用户名: 密码: 验证码:
高铝钢连铸结晶器保护渣的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保护渣是连铸过程中使用的一种合成渣,其性质对连铸工艺顺行和铸坯表面质量至关重要。保护渣加在钢液面,绝热保温;其与钢液接触部分熔化形成熔渣层,防止弯月面钢液被氧化,吸收钢液中上浮的夹杂;熔渣流入结晶器与铸坯之间,液渣膜润滑铸坯,防止粘结漏钢;固渣膜控制传热,以形成均匀的坯壳。高Al含量钢种连铸过程中,由于钢液中的Al易与常规保护渣中的重要组份SiO_2发生反应导致保护渣w(Al_2O_3)/w(SiO_2)及Al_2O_3含量增加,从而引起保护渣性质的改变,影响连铸工艺顺行。因此,设计性能优良的结晶器保护渣是高铝钢连铸工艺顺行的关键。
     根据高铝钢与保护渣反应的特点,即高Al钢液中的[Al]与常规保护渣中(SiO_2)反应是不可避免的,但该反应在较短时间内可以达到动态平衡,由此,提出了两种高铝钢保护渣的设计思路:(i)低碱度CaO-SiO_2渣系保护渣:该保护渣与高铝钢液中的Al反应达到平衡后,保护渣的性质满足连铸要求;(ii)低SiO_2含量CaO-Al_2O_3渣系保护渣,该渣系能有效的避免保护渣与钢液中的Al发生反应。
     本文采用半球点法测量了保护渣的熔融特性。试验结果表明对于CaO-SiO_2渣系保护渣,随着w(Al_2O_3)/w(SiO_2)增加,保护渣熔点均呈上升趋势;保护渣中增加Li_2O与B_2O_3含量均能有效的降低其熔点,B_2O_3对熔点的影响尤为明显;对于CaO-Al_2O_3渣系保护渣,增加B_2O_3、Li_2O、Na2O、F-、BaO、SrO等含量均能降低保护渣熔化温度,其中Li_2O对熔点的影响最明显。
     采用旋转粘度法测量了保护渣的流变特性。低碱度CaO-SiO_2渣系保护渣在高铝钢浇铸过程中变性为CaO-Al_2O_3-SiO_2渣系;随着w(Al_2O_3)/w(SiO_2)增加,熔渣粘度随之改变;Al_2O_3呈现出两性特征;含有Li_2O+B_2O_3组合的保护渣变性过程中粘度变化平稳且处于合理范围内。对于CaO-Al_2O_3渣系保护渣,B_2O_3、Li_2O、Na2O及F-等能降低保护渣的粘度;随着MgO含量增加,CaO-Al_2O_3渣系熔渣粘度先降低后升高;BaO及SrO含量增加,CaO-Al_2O_3渣系熔渣粘度升高。在Riboud模型基础上,建立了适合高Al钢保护渣的粘度计算模型。
     采用渣膜热流模拟仪研究了保护渣渣膜的传热特性。对于CaO-SiO_2渣系保护渣,随着w(Al_2O_3)/w(SiO_2)增加,渣系的热流密度呈降低趋势,渣膜传热能力减弱;在该渣系中加入一定量的Li_2O及(或)B_2O_3有利于增加渣膜热流密度。对于CaO-Al_2O_3渣系保护渣,B_2O_3降低结晶率,降低渣膜厚度,增加热流密度;Li_2O增加结晶率,降低渣膜厚度,降低热流密度,Na_2O降低结晶率,降低渣膜厚度,增加热流密度;F-增加结晶率,降低渣膜厚度,增加热流密度;MgO及SrO均降低结晶率,降低渣膜厚度,热流密度略有增加,BaO替代CaO后,结晶率降低,降低渣膜厚度,热流密度变化平稳。
     利用热丝法(Single Hot Thermocouple Technique,简称SHTT)构建保护渣的等温转变(Temperature Time Transformation,简称TTT)曲线,研究不同组成对保护渣结晶孕育时间的影响规律;通过构建保护渣的连续冷却转变(Continuous Cooling Transformation,简称CCT)曲线,探讨保护渣组成对临界冷却速度的影响,而且利用SHTT研究了析晶活化能。对于CaO-SiO_2渣系保护渣,Li_2O对结晶孕育时间影响不大,B_2O_3能有效延长孕育时间。对于CaO-Al_2O_3渣系保护渣,随B_2O_3、Na_2O、MgO、BaO和SrO增加,保护渣的TTT曲线向孕育时间增加的方向移动;Li_2O能有效缩短保护渣的晶体孕育时间,同时,提高保护渣的结晶速度,F-对结晶孕育时间影响不大,但能有效提高结晶速率。B_2O_3和Na_2O降低了结晶速率,结晶活化能增加;Li_2O和F-增加了结晶速率,结晶活化能降低;MgO增加了结晶速率,同时也提高了结晶活化能。
     将研究所取得的成果应用于太钢无磁钢实际生产,取得了良好的效果。
Mold slag is a synthetic slag added to the mold during the continuous casting of steel, and its property significantly determines the stability of the continuous casting process of steel and surface quality of the slab. Slag is fed onto the top of the mold to provide thermal insulation; the molten slag protects the steel meniscus from reoxidation and absorbs inclusions from the steel into the molten slag pool; liquid slag ?ows into between solidified shell and a mold, the liquid slag film helps lubrication between the water cooled mold and the solidified shell surface of the steel to prevent sticking against the mold surface, which occasionally leads to breakout, and solid slag film controls heat transfer to achieve uniform shell.
     During the continuous casting of high-Al steel, [Al] is likely to react with (SiO_2) in the mold slag, which results in increase of w(Al_2O_3)/w(SiO_2) ratio and the Al_2O_3 content, respectively. The changes of mold slag composition would lead to the property changes, which influence the smooth operation of the continuous casting process. So, how to design a suitable mold slag is a key issue for the continuous casting of high-Al steel.
