用户名: 密码: 验证码:
青海湖夏季饵料生物资源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青海湖是我国第一大盐水湖和第一大湖泊,青海湖裸鲤是湖中的唯一经济鱼类。自1957年开始生产性捕捞以来,青海湖裸鲤资源量逐渐降低,个体小型化现象突出。为了保护好这一在鱼类区系和渔业生产上具有重要价值的物种,青海省政府从2000年起实施了为期10年的封湖育鱼,全面禁止生产性捕捞,同时采取人工增殖放流、修建过鱼通道等手段增加湖中鱼类的补充量。为了准确掌握第四次封湖育鱼期间青海湖渔业自然条件的变化情况,我们从2006年到2010年的每年8月,在青海湖设置了14个位置相对固定的采样点,对湖中饵料生物资源进行了连续5年的调查。
     1、浮游植物
     (1)2006-2010年夏季,青海湖共发现浮游植物5门29属34种,其中硅藻门14属18种,蓝藻门4属4种,绿藻门8属8种,裸藻门2属2种,甲藻门1属1种。硅藻门是最重要的类群,斯潘塞布纹藻是最重要的优势种。
     调查表明,目前青海湖浮游植物种类组成以硅藻为主的特点仍未改变。与历史资料相比,属的数目减少了24个。曾经有而此次未发现的有硅藻门的9个属,绿藻门9个属,蓝藻门的2个属,黄藻门的1属,甲藻门的1属。尤其需要强调的是,历史上载遍布于全湖且数量很多的刚毛藻已极为少见。
     调查中新发现了甲藻门的裸甲藻和裸藻门的囊裸藻2个以前未有记载的属。研究表明青海湖浮游植物的区系具有较明显的半咸水的特征。
     种类组成出现差异的原因—是不同作者对藻类生态类型理解的不同,二是湖泊水环境质量的降低。
     (2)2006-2010年夏季,青海湖浮游植物平均密度波动于61289-117250cells/L之间,平均生物量波动于0.76-1.09mg/L之间。浮游植物生物量与水体透明度间具有显著线性关系。
     二郎剑景区、布哈河口、乌哈阿兰河口、沙柳河口等区域浮游植物的密度和生物量明显高于其它区域,这些位置能从沿岸排水或河水接纳较多的营养物质,有利于浮游植物生长。湖心水域密度和生物量也较高,原因可能是其处于布哈河口、沙柳河口的下风区域,浮游植物的生长状况也与河口较为一致。沿岸为草原或沙漠,人口稀少,无河流汇入的区域浮游植物的密度和生物量较低。
     2、浮游动物
     (1)2006-2010年夏季,青海湖共发现浮游动物4个类群14属15种,其中原生动物3属3种,轮虫5属6种,枝角类3属3种,桡足类3属3种,种类明显少于1964-1965年的调查结果,主要表现在轮虫种类的明显减少。青海湖浮游动物的区系具有较明显的半咸水的特征。
     种类组成出现差异的原因部分是调查方法的误差和物种分类的调整,但更主要的原因是湖泊水环境质量的降低。
     (2)2006-2010年夏季,青海湖浮游动物平均密度波动于217-454ind./L之间,平均生物量波动于0.47-1.14mg/L之间。4个类群中,原生动物密度最高,桡足类生物量最高,桡足类的北镖水蚤是浮游动物的优势种,其生物量占浮游动物总生物量的70%以上。生物量可以较好地反映浮游动物生长状况,而密度指标的意义不大。
     (3)除局部水域外,总体上夏季青海湖东部和北部浮游动物生物量相对较高,而南部和东部相对较低。如果以甘子河口与海心山东南岸两点划一条直线,则直线西侧浮游动物生物量相对高于直线的东侧。这与浮游植物生物量的水平分布规律相似。但浮游动物密度和生物量较高浮游植物密度和生物量并不具有显著的相关性。
     3、底栖动物
     (1)2006-2008年夏季,青海湖共发现大型7种底栖动物,其中摇蚊幼虫4属5种,介形虫1属1种,钩虾1属1种。回转摇蚊幼虫和钩虾是底栖动物的优势种。底栖动物主要集中于湖的南部和东南部区域。大型底栖动物的功能摄食类群是以收集者为主,底栖动物区系与我国北方一些盐碱水域相似。
     (2)2006-2008年夏季,青海湖大型底栖动物平均密度波动于205-340ind./ m2之间,平均生物量波动于0.343-0.492g/m2之间。密度与生物量的走势基本一致。与浮游植物、浮游动物相比,底栖动物密度和生物量的年际变化幅度不大。
     (3)与1960年代相比,青海湖底栖动物的种类数有所减少,部分原因可能与调查方法的差异有关,如受船舶航行的限制,调查时并未达到一些资料中底栖动物较丰富区域。但曾遍布全湖且数量众多的介形虫的显著减少,与环境变迁导致湖泊水环境质量的降低关系更大。
     (4)在青海湖深度和浮游生物对底栖动物分布的影响不大,底质条件是影响大型底栖动物水平分布的重要因素。
     4、青海湖污染程度评价
     基于浮游植物、浮游动物、底栖动物及相关指标评价,青海湖仍处于贫营养水平和轻度污染状态。
     5、饵料生物的分级分布和鱼产力
     (1)在青海湖各类饵料生物中,粒径200-1000μm的种类占据着最为重要的位置,属于这一范围的包括了浮游植物、浮游动物、底栖生物的优势种类。饵料生物总生物量与总能量的变化趋势基本一致。
     (2)2006-2010年夏季,青海湖浮游植物平均总生物量约66712.28t,浮游动物平均总生物量约66867.07t;2006-2008年夏季,青海湖底栖动物平均总生物量约为797.31t。浮游生物尤其是浮游动物,是青海湖裸鲤主要的饵料生物。
     (3)基于浮游动物能量估算青海湖裸鲤鱼产力较为可靠,青海湖饵料生物可供的鱼产力约为每年41104t。
     (4)本文首次将一个湖泊的全部饵料生物综合进行分级分布,对于研究湖泊生态系统的结果和功能是很有意义的一项工作,对于湖泊渔业管理也具有重要的指导意义。
