sphere-to-rod growth and gelation of PEO-PPO-PEO triblock copolymers in aqueous salt solutions [J]. J. Colloid Interface Sci.2007,315,693-700.
    [46]Dai S., Tam K. C., Wyn-Jones E., Jenkins R. D., Isothermal titration calorimetric and electromotive force studies on binding interactions of hydrophobic ethoxylated urethane and sodium dodecyl sulfate of different molecular masses [J]. J. Phys. Chem. B 2004,108,4979-4988.
    [47]Mahajan R.K., Chawla J., Bakshi M.S., Effects of monomeric and polymeric glycol additives on micellar properties of Tween non-ionic surfactants as studied by cyclic voltammetry [J]. Colloids Surf. A 2004,237,119-124.
    [48]Shirahama K., Himuro A., Takisawa N., Binding of hexadecylammonium surfactants to water-soluble neutral polymers [J]. Colloid Polymer Sci.1987,265, 96-100.
    [49]Mokus M., Kragh-Hansen U., Letellier P., Maire M., M(?)ller J. V., Construction and use of a detergent-sensitive electrode to measure dodecyl sulfate activity and binding [J]. Anal. Biochem.1998,264,34-40.
    [50]Thuresson K., Karlstrom G., Lindman B., Phase diagrams of mixtures of a nonionic polymer, hexanol, and water, an experimental and theoretical study of the effect of hydrophobic modification [J]. J. Phys. Chem.1995,99,3823-3831.
    [51]Wan-Badhi W. A., Wan-Yunus W. M. Z., Bloor D. M., Hall D. G., Wyn-Jones E., Equilibrium and kinetic studies associated with the interaction between sodium dodecyl sulfate and polyvinylpyrrolidone in aqueous solution [J].J.Chem. Soc., Faraday Trans,1993,89,2737-2742.
    [52]Jain N., Trabelsi S., Guillot S., McLoughlin D., Langevin D., Letellier P., Turmine M., Critical aggregation concentration in mixed solutions of anionic polyelectrolytes and cationic surfactants [J]. Langmuir 2004,20,8496-8503.
    [1]Ozgiil Hakli, Canan Karapire, Yevgen Posokhov, Siddik Icli, A study on photophysical properties of some vitamin K3 derivatives [J]. J. Photoch. Photobio. A:Chem.2004,162,283-288.
    [2]Mano N., Mao F., Heller A. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant [J]. J. Am. Chem. Soc. 2003,125,6588-6594.
    [3]Palmore G.T.R., Bertschy H., Bergens S.H., Whitesides G.M. A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts:application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials [J]. J. Electroanal. Chem.1998,443, 155-161.
    [4]Chen J.F., Chu G.S., Zhang Z.C., Zhang M.W., Yao S.D., Lin N.Y. Nanosecond laser photolysis studies of vitamin K3 in aqueous solution [J]. Radial. Phys. Chem. 1999,55,35-39.
    [5]Pe'rez-Ruiz T., Martinez-Lozano C., Toma's V., Martin J. Flow-injection fluorimetric determination of vitamin K1 based on a photochemical reaction [J]. Talanta 1999,50,49-56.
    [6]Berzas Nevado J.J., Murillo Pulgarin J.A., Gomez La Guna M.A. Spectrofluorimetric study of the β-cyclodextrin:vitamin K3 complex and determination of vitamin K3 [J]. Talanta 2000,53,951-959.
    [7]Dozal A., Keyzer H., Kim H.K., Wang W.W. Charge transfer complexes of K vitamins with several classes of antimicrobials [J]. Int. J. Antimicrob. Agents 2000, 14,261-265.
    [8]Sato F., Togo M., Tomokazu Matsue M. K. I., Kosuge J., Fukasaku N., Kurosawa S., Nishizawa M. Enzyme-based glucose fuel cell using Vitamin K3-immobilized polymer as an electron mediator [J]. Electrochem. Commun.2005,7,643-647.