     Based on the characteristics of reaction between the [Al] and (SiO_2), that the reaction between the [Al] and (SiO_2) sourced from normal mold slag is inevitable, and this reaction would reach equilibrium in a comparatively short time, two ideas about how to design a suitable mold slag for high-Al steel were proposed: (i) CaO-SiO_2 mold slag with low basicity, this slag would have a suitable property after the reaction between the [Al] and (SiO_2) reached equilibrium; (ii) CaO-Al_2O_3 mold slag with low SiO_2 content and high Al_2O_3 content, this slag would avoid the reaction between the [Al] and (SiO_2).
     Hemisphere point temperature was used to study the melting characteristics of mold slag. The results showed that, for CaO-SiO_2 mold slag, the melting points would increase with the increase of w(Al_2O_3)/w(SiO_2); B_2O_3 and Li_2O could decrease the melting point, especially B_2O_3 exhibited the potent capability to decrease the melting point; for CaO-Al_2O_3 mold slag, the melting point would decrease with the increase of B_2O_3, Li_2O, Na_2O, F-, BaO, SrO, and among these slags, Li_2O had a more evidence influence than others.
     Rotation viscosity was used to study the rheological property of mold slag. Low basicity CaO-SiO_2 slag would be transformed into CaO-Al_2O_3-SiO_2 mold slag during casting of high-Al steel; the molten slag viscosity would change with the increase of w(Al_2O_3)/w(SiO_2), Al_2O_3 presented amphoteric behavior; the viscosity of slag containing both Li_2O and B_2O_3 is suitable and ?uctuates only moderately with the increase in w(Al_2O_3)/w(SiO_2). For CaO-Al_2O_3 series slag, B_2O_3, Li_2O Na_2O and F- could decrease the viscosity, while the viscosity would decrease and then increase with the increase of MgO. With the increase of BaO and SrO, the viscosity of CaO-Al_2O_3 mold slag would increase. Based on the Riboud model, a suitable viscosity mathematical model for the mold slag with high Al_2O_3 content was established.
     Heat flux simulator of mold slag film was used to study the heat transfer behavior of slag film. For the CaO-SiO_2 slag, the heat flux through the slag film would decrease with the increase of w(Al_2O_3)/w(SiO_2); heat flux increases with the increase of Li_2O and/or B_2O_3 content in the mold slag. For the CaO-Al_2O_3 slag, B_2O_3 could decrease the crystallization rate, decrease the thickness of slag film, and increase the heat flux; Li_2O could increase the crystallization rate obviously, decrease the thickness of slag film, and decrease the heat flux; Na_2O could decrease the crystallization rate, decrease the thickness of slag film, and increase the heat flux; F- could increase the crystallization rate, decrease the thickness of slag film, and increase the heat flux; MgO and SrO could decrease the crystallization rate, decrease the thickness of slag film, and increase the heat flux appreciably; using the BaO to replace the CaO, the slag film thickness and crystallization rate would decrease, and the change tendency of heat flux was smoothly.
     The influence of the slag chemical composition on the incubation time of mold slag was studied by constructing Temperature Time Transformation (TTT) diagram, the influence on the critical cooling rate was obtained by constructing of Continuous Cooling Transformation (CCT) using SHTT, in addition, SHTT was used to studied the kinetics of crystallization and crystallization activation energy of CaO-Al_2O_3 slag. For the CaO-SiO_2 slag, Li_2O have little effect on the incubation time, and B_2O_3 could prolong the incubation time obviously. For the CaO-Al_2O_3 slag, B_2O_3, Na_2O, MgO, BaO and SrO would prolong the incubation time; Li_2O would shorten the incubation time, at the same time, increase the rate of crystallization of the slag; F- had little effect on the incubation time, but could increase the rate of crystallization of the slag. B_2O_3 and Na_2O could decrease the crystal growth rate, increase the crystallization activation energy; F- and Li_2O could increase the crystal growth rate, decrease the crystallization activation energy; MgO could increase the crystal growth rate and the crystallization activation energy.
     Through the practical casting application of high-Al content non-manganese steel in the Taiyuan Iron&Steel(Group) Co.,Ltd., and expected results was obtained.
引文
[1] Y Higuchi,Y Tago. Reoxidation behavior in Al killed steel during casting[J]. Tetsu to Hagane, 1999, 85(5):375-381.
    [2] L Zhang, B G Thomas. Evaluation and control of steel cleanliness-review[C]. 85th steelmaking conference proceedings, ISS-AIME, Warrendale, PA, 2002:431-452.
    [3]王明合,胡黎宁,田新中.低碳低硅铝镇静钢的生产实践[J].炼钢, 2004,20(5):33-36.
    [4]刘阳春,傅杰,吴华杰.薄板坯连铸连轧低碳铝镇静钢中酸溶铝的作用研究[J].钢铁, 2007,42(1):23-26.
    [5]陈襄武.炼钢过程的脱氧[M].北京:冶金工业出版社,1991:266-270.
    [6]刘云旭.金属热处理原理[M].北京:机械工业出版社,1981:31-32.
    [7]李成栋.低碳铝镇静钢酸溶铝控制[J].钢铁,1983,18(6): 25-30.
    [8] Y Xu, Z Yu, Q Lin.Use of high strength steel sheet for lightweight and crashworthy car body[J]. Materials and Design,2003,24(3): 177-182.
    [9]张议中,邱伍华.汽车零部件用高强度钢材的进展[J].上海金属, 2000, 22(4): 8-15.
    [10] G Frommeyer, U Brtix, P Neumann. Supra-ductile and high-strength manganese TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ Int., 2003, 43(3): 438-446.
    [11]江利,陈涛.相变诱发塑性锚杆材料控冷热处理组织与性能[J].中国矿业大学学报, 1999, 28(3):269-272.
    [12] P J Jacques, E Girault, A Mertens. The developments of cold-rolled TRIP-assisted multiphase steels. Al-alloyed TRIP-assisted multiphase steels[J]. ISIJ Int., 2001, 41(9):1068-1074.
    [13] M D Meyer, D Vanderschueren, B C De Cooman. The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels[J]. ISIJ Int., 1999,39(8):813-822.
