用户名: 密码: 验证码:
锂离子电池正极材料LiFePO_4的合成与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种便携式电子产品日益普及,电池作为一种携带方便的电源设备日益受到关注。LiFePO_4作为新一代锂离子电池正极材料,其理论比容量为170mAh·g~(-1),电压平台为3.4V(相对于Li/Li~+),具有价格低廉,环保,热稳定好,安全性高,循环性能优越等优点,被认为是锂离子电池理想的正极材料。
     本文以LiFePO_4为研究对象,以提高其电化学性能为主要目的,采用固相法分别合成LiFePO_4,LiFePO_4/C,Li_(1-x+δ)Ti_xFe_(1-y)Mn_yPO_4/C等材料。主要利用XRD,SEM,CV,EIS,电池充放电等测试手段研究了合成工艺条件,碳包覆,体相金属离子掺杂,粒径控制等对LiFePO_4材料性能的影响。在此基础上对LiFePO_4/C材料的扩散系数和电荷转移电阻等动力学过程参数进行了研究。
     研究表明,合成温度对产物的形貌、结晶度均有影响,最佳合成温度为650℃。通过不同掺碳量对LiFePO_4/C材料的放电性能及振实密度影响的研究,最优化的碳含量应控制在3-5 wt.%。
     利用改进的三段高温煅烧固相法合成LiFePO_4/C材料,相对于两步高温煅烧固相法合成的相同含碳量的材料(共加入6wt.%葡萄糖),三步煅烧法合成材料的振实密度较高,达到了1.35 g·cm~(-3);0.2C首次放电比容量达到135.8 mAh·g~(-1),0.2C循环20次容量保持99.4%;5C放电比容量达到129.8mAh·g-1,5C循环20次,容量仍保持99.4%,即每个循环损失容量约0.03%。
     LiFePO_4/C材料进行体相掺杂并制备相应的Li_(1-x+δ)Ti_xFe_(1-y)Mn_yPO_4/C复合材料。XRD分析结果显示,掺杂后的样品属于单一的橄榄石型晶体结构,没有明显的杂质峰,少量的Ti和Mn离子进入晶格,晶型完整、单一,掺杂不会改变LiFePO_4的晶型结构。Ti、Mn的掺杂达到比较好的效果。
     有效控制LiFePO_4的粒子尺寸是改善LiFePO_4中Li~+的扩散能力的关键。利用机械球磨12h和气流粉碎方式均能得到粒径均匀的LiFePO_4材料,并具有良好的倍率放电性能和循环性能。
Along with the increasing popularization of the portable electronic products, battery as a portable power source receives high attention in the world. LiFePO_4 is emerging as a promising cathode material for lithium-ion batteries because of low cost and environmental compatibility. In addition, LiFePO_4 has a large theoretical capacity of 170mAh·g~(-1_, a flat discharge potential of 3.4V versus Li/Li+, the good cycle stability, and the excellent thermal stability.
     In this paper, LiFePO_4, LiFePO_4/C and Li_(1-x+δ)Ti_xFe_(1-y)Mn_yPO_4/C cathode materials were synthesized by solid-state reaction. The effects of thermal processing conditions, carbon coating, ion-doping and particle size on the phase-purity, particle size, morphology and electrochemical performance of the materials are investigated by X-ray, SEM, CV, EIS. The dependence of kinetics and lithium ion diffusion coefficient of LiFePO_4/C electrode is also evaluated by means of the EIS.
     The results indicate that the synthesis temperature and carbon-coating affect the morphology, the crystallinity, tap density and discharge performance of the products, and the best synthesis temperature is 650℃. The most optimized carbon-coating content should be controlled in the 3-5 wt%.
     The tap density of LiFePO_4/C samples synthesized by three-step solid-state method is higher than that by two-step solid-state method, reaching to 1.35 g·cm~(-3). The discharge capacity of LiFePO_4/C is 135.8mAh·g~(-1) at the C/5 rate, and the capacity remained 99.4% after 20 cycles. Even at the 5C rate, a discharge capacity of 129.8mAh·g?1 is obtained with only a capacity fading of 0.03% per cycle.