Qianghai Lake is the biggest saline water lake and the biggest lake of China. Naked carp of Qinghai Lake,Gymnocypris przewalskii przewalskii (Kessler),is the unique econimical fish in the lake. The resource the fish has decreased gradurally, and the individual minimization has become obviously since 1957,when the commercial fishing to the fish began。For protecting this species with important value in fishes fauna and in fishery, the gorvement of Qinghai Province has carried out a strictly fishing-ban for ten years in the lake since 2000. and attending to increase the standing crop of the resource of the fish in the lake. In order to understand the variation regularity of the natural fisheires environment,the growth situation and the population structure of the naked carp in the lake during the fishing-ban exactly, we setting up 14 sampling stations with relatively fixed location in lake, have launded a continuous study of 5 years on the feed organisms resource, in each Aug.from 2006 to 2010。
     1、phytoplankton
     (1) in summmer of 2006-2010,34 species of phytoplankton, which belonging to 5 divisions 29 genus, were founded in the lake, among them there were 14 genus 18 species of Bacillariaphyta,4 genus 4 species of Cyanophyta,8 genus 8 species of Chlorophyta,2 genus 2 specie of Euglenophyta,1 genus 1 species of Pyrrophyta. Bacillariaphyta was the most important group, and Gyrosigma spenceri was the most important dominant species.
     The investigation shown that the species number of the phytoplankton has decreased 24 genus compared with the historical data, although diatom has remained dominantly. The genus disappeared included 9 genus of Euglenophyta,9 genus of Chlorophyta.2 genus of Cyanophyta,1 genus of Xanthophyta,1 genus of Pyrrophyta. Cladophora fracta, a species used to plentiful and distribute all over the lake, has alreadly become scarcely.
     But we also founded two newly genus in the lake, Gymnodinum of Pyrrophyta and Trachelomonas of Euglenophyta. The fauna of the phytoplankton in Qinghai Lake exhibited obviously characteristic of saline water algae.
     The main reason of the sepcies evolution was the reduce of the environmental quality in the lake.
     (2) in summmer of 2006-2010, the average densities of the phytoplankton were 61289-117250cells/L, the average biomass were 0.76-1.09mg/L. There was a notable linear relationship between the biomass of the phytoplankton and the Sacchii's depthes.
     The densities and biomass of the phytoplankton in the areaes of Erlanjian, the mouth of Buha River and the mouth of Wuhalan River were higher than other areaes obviously, for these areaes might get more nitritions from river. The densities and biomass of the phytoplankton in the central area of the lake were also plentiful, due to the location was in the downwind direction of the mouth of Buha River and Shaniu River.