    [14] D Suh, S Park, C Oh. Influence of partial replacement of Si by Al on the change of phase fraction during heat treatment of TRIP steels[J]. Scripta Materialia, 2007, 57(12): 1097–1100.
    [15]李壮,吴迪,王佳夫.无硅TRIP钢力学性能的研究[J].东北大学学报(自然科学版). 2005, 26(5):452-455.
    [16] Z Cheng, S Gao, J Wang. Loss evaluation of non-magnetic tie-plates in transformers[J]. Compel, 1998,17(23):347-351.
    [17]张彦生,苏丽娟.30Mn20Al3无磁钢及低温钢的研究[J].金属学报, 1983, 19(4):253-262.
    [18]谢晓心,张新仁.主要成分和工艺对极低铁损高磁感无取向电工钢磁性的影响[J].钢铁研究,2003,5:52-58.
    [19] W P Tong, Z Han, L M Wang. Low-temperature nitriding of 38CrMoAl steel with ananostructured surface layer induced by surface mechanical attrition treatment[J] Surface and Coatings Technology, 2008, 202(20):4957-4963.
    [20] M Gan, W Pu, L Shen. Mechanical properties of nitrogen implanted 38CrMoAl nitrided steel[J]. Surface and Coatings Technology, 1994, 66(1-3):288-290.
    [21]李明,戎咏华.沉淀硬化模具钢的研制及其发展[J].热处理,2000,1:6-9.
    [22]张华国.E2钢试制工艺探讨[J].特钢技术,2006,1:11-13.
    [23] J B Jeffrey, A M Maureen, T N Thinium. Liquid/solid interactions during continuous casting of high-Al high-strength steels[C]. Aistech 2005 proceeding (11):99-106.
    [24] S Stuart, J Keegan, M Nicole. Production of high-aluminum steel slabs[J]. Iron & Steel technology,2008,5(7):38-49.
    [25] H Yin. Inclusion characterization and thermodynamics for high-Al advanced high-strength steels[J]. Iron & steel technology 2006,3(6):64-73.
    [26]迟景灏,甘永年.连铸保护渣[M].东北大学出版社,辽宁,沈阳:1-3.
    [27] A Theodorakakos, G Bergeles. Numerical investigation of the interface in a continuous steel casting mold water model[J]. Metall. mater. trans. B, 1998, 29(6):1321-1327.
    [28]俞继前,陈家瑛,胡永刚.1Cr18Ni9Ti板坯连铸结晶器保护渣技术[J].钢铁工艺,1995,3:1-5.
    [29] S Diehl, J A Moore, R J Phillips. Improved spherical granule mold flux[C]. 78th steelmaking conference proceeding, Nashville, 1995,78: 351-354.
    [30]蔡开科,程士富.连续铸钢原理与工艺[M].冶金工业出版社,2002, 343-361.
    [31] G Skoczylas. Recent developments in high viscosity mold powders for TiSULC steel grades[C]. 79th Steelmaking Conference Proceeding. Warrendale, PA. 1996, 79:269-274.
    [32] K C Mills, A B Fox. The Role of mould fluxes in continuous casting-so simple yet so complex[J]. ISIJ Int. 2003, 43(10):1479–1486.
    [33]张玉文,丁伟中,朱立光.方坯连铸保护渣渣膜润滑行为的理论研究[J].炼钢, 2002, 18(2):25-28.
    [34]姚曼,王文华,方大成.连铸结晶器与铸坯间保护渣润滑行为的研究[J].钢铁, 2001, 36(3):26-29.
    [35]高爱民.连铸保护渣渣膜润滑的研究现状[J].河北理工学院学报,2003,25(1): 34-38.
    [36] K C Mills. Mould powder for continuous casting[M]. Department of material, Imperial college, London: 44.
    [37]市川健治.保护渣渣膜对其行为和结晶器内传热速度的影响[J].国外钢铁, 1994, 8:36.
    [38] J Cho, H Shibata,T Emi. Thermal mold for resistance at the interface between mold flux film and continuous casting of steels[J], ISIJ Int. 1998, 38(5):440-446.
    [39] K Tsutsumi, T Nagasaka, M Hino. Surface roughness of solidified mold flux in continuous casting process[J]. ISIJ Int. 1999, 39(11):1150-1159.
    [40] H Nakato. Characteristics of new mold fluxes for strand casting of low and ultra low carbon steel slabs[C]. 74th Steelmaking Conference Proceedings. ISS,1991,74:639-646.
    [41]迟景灏,甘永年.连铸保护渣[M].东北大学出版社,辽宁,沈阳:50-51.
    [42]王艺慈,郭俊玉,董方.B2O3对低氟结晶器保护渣理化性能的影响[J].特殊钢, 2008, 29(5):10-12.
    [43]刘著,唐萍,文光华.B2O3在稀土钢连铸保护渣中作用机制的研究[J].稀有金属,2006, 30(4):457-461.
    [44]唐萍,文光华.CSP薄板坯连铸低碳钢结晶器保护渣的研究[J].钢铁,2003,(3):15-17.
    [45]刘承军,朱英雄,姜茂发.连铸保护渣的熔化温度、凝固温度和结晶温度研究[J].炼钢, 2001, 17(1):43-47.
    [46]刘永庆,唐萍,文光华.结晶器含钛无氟保护渣的粘度和熔化特性[J].中国有色金属学报, 2006,16(3):550-554.
    [47]迟景灏,甘永年.连铸保护渣[M].东北大学出版社,辽宁,沈阳:53.
    [48]黄希祜.钢铁冶金原理[D].北京:冶金工业出版社,2005,8:213.
    [49]邱斌,袁守谦,曹余良.MgO和Li2O对预熔型无氟连铸保护渣熔化温度的影响[J].连铸, 2009,(2):44-46.
    [50] H Tomono, W Kurz, W Heinemann. The liquid steel meniscus in molds and its relevance to the surface quality of casting[J]. Metall. mater. trans. B,1981,12B(2): 409-411.