     In order to improve the performance of LiFePO_4 cathode materials, composites Li_(1-x+δ)Ti_xFe_(1-y)Mn_yPO_4/C with Ti~(4+) and Mn4+ dopant were synthesized. The XRD analysis shows that the samples by doping Ti~(4+) and Mn4+ are pure well-ordered olivine phase with no impurities. And the Ti~(4+) and Mn4+ ion dopant considerably improves the electrochemical performances of Li_(1-x+δ)Ti_xFe_(1-y)Mn_yPO_4/C.
     To control the particle size of the LiFePO_4/C samples is the key to improve the Li+ diffusion. The samples LiFePO_4 dealt with ball-milling for 12h or airflow milling display uniform particle size and exhibit excellent cycle life.
引文
[1]毕道治,便携式小型充电电池的发展,电池工业,2006,11(6):44~50
    [2] Padhi A.K., Nanjundaswamy K.S., Goodenough J.B., Phospho-olivines as positive electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 1997, 144(4):1188~1194
    [3] B. Scrosati, Lithium rocking chair batteries: an old concept, J. Electrochem.Soc., 1992, 139(10):2776~2781
    [4] T.Nagaura, K.Tazawa. Lithium ion rechargeable battery. Prog. Battery Sol. Cells, 1990, 9(3):209~210
    [5] Shokoohi F K, Tarascon J M, Gozdz A S, et al . 13th International Seminar Primary and Secondary Battery Technol. Appl, Boca Raton, FL,USA, March (1996)
    [6] M.Gauthier, A.Belanger, P.Bouchard, et al., Large lithium polymer battery development: the immobile solvent concept, J. Power Source,1995, 54(1):163~169
    [7] David Linden, Thomas B. Reddy, Handbook of Batteries, New York: The McGraw-Hill Companies, Inc, 2001, 1078~1085
    [8]郭炳锟,李新海,杨松青,等,化学电源――电池原理及制造技术,长沙:中南工业大学出版社,2000,321~325
    [9] M. Ganesan, S. Sundararajan, M.V.T. Dhananjeyan, et al, Synthesis and characterization of tetravalent titanium (Ti4 +) substituted LiCoO2 for lithium-ion batteries, Materials Science and Engineering: B, 2006,131(1-3):203~209
    [10] Chaolun Gan, Xiaohong Hu, Hui Zhan, et al, Synthesis and characterization of Li 1.2N i 0.6 Co0 .2 Mn 0.2O 2+δas a cathode material for secondary lithium batteries, Solid State Ionics, 2005, 176(7-8):687~692
    [11] Youngil Lee, Ae Ja Woo, Kyoo-Seung Han, et al, Solid-state NMR Studies of Al-doped and Al 2 O3 -coated LiCoO2 , Electrochimica Acta, 2004, 50(2-3):491~494
    [12] Vittorio Berbenni, Chiara Milanese, Giovanna Bruni, et al, Solid state synthesis of stoichiometric LiCoO2 from mechanically activated Co-Li2 C O3 mixtures, Mater. Chem.& Phys., 2006, 100(2-3): 251~256
    [13] George T.K. Fey, H.M. Kao, P. Muralidharan, et al, Electrochemical and solid-state NMR studies on LiCoO2 coated with Al O derived from carboxylate-alumoxane,2 3J. Power Sources, 2006,163(1): 135~143
    [14] S.Gopukumar, Yonghyun Jeong, Kwang Bum Kim, Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells, Solid State Ionics, 2003, 159(3-4):223~232
    [15] L. Predoan?, A. Bar?u, M. Zaharescu, et al, Electrochemical properties of the LiCoO2 powder obtained by sol-gel method, J. European Ceramic Society, 2007, 27(2-3):1137~1142
    [16]黄祖飞,魏英进,刘伟,等,溶胶-凝胶法制备LiCoO2薄膜的研究,高等学校化学学报,2004,25(5):810~813
    [17]应皆荣,万春荣,姜长印,高密度球行LiCoO2的制备及性能研究,电源技术,2004,28(9):525~527
    [18]陶颖,陈振华,祝宝军,水热电化学法制备LiCoO2薄膜和粉末,材料科学与工程学报,2005,23(2):177~180