     2、zooplankton
     (1) in summmer of 2006-2010,15 species of zooplankton, which belonging to 4 groups 14 genus, were founded in the lake, among them there were 3 genus 3 species of Protozoa.5 genus 6 species of Retifera,3 genus 3 species of Cladocera,3 genus 3 specie of Copepoda.The species number of the zooplankton has decreased obviously compared with the historical data of 1964-1965, and mainly shown as the decrease of the species number of Retifera. The fauna of the zooplankton in Qinghai Lake exhibited obviously characteristic of saline water community.
     The main reason of the sepcies evolution was also the reduce of the environmental quality in the lake.
     (2) in summmer of 2006-2010, the average densities of the zooplankton were 217-454ind./L, the average biomass were 0.47-1.14mg/L. Among 4 groups of zooplankton, the density of Protozoa was highest, but the biomass of Copepoda was maximum. Arctodiaptomus salinus was the dominant species of zooplankton, which has taken over 70% of the total biomass of the zooplanktona.
     (3) In general, the densities and biomass of the zooplankton in the western part and northern part were higher than those of the southern and eastern area. which was similar to the distribution of phytoplsnkton, but there was no notable relativety between the density and the biomass of zooplankton and those of phytoplankton.
     3、zoobenthos
     (1)in the summmer of 2006-2008,7 species of zoobenthos, which including 4 genus 5 species of Tendipedidae,1 genus 1 species of Ostracoda,1 genus 1 species of Amphipoda, were founded in the lake. Tendipes gr. Reduetus and Gammarus sp. were the dominant species of zoobenthos.Most of the zoobenthos distributed in the southern and south-western area of the lake. The functional feeding groups of the zoobenthos was dominanted by collectors.
     The fauna of the zoobenthos in Qinghai Lake also exhibited obviously characteristic of saline water community.
     (2)in summmer of 2006-2008, the average densities of the zoobenthos were 205-340ind./m2, the average biomass were 0.343-0.492g/m2. The annual variation ranges of the densities and biomass of the zoobenthos were more narow than those of the plankton.
     (3) compared with the data of 1960s, the species number of zoobenthos was diminution, the reason for that were the difference of invistigating method and the decrease of the environmental quality.
     (4) in Qinghai Lake, the condition of the bottom was the main factor influcing the distribution of major zoobenthos.
     4、the evaluation to the water pollution of Qinghai lake
     Based on some indexes of phytoplankton, zooplankton, zoobenthos, the water quality of Qinghai Lake was appraised as oligotrophical level and slight pollution.
     5、the equivalent sphere diameter(ESD) grading of the feed organism and the fish productivity
     (1) among the feed organisms in Qinghai Lake, the species with the ESD of 200-1000μm were the most important group,which including the dominant species of phytoplankton, zooplankton and zoobenthos.
     (2) in summer of 2006-2010, the average total biomass of the phytoplankton in Qinghai Lake was about 66712.28t, that of zooplankton was about 66867.07t; in summer of 2006-2008, the average total biomass of the zoobenthos in Qinghai Lake was about 797.31。The plankton, zooplankton especially, were the main foods of the naked carp.
     (3) it was more reliable to estimate the fish productivity of Gymnocypris przewalskii przewalskii by means of energy transfer rate based on the zooplankton.The fish productivity of Gymnocypris przewalskii przewalskii was evaluated as 41104t per year。
     (4) this paper took the ESD grading of all feed organism in a lake firtst time, which was valuable to the study of the structure and function of lake ecosystem, and might be an instruction to the fishery management of lake.
引文
[1]青海省地方编纂委员会.青海省志·青海湖志[M].西宁:青海人民出版社,1998.
    [2]中国科学院兰州地质研究所等.青海湖综合考察报告[M].北京:科学出版社,1979.
    [3]中国科学院兰州分院等.青海湖近代环境的演化和预测[M].北京:科学出版社,1994.
    [4]冯钟葵,李晓辉.青海湖近20年水域变化及湖岸演变遥感监测研究[J].古地理学报,2006,8(1):131-141.
    [5]刘佳,王芳,于福亮.青海湖水位动态趋势预测[J],水利学报,2009,40(3):319-327.