    [51] E Takeuchi, J K Brimacombe. The formation of oscillation marks in the continuous casting of steel slabs[J]. Metall. mater. trans. B, 1984,15B(3): 493-509.
    [52]张洪波,王海之.连铸结晶器振动参数与保护渣物化性能的关系[J].钢铁,1995, 30(11):16-17,20.
    [53]刘承军,王云盛,朱英雄.连铸保护渣的夹杂物吸收速率[J].钢铁研究学报, 2000, 12(Z1):46-50.
    [54]高泽平,苏旺.结晶器保护渣对浸入式水口蚀损的影响[J].湖南冶金,2000,3:17-22.
    [55] M Iguchi, J Yoshida, T Shimizu. Model study on the entrapment of mold powder into molten steel[J]. ISIJ Int. 2000, 40(8): 685–691.
    [56]雷洪,许海虹,朱苗勇.高速连铸结晶器内卷渣机理及其控制研究[J].钢铁, 1999, 34(8):20-23.
    [57]朱苗勇,王军,雷洪.连铸结晶器内钢液卷渣的机理与控制[J].鞍钢技术,2005,2:1-4.
    [58] J H Park, D J Min, H S Song. Amphoteric behavior of alumina in viscous flow and structure of CaO-SiO2(-MgO)-Al2O3 slags[J]. Metall. mater. trans. B. 2004, 35B(4):269-275.
    [75]王德永,姜茂发,刘承军.稀土氧化物对连铸保护渣粘度的影响[J].中国稀土学报, 2005, 23(1): 100-104.
    [76]顾武安,蒋龙,礼重超.低合金钢连铸工艺研究[J].钢铁钒钛,2002,23(3):29-32.
    [77] K C Mills, S Sridhar. Viscosities of ironmaking and steelmaking slags[J]. Ironmak steelmak. 1999,26(4): 261-267.
    [78] F Shahbazian, S Du, K C Mills. Experimental studies of viscosities of some CaO-CaF2-SiO2 slags[J]. Ironmak steelmak. 1999,26(3):193-199.
    [79] G Wen, S Sridhar, P Tang. Development of fluoride-free mold powders for peritectic steel slab casting[J]. ISIJ Int. 2007, 47(8): 1117-1125.
    [80] A B Fox, K C Mills, D Lever. Development of fluoride-free fluxes for billet casting[J]. ISIJ Int. 2005, 45(7): 1051-1058.
    [81]刘承军,孙丽枫,毛天成.TiO2,TiN和Ti(CN)对连铸保护渣粘性特征的影响[J].工业加热, 2007, 36(6):23-24.
    [82]孙丽枫,刘承军,姜茂发.含二氧化钛连铸保护渣的黏性特征[J].硅酸盐学报, 2008, 36(3):395-399.
    [83] A Shankar, M R G. Rnerup, A K Lahiri. Experimental investigation of the viscosities in CaO-SiO2-MgO-Al2O3 and CaO-SiO2-MgO-Al2O3-TiO2 slags[J]. Metall. mater. trans. B. 2003,38(12): 911-915.
    [84] N Saito, N Hori1, K Nakashima. Viscosity of blast furnace type slags[J]. Metall. mater. trans. B.2003,34(5): 509-516.
    [85] P V Riboud, Y Roux, L D Lucas. Improvement of continuous casting powders[M]. Fachber Huttenpraxis Metalveiterverarb, 1981(19):859-869.
    [86] S Seetharaman, S Du. Estimation of the viscosities of binary metallic melts using Gibbs energy of mixing[J]. Metall. Mater. Trans. B, 1994,25B(4):589-595.
    [87] S Du, J Bygden, S Seetharaman. A model for estimation of viscosities of complex metallic and ionic melts[J]. Metall. Mater. Trans. B, 1994, 25B(4):519-525.
    [88] S Seetharaman, S Du, S Seetharaman. Viscosity estimation models for ternary slags[J]. Steel research, 2001, 72(1):3-10.
    [89] M Hanao, M Kawamoto, T Tanaka. Evaluation of viscosity of mold flux by using neural network computation[J], ISIJ Int., 2006, 46(3):346-351.
    [90]张国栋,邵雷,刘海啸.基于BP网络的保护渣性能预测模型的研究[J].耐火材料,2004,38(2): 115-117.
    [91]向嵩,王雨,刘国权.BP改进算法神经网络的保护渣性能预测模型[J].炼钢, 2006, 22(3):45-48.
    [75]王德永,姜茂发,刘承军.稀土氧化物对连铸保护渣粘度的影响[J].中国稀土学报, 2005, 23(1): 100-104.
    [76]顾武安,蒋龙,礼重超.低合金钢连铸工艺研究[J].钢铁钒钛,2002,23(3):29-32.
    [77] K C Mills, S Sridhar. Viscosities of ironmaking and steelmaking slags[J]. Ironmak steelmak. 1999,26(4): 261-267.
    [78] F Shahbazian, S Du, K C Mills. Experimental studies of viscosities of some CaO-CaF2-SiO2 slags[J]. Ironmak steelmak. 1999,26(3):193-199.
    [79] G Wen, S Sridhar, P Tang. Development of fluoride-free mold powders for peritectic steel slab casting[J]. ISIJ Int. 2007, 47(8): 1117-1125.
    [80] A B Fox, K C Mills, D Lever. Development of fluoride-free fluxes for billet casting[J]. ISIJ Int. 2005, 45(7): 1051-1058.
    [81]刘承军,孙丽枫,毛天成.TiO2,TiN和Ti(CN)对连铸保护渣粘性特征的影响[J].工业加热, 2007, 36(6):23-24.
    [82]孙丽枫,刘承军,姜茂发.含二氧化钛连铸保护渣的黏性特征[J].硅酸盐学报, 2008, 36(3):395-399.
    [83] A Shankar, M R G. Rnerup, A K Lahiri. Experimental investigation of the viscosities in CaO-SiO2-MgO-Al2O3 and CaO-SiO2-MgO-Al2O3-TiO2 slags[J]. Metall. mater. trans. B. 2003,38(12): 911-915.