    [19] Alexander Burukhin, Oleg Brylev, Pascal Hany, et al, Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries, Solid State Ionics, 2002, 151(1-4):259~263
    [20] Sung-Kyun Chang, Ho-Jin Kweon, Bo-Kyong Kim, et al, Syntheses of LiCoO2 for cathode materials of secondary batteries from reflux reactions at 130-200℃, J. Power Sources, 2002, 1049(1): 125~131
    [21] Hongwei Yan, Xuejie Huang, Hong Li, et al, Electrochemical study on LiCoO2 synthesized by microwave energy, Solid State Ionics, 1998, 113-135(1):11~15
    [22] Hongwei Yan, Xuejie Huang, Lu Zhonghua, et al, Microwave synthesis of LiCoO2 cathode materials, J. Power Sources, 1997, 68(2):530~532
    [23]郝华,刘韩生,微波法合成锂离子电池正极材料的电性能影响因素,功能材料,2001,32(4):385~390
    [24]徐徽,周春仙,陈白珍,等,微波法制备LiCoO2正极材料及其电化学性能研究,电源技术,2006,30(7):591~593
    [25] M. Nasir Khan, J. Bashir, Synthesis and structural refinement of LiAlxCo1?xO system,2Materials Research Bulletin, 2006, 41(9):1589~1595
    [26] Ho-Jin Kim, Yeon Uk Jeong, Joon-Hyung Lee, et al, Crystal structures, electrical conductivities and electrochemical properties of LiCo1?xMgxO2 (0≤x≤0.11), J. Power Sources, 2006,159(1):233~236
    [27]杨箫,倪江锋,黄友元,等,钛掺杂对不同形貌LiCoO2电化学性能的影响,物理化学学报,2006,22(2):183~188
    [28] S.M.Lala, L.A.Montoro, V.Lemos, et al, The negative and positive structural effects of Ga doping in the electrochenmical performance of LiCoO2, Electrochimica Acta, 2005,51(1):7~13
    [29] C.Li, H.P.Zhang, L.J.Fu, et al, Cathode materials modified by surface coating for lithium ion batteries, Electrochimica Acta, 2006,51(19):3872~3883
    [30] Ki Woong Kim, Seong Ihl Woo, Kang-Hong Choi, et al, Microfabrication of LiCoO2 film using liquid source misted chemical deposition technique, Solid State Ionics, 2003, 159(1-2):25~34
    [31] Takehisa Fukui, Hajime Okawa, Tsutomu Tsunooka et al, Solubility and deposition of LiCoO2 in a molten carbonate, J. Power Sources, 1998, 71(1-2): 239~243
    [32] Idota Yoshio, Nonaqueous secondary battery, EP Application, EP0567149, 1993-10-27
    [33] Meijing Zou, Masaki Yoshio, S. Gopukumar, et al, Performance characteristics of Li//Li1±XCoO2 cells, Materials Research Bulletin, 2005, 40(4):708~714
    [34] Kyung Yoon Chung, Won-Sub Yoon, Hung Sui Lee, et al, In situ XRD studies of the structural changes of ZrO2 -coated LiCoO2 during cycling and their effects on capacity retention in lithium batteries, J. Power Sources, 2006, 163(1):185~190
    [35] Y.-K.Sun, S.-W.Cho, S.-T. Myung, et al, Effect of AlF3 coating amount on high voltage cycling performance of LiCoO2, Electrochimica Acta, 2007,53(2):1013~1019
    [36]王洪,祝纶宇,陈鸣才,锂离子电池正极材料LiCoO2的包覆改性,应用化学,2007,24(5):556~560
    [37] Ying Bai, Hongjun Shi, Zhaoxiang Wang, et al, Performance improvement of LiCoO2 by molten salt surface modification, J. Power Sources, 2007, 167(2):504~509
    [38] P. Piszora, J.Darul, W. Nowicki, E. Wolska, Synchrotron X-ray powder diffraction studies on the phase transitions in LiMn2 O 4 , J. Alloys & Compounds, 2004, 362(1-2):231~235
    [39] Teruaki Kakuda, Kazuyoshi Uematsu, Kenji Toda, et al, Electrochemical performance of Al-doped LiMn2 O4 prepared by different methods in solid-state reaction, J. Power Sources, 2007, 167(2):499~503