    [6]刘瑞霞,刘玉洁.近20年青海湖湖水面积变化遥感,湖泊科学,2008.20(1):135-138.
    [7]王芳.刘佳,燕华云.青海湖水平衡要素水文过程分析[J].水利学报.2008.39(11):1229-1238.
    [8]王苏民,窦鸿身.中国湖泊志.北京:科学出版社,1998.
    [9]李凤霞,李林,沈芳,等.青海湖湖岸形态变化及成因分析[J].资源科学,26(1):38-43.
    [10]李林.朱西德,王振宇.等.近42年来青海湖水位变化的影响因子及其趋势预测[J],青海气象,2008,S1:60-65.
    [11]青海省气候中心.青海气象,2009.1:22.
    [12]沈吉,张恩楼,夏威岚.青海湖近千年来气候环境变化的湖泊沉积记录[J].第四纪研究,2001,21(6):508-513.
    [13]汪小勇,李铜基.朱建华,.青海湖水表光学特性分析[J].海洋技术,2005,24(2):50-54.
    [14]卢奋英,丘昌强,孙兴湘,等.青海湖营养类型的研究[M].中国海洋湖沼学会1963年学术年会论文摘要汇编,科学出版社,48-49.
    [15]孙兴湘,丘昌强,卢奋英,等.青海湖湖水主要理化性质的初步探讨[M].中国海洋湖沼学会1963年学术年会论文摘要汇编,科学出版社,41-42.
    [16]黄第藩.陈克造,徐永昌,.青海湖第四纪沉积物中沥青形成与陆相石油成因问题[J].地质学报,,1964,44(2):171-189.
    [17]杨建新,祁洪芳,史建全.等.青海湖水化学特性及水质分析[J].淡水渔业,35(3):28-32.
    [18]沈家瑞.青海与内蒙数种桡足类的研究[J],动物学报,1956,8(1):1-6.
    [19]华汉峰.青海湖的水产资源[J].学艺,1958,7:17-19.
    [20]黎尚豪.青海湖的类型、演变及其生物生产力的初步研究[M].太平洋西部渔业委员会第二次全体会议论文集.北京:科学出版社,1959,97-105.
    [21]陈瑗.青海湖的浮游动物[J],动物学杂志,1964,3:125-128.
    [22]张春霖,张玉玲.青海鱼类的新种Ⅰ[J].动物学报,1963,15(2):291-295.
    [23]张春霖,张玉玲.青海鱼类的新种Ⅱ[J].动物学报,1963,15(4):635-638.
    [24]蒋燮治.青海省淡水枝角类的研究[J],水生生物学集刊,1963,1:52-80.
    [25]青海省生物研究所.青海湖地区的鱼类区系和青海湖裸鲤的生物学[M].北京:科学出版社,1975,37-45.
    [26]杨志红,王基琳.青海湖底栖生物及其生产力分析[J].青海科技,1997,4(3):36-39.
    [27]陈耀东.青海湖眼子菜科植物的研究[J].水生生物学报,1987,11(3):228-235.
    [28]杨志红,王基琳.青海湖底栖生物及其生产力分析[J].青海科技,1997,4(3):36-39.
    [29]Herzenstein S M. Wissenschaftliche Resultate der von N M. Przewalski nach Central-Asian. Zool Theil, III, 1891.2(3):181-262.
    [30]朱松泉,武云飞.青海湖地区鱼类区系的研究.见:青海省生物研究所编,青海湖地区的鱼类区系和青海湖裸鲤的生物学.北京:科学出版社,1975,9-26.
    [31]陈民琦,林建国,应百才,等.青海湖封湖3年对裸鲤种群结构的影响初探[J]..青海大学学报(自然科学版),1990,(1):50-56.
    [32]秦桂香,赫广春,李军祥,等.青海湖裸鲤生物学特性的研究[J].黑龙江畜牧兽医,2001,12:7-8.
    [33]胡安,唐诗声,龚生兴,等.青海湖裸鲤[Gymnocypris pezewalskii pezewalskii (Kessler)]的资源现状及其增殖途径的探讨[M]..见:青海省生物研究所编,青海湖地区的鱼类区系和青海湖裸鲤的生物学.北京:科学出版社,1975.103-110.
    [34]陈大庆,张信,熊飞,等.青海湖裸鲤生长特征的研究[J]..水生生物学报,2006,30(2):173-179.