    [84] N Saito, N Hori1, K Nakashima. Viscosity of blast furnace type slags[J]. Metall. mater. trans. B.2003,34(5): 509-516.
    [85] P V Riboud, Y Roux, L D Lucas. Improvement of continuous casting powders[M]. Fachber Huttenpraxis Metalveiterverarb, 1981(19):859-869.
    [86] S Seetharaman, S Du. Estimation of the viscosities of binary metallic melts using Gibbs energy of mixing[J]. Metall. Mater. Trans. B, 1994,25B(4):589-595.
    [87] S Du, J Bygden, S Seetharaman. A model for estimation of viscosities of complex metallic and ionic melts[J]. Metall. Mater. Trans. B, 1994, 25B(4):519-525.
    [88] S Seetharaman, S Du, S Seetharaman. Viscosity estimation models for ternary slags[J]. Steel research, 2001, 72(1):3-10.
    [89] M Hanao, M Kawamoto, T Tanaka. Evaluation of viscosity of mold flux by using neural network computation[J], ISIJ Int., 2006, 46(3):346-351.
    [90]张国栋,邵雷,刘海啸.基于BP网络的保护渣性能预测模型的研究[J].耐火材料,2004,38(2): 115-117.
    [91]向嵩,王雨,刘国权.BP改进算法神经网络的保护渣性能预测模型[J].炼钢, 2006, 22(3):45-48.
    [92]朱立光,丁伟中,张玉文.基于人工神经网络的连铸保护渣性能预测及试验研究[J]. 2001, 17(6):28-30.
    [93] Y Wu, J M Hill, P J Flint. A novel finite element method for heat transfer in the continuous caster[J]. Journal of the Australian Mathematical Society. B, 1994, 35: 263-288.
    [94] K C Mills, A Olusanya, R Brooks. Physical properties of casting powders: part 4 physical properties relevant to fluid and thermal flow[J]. Ironmak steelmak, 1998, 15(5): 257-264
    [95]郑伟栋,盖领军,张春杰.保护渣对结晶器热流的影响[J].连铸,2007, 2:40-42.
    [96]乔国林,童朝南,孙一康.拉速液位与结晶器出钢温度的关系研究[J].铸造技术, 2005,26(10): 906-909.
    [97]孟祥宁,朱苗勇,程乃良.高拉速连铸结晶器的非正弦振动振幅[J].中国有色金属学报, 2007, (17)3: 446-452.
    [98] R B Mahapatra, J K Brimacombe, I V Samarasekera .Mold behavior and its influence on quality in the continuous casting of steel slabs: part II. mold heat transfer, mold flux behavior, formation of oscillation marks, longitudinal off-corner depressions, and subsurface cracks[J]. Metall. mater. trans. B.1991,22(12): 875-888.
    [99]李东辉,白金兰,邱以清.方坯连铸机结晶器凝固传热的模型研究[J].特种铸造及有色合金, 2004,6: 37-41.
    [100] D Kwon, J Choi, I R Lee. Optimization of mold oscillation pattern for the improvement of surface quality and lubrication in slab continuous casting[J]. Steelmaking Conference Proceedings, 1991: 561-568.
    [101]高泽平,苏振江.大方坯连铸结晶器浸入式水口结构优化[J].炼钢, 2008,24(2):42-45.
    [102] J Cho. Radiative component of heat transfer mold flux film during initial solidification in continuous casting of steel[J].ISIJ Int.,1998,38(3):268-275.
    [103] K Nagata, H Fukuyama. Physicochemical properties of CaO-SiO2-CaF2-NaF slag system as a mold flux continuous casting[J].Steel Research, 2003,74(1):31-35.
    [104] A Yamauchi. Heat transfer between mold and strand through mold flux film in continuous casting [J]. ISIJ Int.,1993,33 (1),140-147.
    [105]谢兵.连铸结晶器保护渣相关基础理论的研究及其应用实践[D].重庆大学博士学位论文, 2004:105-110.
    [106] Y Vermeulen, E Divry, M Rigaud. The influence of chemical composition on the crystallization and the heat transfer of synthetic mould fluxes[J]. Canadian Metallurgical Quarterly, 2004, 43(4): 527-534.
    [107]文光华,唐萍,祝明妹.连铸结晶器内渣膜热流检测方法及装置[P].中国. CN1940547, 2007.04.04:1-14.
    [108] A Yamauchi, K Sorimachi, T Sakuraya. Heat transfer between mold and strand through mold flux film in continuous casting of steel[J]. ISIJ Int. 1993, 33(1): 140-147.
    [109] P Tang, C Xu, G. Wen. Heat flux through slag film and its crystallization behavior[J]. J. Iron Steel Res., Int. 2008,15(4):7-11,20.
    [110] C A Pinheiro, I V Samarasekera, J K Brimacombe. Mold flux for continuous casting of steel[J]. Iron and Steelmaker, 1995, 22(12): 43-44.
    [111]刘志宏,席常锁,朱果灵.薄板坯连铸无取向电工钢用保护渣[J].钢铁,2007, 42(2):21-23.
    [112] R Taylor, K C Mills. Physical properties of casting powders: part 3. thermal conductivities of casting Powders[J]. Ironmak steelmak, 1988, 15(4) : 187-194.
    [113] M Jiang, C Zhu, W Han. Surface roughness of flux film in continuous casting mold[J]. J. Iron Steel Res., Int. 2004, 11(6):10-13.
    [114]张殿君,王子亮.保护渣的物性对熔渣摩擦力的影响[J].炼钢,1996,8:26-30.
    [115]董方,王艺慈,王宝峰.CSP结晶器保护渣固态渣膜结构和矿相的分析[J].特殊钢, 2006,27(1):21-23.
    [116]舒俊,金山同,张丽.连铸保护渣结晶矿相的研究[J].钢铁,2001,36(9):21-24.
    [117] K C Mills. The performance of casting powders and their effect on surface quality[C]. Steelmaking conference proceedings, 1991:121-129.