    [40] Y.J. Wei, H. Ehrenberg, N.N. Bramnik, et al, In situ synchrotron diffraction study of high temperature prepared orthorhombic LiMnO2 , Solid State Ionics, 2007, 178(3-4): 253~257
    [41] Jian Tu, Xin Bing Zhao, Gao Shao Cao, et al, Improved performance of LiMn2 O4 cathode materials for lithium ion batteries by gold coating, Mater. Lett., 2006,60(27): 3251~3254
    [42] V.Massarotti, D.Capsoni, M.BiniNanosized, LiMn 2 O4 from mechanically activated solid-state synthesis, J. Solid State Chem., 2006, 179(2):590~596
    [43] C.H. Jiang, S.X. Dou, H.K. Liu, et al, Synthesis of spinel LiMn2 O4 nanoparticles through one-step hydrothermal reaction, J. Power Sources, 2007, 172(1):410~415
    [44] Ali Eftekhari, Bundled nanofibers of V-doped LiMn 2 O4 spinel, Solid State Commun., 2006, 140(7-8):391~394
    [45] H.M. Wu, J.P. Tu, Y.F. Yuan, et al, One-step synthesis LiMn2 O4 cathode by a hydrothermal method, J. Power Sources, 2006, 161(2):1260~1263
    [46] M.W. Raja, S. Mahanty, Paromita Ghosh, et al, Alanine-assisted low-temperature combustion synthesis of nanocrystalline LiMn2 O4 for lithium-ion batteries, Materials Research Bulletin, 2007, 42(8):1499~1506
    [47] Xueliang Li, Ruming Xiang, Tao Su, et al, Synthesis and electrochemical properties of nanostructured LiMn2 O 4 for lithium-ion batteries, Mater. Lett., 2007, 61(17):3597~3600
    [48] A. Manuel Stephan, N.G. Renganathan, S. Gopukumar, et al, Cycling behavior of LiNixCoyMn2?x?yO4 prepared by sol–gel route, Solid State Ionics, 2004, 175(1-4): 291~295
    [49] R. Dziembaj, M. Molenda, Stabilization of the spinel structure in Li1+δMn2?δO obtained by4sol-gel method, J. Power Sources, 119-121(1):121~124
    [50] H.W. Chan, J.G. Duh, S.R. Sheen, Microstructure and electrochemical properties of LBO-coated Li-excess Li1+xMn O cathode material at elevated temperature for Li-ion battery, 2 4Electrochimica Acta, 2006, 51(18):3645~3651
    [51] A. R. Naghash, Jim Y. Lee, Preparation of spinel lithium manganese oxide by aqueous co-precipitation, J. Power Sources, 2000, 85(2):284~293
    [52]杨书廷,董红玉,尹艳红,等,掺钴LiMn2O4材料的微波模板法合成,电池,2005,35(3):223~225
    [53] Ben-Lin He, Wen-Jia Zhou, Shu-Juan Bao, et al, Preparation and electrochemical properties of LiMn2 O4 by the microwave-assisted theological phase method, Electrochimica Acta, 2007, 52(9): 3286~3293
    [54] Yen-Pei Fu, Cheng-Hsiung Lin, Yu-Hsiu Su, et al, Electrochemical properties of LiMn2 O 4 synthesized by the microwave-induced combustion method, Ceramics International, 2004, 30(7):1953~1959
    [55] Masanobu Nakayama, Kyouhei Watanabe, Hiromasa Ikuta, et al, Grain size control of LiMn2 O4 cathode material using microwave synthesis method, Solid State Ionics, 2003, 164(1-2):35~42
    [56] Hung-Chun Wu, Zheng-Zhao Guo, Hsiang-Ping Wen,et al, Study the fading mechanism of LiMn2 O4 battery with spherical and flake type graphite as anode materials, J. Power Sources, 2005, 146(1-2): 736~740
    [57] W. Lu, I. Belharouak, S.H. Park, et al, Isothermal calorimetry investigation of Li1+xMn2?yAlzO4 spinel, Electrochimica Acta, 2007, 52(19):5837~5842