    [35]赵利华.捕捞对青海湖裸鲤种群结构的影响[J].高原生物学集刊,1982,1:177-193.
    [36]史建全,祁洪芳,杨建新,等.青海湖裸鲤资源评析[J].淡水渔业,2000,30(11):38-40.
    [37]张信,熊飞,唐红玉,等.青海湖裸鲤繁殖生物学研究[J].海洋水产研究,2005,26(3):61-67.
    [38]张金兰,覃永生.青海湖渔业环境状况及管理保护对策[J].青海环境,1997,7(4):159-163.
    [39]张玉书,陈瑗.青海湖裸鲤种群数量变动的初步分析[J].水产学报,1980,4(2):157-177.
    [40]赵凯.青海省野生经济鱼类资源现状和面临的威胁[J].青海科技,2001,(1):15-19.
    [41]史建全,祁洪芳,杨建新,等.青海湖自然概况及渔业资源现状[J].淡水渔业,2004,34(5):3-5..
    [42]谭细畅,史建全,张宏,等,EY60回声探测仪在青海湖鱼类资源量评估中的应用[J].,湖泊科学.2009,21(6):865-872.
    [43]陈桂琛,彭敏,李来兴,等.青海湖湿地环境特征及其保护与合理利用[M]..中国湿地研究.长春:吉林科学技术出版社,1995,241-247.
    [44]陈燕琴,王基琳,张宏,等.青海湖裸鲤的人工放流及资源保护[J].青海科技,2006,(1):72-73.
    [45]冯宗炜,冯兆忠.青海湖流域主要生态环境问题及防治对策[J].生态环境,2004,13(4):467-69
    [46]史建全.青海湖裸鲤研究现状与资源保护对策[J].青海湖科技,2008,(5):13-16.
    [47]史建全.王基琳.青海湖渔业资源的现状及对策[J].水产科技情报,1995,22(1):42-43.
    [48]史建全,祁洪芳,杨建新,等.青海湖裸鲤繁殖生物学的研究[J].青海科技,2000,7(2):12-15.
    [49]史建全,祁洪芳,杨建新,等.青海湖裸鲤人工繁殖及鱼苗培育技术的研究[J].淡水渔业.2000.30(2):3-6.
    [50]杨杰.杨正兵.秦贵祥.等.水泥池培育青海湖裸鲤苗种试验[J].科学养鱼,2006,(1):10.
    [51]闫保国,闫立君,卢建一,等.青海湖裸鲤人工繁育试验报告[J].河北渔业,2006,(7):39-41.
    [52]史建全,祁洪芳,杨建新.青海湖裸鲤资源增殖放流技术[J].河北渔业.2010,1:10-12.
    [53]詹秉义.渔业资源评估[M].北京:中国农业出版社,1995.
    [54]刘建康,何壁梧.中国淡水鱼类养殖学[M].北京:科学出版社,1992.
    [55]董双林,赵文.养殖水域生态学[M].北京:中国农业出版社,2004.
    [56]梁彦龄,刘伙泉.草型湖泊资源环境与渔业生态学管理(一)[M].北京:科学出版社,1995.
    [57]王冀,梁彦龄.用浮游植物的生产量估算武昌东湖鲢鳙生产潜力与鱼种放养量的探讨[J].水产学报.1981.5(4):343—350.
    [58]陈伟民,黄祥飞.周万平.湖泊生态系统观测方法[M].北京:中国环境科学出版社,2005.
    [59]叶创兴.冯虎元.植物学实验指导[M].北京:清华大学出版社.2006.
    [60]马克平.生物多样性的测度方法.Ⅰ.a多样性的测度方法(上)[J].生物多样性,1994,2(3):162-168.
    [61]胡鸿钧.魏印心.中国淡水藻类[M].北京:科学出版社,2006.
    [62]朱建华.伍慧敏.周虹丽.等.高效液相色谱法测量青海湖浮游植物色素浓度[J].海洋技术.2005.24(2):46-49.
    [63]Reynolds,C. S. The Ecology of Freshwater Phytoplankton[M].London:Cambridge Press,1984.
    [64]Hutchinson G. E. A Treatise on Limnology[M].New York.Wiley.1967.
    [65]Pielou E C, An introduction to mathematical ecology[M]. New York:Wiley-Interscience,1969.
    [66]刘鸿亮,金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,2002.