    [118]舒俊,金山同,张丽.连铸结晶器保护渣结晶温度[J].北京科技大学, 2000, 22(6):508-511
    [119]李继铮,陈宝云.保护渣熔渣结晶性能的研究[J].钢铁研究, 1998, 1(1): 11-15.
    [120] Z Zhang. Investigation of the crystallization behaviors of slags through a heat-flux simulator[J]. In press.
    [121] R Carli, V Ghilardi. Managing technological properties of mold fluxes[J]. Iron and Steelmaker, 1998, 25: 43-46.
    [122]朱立光,王硕明.高速连铸保护渣结晶特性的研究[J].金属学报,1999,35(12): 1280-1283.
    [123] K Watanabe. Effect of Crystallization of mold powder on the heat transfer in continuous casting mold[J]. Journal of the Iron and Steel Institute of Japan, 1997, 83(2): 115-120.
    [124]朱传运,刘承军,王德永.结晶器保护渣结晶温度的影响因素[J].东北大学学报(自然科学版), 2004, 25(10): 128-132.
    [125]张丽,金山同.冷却速率对连铸保护渣结晶性能的影响[J].北京科技大学, 2001, 23(5): 421-423.
    [126]解志芳,王怀宇.连铸结晶器保护渣的结晶温度[J].宽厚板, 1998, 4(2): 27-28.
    [127]朱传运,李春龙,王云盛.中碳钢板坯连铸保护渣的结晶性能[J].钢铁研究学报, 2004, 16(3): 19-22.
    [128] Y Kashiwaya, A W Cramb, K Ishi. Development of double hot thermocouple technique fordirect observation of mold slag crystallization[C]. ISS: Electric furnace conference proceedings, 1997: 617-622.
    [129] C Orrling, A Tilliander, Y Kashiwaya. Melting and solidification of mold slags[C]. ISS: 82nd Steelmaking Conference Proceedings, 1999: 417-424.
    [130] M D Lanyi, C J Rosa. Viscosity of casting fluxes used during continuous casting of steel[J]. Metallurgical Transcation B, 1981, 12B (6): 287-298.
    [131]王常珍.冶金物理化学研究方法[M].北京:冶金工业出版社, 2002: 380-387.
    [132]张国栋.材料研究与测试方法[M].北京:冶金工业出版社, 2002: 123-173.
    [133] Y Kashiwaya, C E Cicutti, A W Cramb. An investigation of the crystallization of a continuous casting mold slag using the single hot thermocouple technique [J]. ISIJ Int., 1998, 38 (4): 357-365.
    [134] Y Kashiwaya, C E Cicutti, A W Cramb. Crystallization behavior of mold slags[C]. Toronto: Steelmaking Conference Proceedings, 1998, 185-191.
    [135] C T. Mutale, B G Thomas, A W Cramb. Observation of the crystallization behavior of a slag containing 46wt Pct CaO, 46wt Pct SiO2, 6wt Pct Al2O3, and 2wt Pct Na2O using the double hot thermocouple technique[J]. Metall. mater. trans. B, 2005, 36B: 417-418.
    [136] Y Kashiwaya, T Nanauchi, K S Pham. Crystllization behaviors concerned with TTT and CCT diagrams of blast furnace slag using hot Thermocouple technique [J]. ISIJ Int., 2007,47(1): 44-52.
    [137] K Prapakorn, A W Cramb. Initial solidification behavior in continuous casting: the effect of MgO on the solidification behavior of CaO-Al2O3 based slags [C]. MS&T Conference Proceedings, 2004:3-10.
    [138] C Orring, A W Cramb. The effect of water vapor on mold slag crystallization[J]. Metall. mater. trans. B, 2000, 31B:403-406.
    [139]张晨,朱祖民.热丝法在保护渣熔化特性研究上的应用[J].连铸, 2005, (3):36-39.
    [140] H Liu, G Wen, P Tang. Crystallization behaviors of mold fluxes containing Li2O using single hot thermocouple technique[J]. ISIJ Int., 2009,49(6):843-850.
    [141]齐飞.过渡族金属氧化物对保护渣结晶行为的影响[D].重庆:重庆大学硕士学位论文, 2007, 4:43.
    [142] J W Cho, H Shibata. Effect of solidification of mold fluxes on the heat transfer in casting mold[J]. J. Non-cryst solids, 2001,282:110-117.
    [143] H Nakada, K Nagata. Crystallization of CaO–SiO2–TiO2 slag as a candidate for fluorine free mold flux[J]. ISIJ int., 2006, 46(3):441-449.
    [144] Y Meng., B G Thomas. Mold slag property measurements to characterize CC mold–shell gapphenomena [C]. MS&T conf. proc., New Orleans, 2004:57-67.
    [145]王新月.连铸结晶器内钢-渣界面现象及其对保护渣性能影响研究[D].北京:北京科技大学博士论文,2005,29-44.
    [146]孙丽枫,刘承军,张红令.含钛不锈钢连铸保护渣的研究[J].连铸,2006,44:43-45.
    [147] W L McCauley, D Apelian. The role of slags in steelmaking continuous casting mold fluxes[J]. Iron and Steelmaker, 1983,10(9):50-52.
    [148]尹玉服,娄青春,温铁光.结晶器中渣钢界面反应机理的研究[J].鞍钢技术2002,1: 25-27.
    [149] H Todoroki, T Ishii, K Mizuno. Effect of crystallization behavior of mold flux on slab surface quality of a Ti-bearing Fe–Cr–Ni super alloy cast by means of continuous casting process[J]. Materials Science and Engineering A. 2005, 413–414: 121–128.
    [150]郑宏光,陈伟庆,陈宏.钛稳定化321不锈钢连铸结晶器“结鱼”的研究[J].特殊钢, 2004,25(4):50-52.
    [151] P R Scheller. Interfacial phenomena between fluxes for continuous casting and liquid steel[A], AISTech Conference Proceedings,2005(1): 763-772.