    [58] Zemin Yu, Liancheng Zhao, Preparation and electrochemical properties of LiMn1 .95M 0.05O 4 (M = Cr, Ni), Rare Metals, 2007, 26(1):62~67
    [59] Ali Eftekhari, Abdolmajid Bayandori Moghaddam, Mehran Solati-Hashjin, Electrochemical properties of LiMn2 O4 cathode material doped with an actinide, J. Alloys & Compounds, 2006, 424(1-2):225~230
    [60] Woosuk Cho, Wonkyung Ra, Junichi Shirakawa, et al, Synthesis and electrochemical properties of nonstoichiometric LiAlxMn2?xO4?δas cathode materials for rechargeable lithium ion battery, J. Solid State Chemistry, 2006, 179(11): 3534~3540
    [61] Izumi Taniguchi,Powder properties of partially substituted LiMxMn2?xO (M = Al, Cr, Fe and Co) synthesized by ultrasonic spray pyrolysis, 4Mater. Chem.& Phys., 2005, 92(1):172~179
    [62] J. Molenda, D. Pa?ubiak, J. Marzec, Transport and electrochemical properties of the LiyCrxMn2?xO4 (0 < x < 0.5) cathode material, J. Power Sources, 2005, 144(1): 176~182
    [63] Yan-Yu Liang, Shu-Juan Bao, Hu-Lin Li, A series of spinel phase cathode materials prepared by a simple hydrothermal process for rechargeable lithium batteries, J. Solid State Chemistry, 2006, 179(7): 2133~2140
    [64] J.T. Son, H.G. Kim, New investigation of fluorine-substituted spinel LiMn2 O 4?xFx by using sol-gel process, J. Power Sources, 2005, 147(1-2):220~226
    [65] M. Molenda, R. Dziembaj, D. Majda, et al, Synthesis and characterisation of sulphided lithium manganese spinels LiMn2 O4?ySy prepared by sol-gel method, Solid State Ionics, 2005, 176(19-22): 1705~1709
    [66] Fei-Yi Hung, Truan-Sheng Lui, Hung-Chi Liao, A study of nano-sized surface coating on LiMn2 O4 materials, Applied Surface Science, 2007, 253(18): 7443~7448
    [67] Teruaki Kakuda, Kazuyoshi Uematsu, Kenji Toda, et al, Electrochemical performance of Al-doped LiMn2 O4 prepared by different methods in solid-state reaction, J. Power Sources, 2007, 167(2): 499~503
    [68] Jin Xiao, Hua-li Zhu, Zhao-yong Chen, et al, Preparation and property of spinel LiMn2 O 4 material by co-doping anti-electricity ions, Transactions of Nonferrous Metals Society of China, 2006, 16(2): 467~472
    [69]高德淑,苏光耀,肖启振,等,锂离子电池正极材料LiNiO2的研究进展,电池工业,2004,9(6):300~304
    [70]叶乃清,刘长久,沈上越,锂离子正极材料LiNiO2存在的问题与解决办法,无机材料学报,2004,19(6):1217~1224
    [71] Myoung Youp Song, Ryong Lee , IkHyun Kwon, Synthesis by sol-gel method and electrochemical properties of LiNi1?yAlyO cathode materials for lithium secondary battery,2Solid State Ionics, 2003, 156(3-4):319~328
    [72] Myoung Youp Song, Ryong Lee, Synthesis by sol-gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery, J. Power Sources, 2002, 111(1): 97~103
    [73] Sang Ho Park, Yang-Kook Sun, Ki Soo Park, et al, Synthesis and electrochemical properties of lithium nickel oxysulfide (LiNiSyO2?y) material for lithium secondary batteries, Electrochimica Acta, 2002, 47(11):1721~1726
    [74] Yanzhi Sun, Pingyu Wan, Junqing Pan, et al, Low temperature synthesis of layered LiNiO2 cathode material in air atmosphere by ion exchange reaction, Solid State Ionics, 2006, 177(13-14):1173~1177
    [75]刘欣艳,赵煜娟,李燕,等,Al、Co和Mn掺杂对LiNiO2结构的影响,无机化学学报,2006,22(6):1007~1012