    [67]S.R.Carpenter & J.F.Kitchell, 1998. The Trophic Cascade in Lakes. Biological Conservation,83(2):233-234.
    [68]杨宇峰.黄祥飞.浮游动物生态学研究进展[J].湖泊科学,2000,12(1):81-89.
    [69]沈韫芬.原生动物学[M].北京:科学出版社,1999.
    [70]王家楫.中国淡水轮虫志[M].北京:科学出版社,1961.
    [71]董聿茂,戴爱云,蒋燮治,等.中国动物图谱甲壳动物(第一册,第二版).北京:科学出版社,1982.
    [72]中国科学院动物研究所甲壳动物研究组.中国动物志节肢动物门甲壳纲 淡水桡足类[M].北京:科学出版社,1979.
    [73]赵文,何志辉,殷守仁.盐水枝角类的生物学及海水培养利用[M].北京:科学出版社,2008.
    [74]张觉民,何志辉.内陆水域渔业自然资源调查手册[M].北京:农业出版社,1991.
    [75]V.Sladecek. System of Water Quality from the Biological Point of View, Arch. Hydrobiol.Beih.Ergebn.Limnol.7,1-Ⅳ.1-218,Stuttgart,1973.
    [76]沈韫芬,章宗涉,龚循矩,等.微型生物监测新技术[M].北京:中国建筑工业出版社,1990.
    [77]Higgins R P, Thiel H. Introduction to the Study of Meio-fauna[M]. Washington D C:Smithsonian Press,1988,488.
    [78]Giere O. Meiobenthology [M]. Berlin:Springer—Verlag.1993,327
    [79]Covich AP, Palmer MA, Crowl TA. The role of benthic invertebrate species in freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling. BioScience,1999,49(2):119-127.
    [80]Beck MW, Hatch LK. A review of research on the development of lake indices of biotic integrity. Environmental Reviews,2009.17:2144.
    [81]Ricciardi A, Rasmussen JB. Extinction rates of North American freshwater fauna. Conservation Biology,1999, 13(5):1220.1222.
    [82]Strayer DL. Challenges for freshwater invertebrate conservation. Journal of the North American Benthological Society,2006,25(2):271-287.
    [83]Barnard J L. The families and genera of marine gammaridean Amph ipoda. BullU S N atnM us.271. W ash ington.1969.1-535.
    [84]Barnard J L et al. Freshwater Amphipoda of the world E. Evolutionary patterns. Virginia:Hayfield Associates, 1983.1-259.
    [85]Lincoln R J. British marine Amphipoda:Gammaridea. Brit ishM us (N at H ist). London.1979.1-658
    [86]谢祚浑.周一兵.中国北方盐碱水域中的底栖动物[J].大连水产学院学报.2002(17)3:176-186.
    [87]Cummins KW. Structure and functi on of stream ecosystems. Bio Science.1974.24:631-641.
    [88]BarbourM T. Gerritsen J, Snyder B D. Stribling J B. Rap id bioass ment p rotocols for use in streams and wadeable rivers:periphyton. benthicmacr oinvertebrates and fish (second edition). Washingt on. DC:U. S. Environmental Pr otecti on Agency. Office ofWater.1999.
    [89]Bode R W. Novak M A. Abele L E. Quality assurance work p Ian for biol ogy stream monit oring in New York state. NYS department ofenvironmental conservati on. Albany. NY.2002.
    [90]中国科学院南京湖泊与地理研究所.中国湖泊概论[M].北京:科学出版社,1989.
    [91]朱正杰,李航,任世聪.青海湖近800年来沉积物介形虫Li/Ca比值的古环境指示意义[J].海洋地质与第四纪地质,2010,30(4):115-120.
    [92]杨留法.试论介形虫生存的主要条件[J].中国科学B辑,1986,11:1219-1224.
    [93]Carlander KD.Farm fish pond research in Iowa. Journal of Wildlife Management.1952.16(3):258-261.
    [94]Guo X W.Studies on Chironomid communities of Nanhu Lake (South Lake) Wuhan China [J].Journal of Huazhong Agricultural University 1995 14 (6) 578 585.
    [95]史玉强.辽宁大伙房水库底栖动物演替与水质生物学评价[J].大连水产学院学报.1998 13(1)47-53.
    [96]刘保元.梁小民.太平湖水库的底栖生物[J].湖泊科学.1997 9(3)237-243.