    [152]赵克文,蔡开科,刘新华.含钛不锈钢保护渣氮化钛行为[J].钢铁研究学报.1989, 1(3): 21-28
    [153]王谦,王雨,谢兵.合金钢连铸结晶器保护渣的基本功能[J].特殊钢.2004,25(1):l-4.
    [154] G Skoczylas, A Dasgupta, R Bommaraju. Characterization of the chemical interaction during the casting of high-titanium low carbon enameling steels[A]. Steelmaking Conference Proceedings. 1991, 74: 707-717.
    [155]卢洪星,张小华,孙光涛.高锰油井管钢专用保护渣的应用实践[J].江苏冶金, 2008, 36(2):46-48.
    [156]王新月,金山同.不锈钢(304HC)浇铸过程保护渣成分变化及其对渣性能影响[J].钢铁, 2006,41(11):20-22.
    [157]郝占全,陈伟庆,Carsten Lippold.不锈钢1Cr17板坯连铸过程中保护渣液渣层及渣膜的研究[J].特殊钢,2009,(30)3:16-18.
    [158]雷凌光译.不锈钢结晶器保护渣吸收钛的粘度效应[J].太钢科技,2005,(4):14-23.
    [159]王新月,金山同,苍大强.连铸过程结晶器内液态保护渣中MnO含量变化模型[J].特殊钢, 2006,(27)11:15-17.
    [160] T Omoto, T Suzuki H Ogata. Development of“SIPS series”mold powder for high Al electromagnetic steel[J]. Shinagawa Tech. Rep.,2007,50,57-62.
    [161] I Itoh, K Ohmura, M Fukaya. Development of ferritic stainless steel foil as metal support for automotive catalytic converter[J]. Nippon Steel Technical Rep. 1995, 64:69-73.
    [162]王谦,迟景灏.E2钢连铸结晶器保护渣理化性能的研究[J].四川冶金,1991,(3):40-46.
    [163]王家荫,迟景灏.含铝钢连铸保护渣的研究[J].重庆大学学报,1988,(4):6-13.
    [164] W Wang, K Blazek, A Cramb. A study of the crystallization behavior of a new mold flux used in the casting of TRansformation-Induced -Plasticity Steels[J]. Metall. mater. trans. B, 2007,39B(2),66-74.
    [165] Z Zhang, G Wen, P Tang. The influence of Al2O3/SiO2 ratio on the viscosity of mold fluxes[J]. ISIJ int.2008,(48)6:739-746.
    [166] H Kim, Y S Lee, J H Park. Viscosity behavior of slag with respect to slag structure[C].Hino symposium,93-98.
    [167]施威.20Mn23AlV高锰低磁钢的连铸生产[J].上海金属.2006,(28)2:57-60.
    [168]何生平,王谦,曾建华.高铝钢连铸保护渣性能的控制[J].钢铁研究学报,2009,21(12):59-62.
    [169]赵克文,何生平,曾建华.BOF-LF-RH-CC流程生产38CrMoAl钢关键技术研究[J],钢铁, 2009,44(12):38-41.
    [170] K Kinoshita, Y Yoshii, H Kitaoka. Continuous casting of high-alloy steels[J]. J. of Metals, 1984,(36)3: 38-43.
    [171] H Todoroki., T Ishii, K Mizuno. Effect of crystallization behavior of mold ?ux on slab surface quality of a Ti-bearing Fe–Cr–Ni super alloy cast by means of continuous casting process[J]. Materials Science and Engineering A,2005, (413-414):121–128.
    [172] G Skoczylas. Recent development in high viscosity mold powders for Ti SULC steel grades[A]. Steelmaking Conference Proceedings. Pittsburgh: 1996:269-275.
    [173] D Wang, M Jiang, C Liu. Effects of rare earth oxide on viscosity of mold fluxes for continuous casting[J]. Journal of Rare earths.2005,(23)1:68-72.
    [174]王新月,金山同.不锈钢浇铸过程保护渣成分变化及其对渣性能影响[J].钢铁. 2006,41(11):20-22.
    [175]黄希祜.钢铁冶金原理(修订版)[M].冶金工业出版社,北京,1989:242.
    [176] Y Sahai, T Emi.朱苗勇译.洁净钢生产的中间包技术[M].北京,冶金工业出版社,2009:138.
    [177]川崎製鉄株式会社.連続鋳造における湯面被覆用パウダ:日本,57-184563[P]. 1982-11-13..
    [178]宝山钢铁股份有限公司.一种高铝钢用连铸保护渣及其制造方法:200710042540[P]. 2008-12-31.
    [179] P R Scheller. Interfacial phenomena between fluxes for continuous casting and liquid stainless steel[J]. Ironmak steelmak. 2002, 29(2):154-160.
    [180]朱立光,许虹,张淑会.方坯连铸保护渣吸收夹杂能力的数学分析[J].河北冶金,1999,3:3-5
    [181]王谦,王雨,谢兵.合金钢连铸结晶器保护渣的基本功能[J].特殊钢. 2004, 25(1):l-4.
    [182] H Ohta, H Suito. Activities of SiO2 and Al2O3 and activity coefficients of FetO and MnO in CaO-SiO2-Al2O3-MgO Slags[J]. Metall. mater. trans. B, 1998, 29B(2): 119-129.
    [183]张京萍.结晶器保护渣与钢液界面反应对渣成分影响的研究[D].北京科技大学硕士学位论文,2001,39-41.
    [184] H Itoh, M Hino,S Ban-ya. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel[J]. Metall. mater. trans. B, 1997, 28B(10):953-956.
    [185] H Itoh, M Hino S Ban-ya. Assessment of Al deoxidation equilibrium in liquid iron[J], Tetsu-to-Hagane, 1997,83(12): 773-778.
    [186] N H Croft, A R Entwisle, G J Davies. Origins of dendritic AlN precipitates in aluminium-killed steel castings[J]. Metals Technology, 1983, 10(4): 125-129.
    [187] H Yin, G Skoczylas. In-situ observations and thermodynamics of the chemical reaction between AIN particles and molten slag[A].AISTech 2006 Proceedings of the Iron & Steel Technology Conference :753-762.