    [9]Chih T., Yeh S. Y., Wang C. M. Evidence and applications for electron transfer between vitamin K3 and oxygen [J]. J. Electroanal. Chem.2003,543,135-142.
    [10]Ogino Y., Takagi K., Kano K., Ikeda T. Reactions between diaphorase and quinone compounds in bioelectrocatalytic redox reactions of NADH and NAD+[J]. J. Electroanal. Chem.1995,396,517-524.
    [11]Takagi K., Kano K., Ikeda T. Mediated bioelectrocatalysis based on NAD-related enzymes with reversible characteristics [J]. J. Electroanal. Chem.1998,445, 211-219.
    [12]Sato A., Kano K., T. Ikeda, Diaphorase/naphthoquinone derivative-modified electrode as an anode for diffusion-controlled oxidation of NADH in electrochemical cells [J]. Chem. Lett.2003,32,880-881.
    [13]Togo M., Takamura A., Asai T., Kaji H., Nishizawa M. An enzyme-based microfluidic biofuel cell using vitamin K3-mediated glucose oxidation [J]. Electrochim. Acta 2007,52,4669-4674.
    [14]Dieckmann G.R., Dalton A.B., Johnson P.A., Razal J., Chen J., Giordano G.M. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices [J]. J. Am. Chem. Soc.2003,125,1770-1777.
    [15]Haremza J.M., Hahn M.A., Krauss T.D., Chen S., Calcines J. Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes [J]. Nano Lett.2002,2,1253-1258.
    [16]Hrapovic S., Liu Y.L., Male K.B., Luong J.H.T. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes [J]. Anal. Chem. 2004,76,1083-1088.
    [17]Baughman R.H., Cui C., Zakhidov A.A., Iqbal Z., Barisci J.N., Spinks G.M., Wallace G.G., Mazzoldi A., Rossi D.D., Rinzler A.G., Jaschinski O., Roth S., Kertesz M. Carbon Nanotube Actuators [J]. Science 1999,284,1340-1344.
    [18]Satake A., Miyajima Y., Kobuke Y. Porphyrin-carbon nanotube composites formed by noncovalent polymer wrapping [J]. Chem. Mater.2005,17,716-724.
    [19]Zhao Q., Buongiorno Nardelli M., Lu W., Bernholc J. Carbon nanotube-metal cluster composites:A new road to chemical sensors? [J]. Nano Lett.2005,5, 847-851.
    [20]Baskaran D., Mays J.W., Bratcher M.S. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes [J]. Chem. Mater. 2005,17,3389-3397.
    [21]Zhang M., Gorski W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system [J]. J. Am. Chem. Soc.2005,127, 2058-2059.
    [22]Zhang M., Gorski W. Electrochemical sensing based on redox mediation at carbon nanotubes [J].Anal. Chem.2005,77,3960-3965.
    [23]Zhang M., Smith A., Gorski W. Carbon Nanotube-Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes [J]. Anal. Chem. 2004,76,5045-5050.
    [24]Xu Z., Gao N., Chen H., Dong S. Biopolymer and carbon nanotubes interface prepared by self-assembly for studying the electrochemistry of microperoxidase-11 [J]. Langmuir 2005,21,10808-10813.
    [25]Yang M., Yang Y., Yang H., Shen G., Yu R. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors [J]. Biomaterials 2006,27, 246-255.
    [26]Liu Y., Wang M., Zhao F., Xu Z., Dong S. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J]. Biosens. Bioelectron.2005,21,984-988.
    [27]Jiang L., Wang R., Li X., Jiang L., Lu G. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode [J]. Electrochem. Commun.2005,7,597-601.
    [28]Zeng Y., Zhu Z., Wang R., Lu G. Electrochemical determination of bromide at a multiwall carbon nanotubes-chitosan modified electrode [J]. Electrochim. Acta 2005,51,649-654.
    [29]Shieh Y. T., Yang Y. F. Significant improvements in mechanical property and water stability of chitosan by carbon nanotubes [J]. Eur.Polym. J.2006,42, 3162-3170.