    [76]时朝昆,赵煜娟,夏定国,等,元素掺杂对LiNiO2正极材料电化学性能的影响,电源技术,2004,28(3):184~186
    [77] R. Sathiyamoorthi, P. Shakkthivel, S. Ramalakshmi, et al, Influence of Mg doping on the performance of LiNiO2 matrix ceramic nanoparticles in high-voltage lithium-ion cells, J. Power Sources, 2007, 171(2):922~927
    [78] Hyung-Wook Ha, Kyung Hee Jeong, Keon Kim, Effect of titanium substitution in layered LiNiO2 cathode material prepared by molten-salt synthesis, J. Power Sources, 2006, 161(1): 606~611
    [79] J. Kim, B.H. Kim, Y.H. Baik, et al, Effect of (Al, Mg) substitution in LiNiO2 electrode for lithium batteries, J. Power Sources, 2006, 158(1): 641~645
    [80] Yukinori Koyama, Isao Tanaka, Tsutomu Ohzuku, et al, Crystal and electronic structures of superstructural Li1?x[Co 1/3N i 1/3 Mn 1/3 ]O2 (0≤x≤1), J. Power Sources, 2003, 119-121(1): 644~648
    [81] Hironori Kobayashi, Yoshinori Arachi, Shuichi Emura, et al, Investigation on lithium de-intercalation mechanism for Li1?yNi 1/3 Mn 1/3C o 1/3 O2 , J. Power Sources, 2005, 146(1-2):640~644
    [82] Naoaki Yabuuchi and Tsutomu Ohzuku, Electrochemical behaviors of LiCo 1/3N i 1/3 Mn 1/3O 2 in lithium batteries at elevated temperatures, J. Power Sources, 2005, 146(1-2): 636~639
    [83]王丽琴,焦丽芳,袁华堂,等,煅烧温度对锂离子正极材料Li[Ni0.475Mn0.475Co0.05]O2结构和电化学性能的影响,电化学,2006,12(3):275~278
    [84]谭才渊,唐致远,陈玉红,正极材料LiCo1/3Ni1/3Mn1/3O2的制备与电化学性能,化学工业与工程,2006,23(6):532~535
    [85] Yu-Shi He, Zi-Feng Ma, Xiao-Zhen, et al, Synthesis and characterization of submicron-sized LiNi1 /3 Co 1/3M n 1/3 O2 by a simple self-propagating solid-state metathesis method, J. Power Sources, 2007, 163(2):1053~1058
    [86] Myung-Hyoon Kim, Ho-Suk Shin, Dongwook Shin, et al, Synthesis and electrochemical properties of Li[Ni 0.8 Co0 .1 Mn 0.1 ]O2 and Li[Ni 0.8 Co0 .2 ]O2 via co-precipitation, J. Power Sources, 2006, 159(2):1328~1333
    [87]朱勇军,李新海,王志兴,等,球形LiCo1/3Ni1/3Mn1/3O2的合成及其电化学性能,中国有色金属学报,2006,16(12):2109~2114
    [88] Li Liao, Xianyou Wang, Xufang Luo, et al, Synthesis and electrochemical properties of layered Li[Ni 0.333 Co 0.333M n 0.293A l 0.04] O2?zFz cathode materials prepared by the sol–gel method, J. Power Sources, 2006, 160(1): 657~661
    [89] A. Manuel Stephan, N.G. Renganathan, S. Gopukumar, et al, Cycling behavior of LiNixCoyMn2?x?yO4 prepared by sol–gel route, Solid State Ionics, 2004, 175(1-4): 291~295
    [90]周震涛,黄鲲,微粒溶胶-凝胶法制备Li(Co1/3Ni1/3Mn1/3)O2及其性能,电源技术,2006,30(8):649~652
    [91] Yuan-Jun Huang, De-Shu Gao, Gang-Tie Lei, et al, Synthesis and characterization of Li(Ni Co Mn ) Si O F as a cathode material for lithium-ion battery,1/3 1/3 1/3 0.96 0.04 1.96 0.04Materials Chemistry and Physics, 2007, 106(2-3): 354~359
    [92] Ho-Suk Shin, Dongwook Shin,Yang-Kook Sun, et al, Synthesis and electrochemical properties of Li[Ni 0.4 Co0 .2 Mn(0.4?x)Mgx]O2?yFy via a carbonate co-precipitation, Current Applied Physics, 2006, 6 (1): e12~e16
    [93]闻雷,其鲁,徐国祥,等,LiNi1/3Mn1/3Co1/3O2-ZFz正极材料的合成及电化学性能,电源技术,2006,30(8):653~656
    [94] Gil-Ho Kim, Seung-Taek Myung, Hyun-Soo Kim, et al, Synthesis of spherical Li[Ni(1/3?z)Co(1/3?z)Mn(1/3?z)Mgz]O as positive electrode material for lithium-ion battery, 2Electrochimica Acta, 2006, 51(12): 2447~2453