    [188]迟景灏,甘永年.连铸保护渣[M].东北大学出版社,辽宁,沈阳:74-75.
    [189] M Nakamoto, T Tanaka, J Lee. Evaluation of viscosity of molten SiO2–CaO–MgO–Al2O3 Slags in blast furnace operation. ISIJ Int., 2004,(44)12: 2115-2119.
    [190] M Adjei-Sanpong, E Pretorius,H Oltmann. Cost and operational benefits of replacing Al with Si as the pimary deoxidant in the production of low O and S steel.2002 Electic Furnace Conference Proceedings,San Antonia: Margaret A. Baker Editor, Book Publishing, 2002,441-458.
    [191]万恩同.稀土处理钢保护渣的研究与应用[J].稀土,2001,22(4):72-75.
    [192]西峡龙成冶金材料有限公司.含钛板坯不锈钢专用连铸结晶器保护渣及其生产工艺.专利号:200710193114.
    [193] E F Wei, Y D Yang, C L Feng. Effect of carbon properties on melting behavior of mold fluxes for continuous casting of steels[J]. J. Iron Steel Res., Int. 2006, 13(2):22-26.
    [194] C A Pinheiro, I V Samarasekera, J K Brimacombe. Mold flux for continuous casting of steel[J]. Iron & Steelmaker, 1995,22(1): 43-44.
    [195] K Jong-Wan, L Yong-Deuk, L Hae-Geon. Decomposition of Li2CO3 by interaction with SiO2 in mold flux of steel continuous casting[J]. ISIJ Int., 2004,44(2):334–341.
    [196]迟景灏,谢兵,甘永年.加BaO在连铸保护渣中的作用[J].重庆大学学报,1990,13(2):80-86.
    [197] M Kawamoto, T Murakami, M Hanao. Mould powder consumption of continuous casting operations[J] Ironmak steelmak.2002, 29(3):199-202.
    [198] T Nakano, T Kishi, K Koyama. Mold powder technology for continuous casting of Aluminum-killed steel[J]. ISIJ,1984, 12(11):950-956.
    [199] S Sridhar, K C Mills, O D C Afrange. Break temperatures of mould fluxes and their relevance to continuous casting[J]. Ironmak steelmak.2000, 27(3):238-242.
    [200]黄希祜.钢铁冶金原理(修订版)[M].冶金工业出版社,北京, 1989: 176.
    [201]顾颜,刘润藻,吴铿.高速连铸结晶器保护渣流变特性的研究[J].特殊钢,2004, 25(1):18-20.
    [202] F Shahbazian, D Sichen, K C Mills. Experimental studies of viscosities of some CaO–CaF2-SiO2 slags[J]. Ironmak steelmak. 1999, 26(3):193-199.
    [203]刘承军,姜茂发,于景坤.CaO-SiO2-Na2O-CaF2-Al2O3-MgO渣系的粘性活化能[J].钢铁研究学报,2003,15(2):5-8.
    [204]黄希祜.钢铁冶金原理(修订版)[M].冶金工业出版社,北京, 1989: 213.
    [205] W C Jung, E Toshihiko, S Hiroyuki. Heat transfer across mold flux film in mold during initial solidification in continuous casting of steel[J]. ISIJ int. 1998, 38(8): 834-842.
    [206] L Guo, X Wang, H Zhan. Mould heat transfer in the continuous casting of round billet[J]. ISIJ int., 2007,47(8):1108-1116.
    [207] K C Mills, A B Fox, Z Li.Performance and properties of mould fluxes[J]. Ironmak steelmak. 2005, 32(1):1-9.
    [208] S Rajil, M M Daan, D L Peter. The effect of mould flux properties on thermo-mechanical behaviour during billet continuous casting[J]. ISIJ int. 2007, 47(1):95-104.
    [209] H Nakada, M Susa, Y Seko. Mechanism of heat transfer reduction by crystallization of mold flux for continuous casting[J]. ISIJ int. 2008, 48(4):446-453.
    [210] E Divry, E Paransky, M R Cirep. Laboratory methods to characterize mold fluxes[C]. AISTech 2004 Proceedings, Nashville, 691-702.
    [211]施金良,贾碧,吴云君.热丝法炉渣熔化和结晶过程测定装置的研制[J].特殊钢, 2005, 26(4): 23-25.
    [212] Y Meng, B.G. Thomas, A A Polycarpou. Mould slag property measurements to characterize CC mould-shell gap phenomena[J]. Canadian metallurgical quarterly, 2006,45(1):79-94.
    [213]赵艳红.结晶器保护渣渣膜结构对传热影响规律研究[D].重庆:重庆大学硕士论文,2008, 22-26.
    [214] K C Mills. Mould powder for continuous casting[M].Department of material, Imperial college, London: 70.
    [215] T Watanabe, H Fukuyama K Nagata. Stability of Cuspidine (3CaO·2SiO2·CaF2) and Phase Relations in the CaO–SiO2–CaF2 System[J]. ISIJ int. 2002, 42(5):489-497.
    [216] Verin Deutscher Eisenhuttenleute (VDEh). Slag Atlas (2nd edition)[M].Verlag Stahlisen GmbH,1995:194.
    [217] Verin Deutscher Eisenhuttenleute (VDEh). Slag Atlas (2nd edition)[M].Verlag Stahlisen GmbH,1995:189.
    [218]黄希祜.钢铁冶金原理[D].北京:冶金工业出版社,2005,8:171.
    [219] H E Kissinger. Variation of peak temperature with heating rate in differential thermal analysis[J]. J. Res. Natl. Bur. Stand. 1956, (4): 217-221.
    [220]漆鑫.含钛无氟连铸结晶器保护渣的基础研究[D].重庆:重庆大学博士论文,2009.
    [221]刘慧.基于热丝法保护渣结晶性能的研究[D].重庆:重庆大学材料科学与工程学院. 2008.
    [222]董金刚,迟景灏,王谦.高碱性高玻璃化连铸保护渣成分区域研究[J].钢铁,2000,35(2):22-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700