    [30]Wu Z., Feng W., Feng Y., Liu Q., Xu X., Sekino T., Fujii A., Ozaki M. Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties [J]. Carbon 2007,45,1212-1218.
    [31]Wang Q., Tang H., Xie Q., Tan L., Zhang Y., Li B., Yao S. Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH [J]. Electrochimica Acta 2007,52, 6630-6637.
    [32]Liu Y., Wang M., Zhao F., Xu Z., Dong S. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J]. Biosens. Bioelectron.2005,21,984-988.
    [33]Cui X., Li C., Zang J., Yu S. Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite [J]. Biosens. Bioelectron. 2007,22,3288-3292.
    [34]T.E. Smith, in:T.M. Devlin (Ed.), Textbook of biochemistry with clinical correlations, pp.929, Wiley-Liss, New York (1992).
    [35]Stamford J.A., Justice J.B. Probing brain chemistry [J]. Anal. Chem.1996,68, 359A-363A.
    [36]Pihel K., David Walker Q., Mark Wightman R. Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry [J]. Anal. Chem.1996,68,2084-2089.
    [37]Mo J. W., Ogorevc B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber [J]. Anal. Chem.2001,73, 1196-1202.
    [38]Raj C. R., Okajima T., Ohsaka T. Gold nanoparticle arrays for the voltammetric sensing of dopamine [J]. J. Electroanal. Chem.2003,543,127-133.
    [39]Raj C. R., Ohsaka T. Electroanalysis of ascorbate and dopamine at a gold electrode modified with a positively charged self-assembled monolayer [J].J. Electroanal. Chem.2001,496,44-49.
    [40]Raj C. R., Tokuda K., Ohsaka T. Electroanalytical applications of cationic self-assembled monolayers:square-wave voltammetric determination of dopamine and ascorbate [J]. Bioelectrochemistry 2001,53,183-191.
    [41]Liu J., Rinzler A.G., Dai H.J., Hafner J.H., Bradley R.K., Boul P.J., Lu A. Iverson T., Shelimov K., Huffman C.B., Rodriguez-Macias F., Shon Y.S., Lee T.R., Colbert,D.T. Smalley R.E. Fullerene pipes [J]. Science 1998,280, 1253-1256.
    [42]Diao P., Liu Z.F., Wu B., Nan X.L., Zhang J., Wei Z. Chemically assembled single-wall carbon nanotubes and their electrochemistry [J]. Chem. Phys. Chem. 2002,3,898-901.
    [43]Pei X., Hao J., Liu W., Preparation and characterization of carbon nanotube-polymer/Ag hybrid nanocomposites via surface RAFT polymerization [J]. J. Phys. Chem. C 2007,111,2947-2952.
    [44]Zhang P., Wu F., Zhao G., Wei X., Selective response of dopamine in the presence of ascorbic acid at multi-walled carbon nanotube modified gold electrode [J]. Bioelectrochemistry 2005,67,109-114.
    [45]Chakraborty S., Raj C. R. Mediated electrocatalytic oxidation of bioanalytes and biosensing of glutamate using functionalized multiwall carbon nanotubes-biopolymer nanocomposite [J]. J. Electroanal. Chem.2007,609, 155-162.
    [46]Electrochemical methods fundamentals and applications,2nd Edition/by A.J. Bard L.R. Faulkner, Translation by Y.H. Shao, G. Y. Zhu, X.D. Dong, B. L. Zhang, pp.167 Chemistry & Chemical engineering Press, Beijing (2005).
    [47]J.Q. Chambers, in:S. Patei, Z. Rappoport (Eds.), The chemistry of quinonoid compounds, vol.2, pp.719, Wiley, New York (1988).
    [48]Sharp M., Petersson M., Edstrom K. Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface [J]. J. Electroanal. Chem.1979,95,123-130.
    [49]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. J. Electroanal. Chem.1979, 101,19-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700