    [97]谢建春.水体污染与水生动物[J].生物学通报,2001,36(6):10-11.
    [98]王俊才,方志刚,鞠复华.摇蚊幼虫分布及其与水质的关系[J].生态学杂志,2000,19(4):37.
    [99]Mousavi S K, Primicerio R, Amundsen P A.Diversity and structure of Chironomidae(Diptera)communities along a gradient of heavy metal contamination in a subarctic water course[J]. The Science of The Total Environment,2003,307(1-3):93-110.
    [100]齐鑫,马勇军,潘志祥.水环境中的摇蚊幼虫研究进展[J].台州学院学报,2008,30(6):38-42.
    [101]何志辉.内陆水域渔业生产力力问题[J]..水产科技情报.1980.4:8-12.
    [102]何志辉.谢祚浑.雷衍之.达里湖水化学和水生生物学研究[J].水生生物学集刊.1981.7(3):41-357.
    [103]刘春光.邱金泉.等.富营养化湖泊治理中的生物操纵理论[J].农业环境科学学报.2004.23(1):198-201.
    [104]孙军,刘东艳,张晨等.渤海中部和渤海海峡及其邻近海域浮游植物粒级生物量的初步研究Ⅰ.浮游植物粒级生物量的分布特征[J].海洋学报,2003,25(5):103~111.
    [105]赵文,邢辉.不同粒级浮游植物对淡水初级生产力的作用[J].大连水产学院学报,2001,16(3):157-162.
    [106]刘子琳 宁修仁 蔡昱明.北部湾浮游植物粒径分级叶碌素a和初级生产力的分布特征[J].海洋学报,1998,20(1):50~57.
    [107]刘子琳 宁修仁 蔡昱明.渤海晚春浮游植物粒度分级生物量和初级生产力[J].海洋科学集刊,2002,44:22~32.
    [108]李超伦,栾凤鹤.东海春季真光层分级叶绿素a分布特点的初步研究[J].海洋科学,1998,10(4):59~61.
    [109]杨茹君 王修林 石晓勇.海洋浮游植物粒径分布方法研究[J].高技术通讯,2004,16(6):89~94.
    [110]Sheldon R W. Prakash A. SutcliffeW H. The size distribution of particles in the ocean. Limnol. Oceanogr, 1972,17:3272340
    [111]Platt T, Denman K. The st ructure of the pelagic marine ecosystems[J]. Rapp PV Reun Cons Int Explor Mer, 1978.173:60-65.
    [112]Marquet P A, Quil ones R A. Abades S. Review Scaling and power-law in ecological systems [J]. The Journal of Experimental Biology.2005,208:1749-1769.
    [113]王荣,李超伦,张武昌,等.不同粒径谱浮游动物的能值分析.见:苏纪兰,唐启升主编.中国海洋生态系统动力学研究Ⅰ.渤海生态系统动力学过程.北京:科学出版社.2002.158~165.
    [114]Jin X. Long2term changes in fish community structure in the Bohai Sea. China. Estuarine. Coastal and Shelf Science,2004,59:1632 171.
    [115]林岿旋,张志南,王睿照.东、黄海典型站位底栖动物粒径谱研究.生态学报.2004,24:241~245.
    [116]邓可,张志南,黄勇,于子山.南黄海典型站位底栖动物粒径谱及其应用.中国海洋大学学报.2005,35(6):1005-1010.
    [117]林秋奇.赵帅营.韩博平.广东流溪河水库后生浮游动物生物量谱时空异质性.湖泊科学.2006,28(1)661-669.
    [118]赵帅营.韩博平.基于个体大小的后生浮游动物群落结构分析——以广东星湖为例.生态学报,2006,26(8):2646-2654.
    [119]左涛,王俊,金显仕,.春季长江口邻近外海网采浮游生物的生物量谱.生态学报,2008(28):1174-1182.
    [120]SIEBURTH J McN. SMETACEK V, LENZJ. Pelagic ecosystem structure:heterotrophic components of the plankton and their relationship to plankton size-fractions[J]. Limnol Oceanogr.1978,23:1256-1263.
    [121]左涛,王荣.海洋浮游动物生物量测定方法概述.生态学杂志.2003.22(3):79-83.
    [122]S.R.Carpenter & J.F.K.itchell.1998. The Trophic Cascade in Lakes. Biological Conservation,83(2):233-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700