    [95]李义兵,陈白珍,徐徽,等,Li(Mn1/3Ni1/3Co1/3)1-yMyO2(M=Al, Mg, Ti)正极材料的制备及性能,中国有色金属学报,2006,16(8):1474~1479
    [96]王丽琴,焦丽华,袁华堂,等,Li[Ni1/3Mn1/3 Co1/3]O2掺杂Mo研究,化学学报,2006,64(17):1854~1858
    [97] Guk-Tae Kim, Jong-Uk Kim, Young-Jae Sim,et al, Electrochemical properties of LiCrxNi0.5?xMn 0.5O 2 prepared by co-precipitation method for lithium secondary batteries, J. Power Sources, 2006, 158(2): 1414~1418
    [98] Decheng Li, Yasuhiro Kato, Koichi Kobayakawa,et al, Preparation and electrochemical characteristics of LiNi Mn Co O coated with metal oxides coating, 1/3 1/3 1/3 2J. Power Sources, 2006, 160(2): 1342~1348
    [99] Youngsik Kim, Hyun Soo Kim, Steve W. Martin, Synthesis and electrochemical characteristics of Al 2 O3-coated LiNi1 /3C o 1/3 Mn 1/3O 2 cathode materials for lithium ion batteries, Electrochimica Acta, 2006, 52(3):1316~1322
    [100] S.S. Zhang, J.L. Allen, K. Xu, et al, Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes, J. Power Sources, 2005, 147(1-2): 234~240
    [101] Ho Chul Shin, Won II Cho, Ho Jang, Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries, J. Power Sources, 2006, 159(2): 1383~1388
    [102]卢俊彪,唐子龙,张中太,等,镁离子掺杂对LiFePO4/C材料电池性能的影响,物理化学学报,2005,2005,21(3):319~323
    [103] Jeremy Barker, M.Yazid Saidi, Jeffrey Swoyer, Method of making lithium-containing materials, US patent, US6528033, 2003-03-04
    [104] Jeremy Barker, M.Yazid Saidi, Jeffrey Swoyer, Preparation of making lithium-containing materials, US patent, US6702961, 2004-03-09
    [105] Jeremy Barker, M.Yazid Saidi, Jeffrey Swoyer, Lithium-containing materials, US patent, US6716372, 2004-06-06
    [106] Jeremy Barker, M.Yazid Saidi, Jeffrey Swoyer, Lithium-based active materials and preparation thereof, US patent, US6884544, 2005-04-26
    [107]米常焕,曹高劭,赵新兵,碳包覆LiFePO4的一步固相法制备及高温电化学性能,无机化学学报,2005,21(4):556~560
    [108]丁燕怀,苏光耀,高德淑,等,溶胶-凝胶法合成正极材料LiFePO4,电池,2006,36(1):52~53
    [109] Zhihui Xu, Liang Xu, Qiongyu Lai, et al, A PEG assisted sol–gel synthesis of LiFePO4 as cathodic material for lithium ion cells, Materials Research Bulletin, 2007, 42(5): 883~891
    [110] Daiwon Choi, Prashant N. Kumta, Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries, J. Power Sources, 2007, 163(2): 1064~1069
    [111] G.X. Wang, S. Needham, J. Yao, et al, A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries, J. Power Sources, 2006, 159(1): 282~286
    [112] Miran Gaberscek, Robert Dominko, Marjan Bele, et al, Porous, carbon-decorated LiFePO4 prepared by sol-gel method based on citric acid, Solid State Ionics, 2005, 176(19-22): 1801~1805
    [113]张静,刘素琴,黄可龙,等,LiFePO :水热合成及性能研究,无机化学学报,2005,21(3):4334~436
    [114] Kaoru Dokko, Shohei Koizumi, Keisuke Sharaishi, et al, Electrochemical properties of LiFePO4 prepared via hydrothermal route, J. Power Sources, 2007, 165(2): 656~659
    [115] G. Meligrana, C. Gerbaldi, A. Tuel, et al, Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells, J. Power Sources, 2006, 160(1): 516~522
    [116] Shigehisa Tajimi, Yosuke Ikeda, Kazuyoshi Uematsu, et al, Enhanced electrochemical performance of LiFePO4 prepared by hydrothermal reaction, Solid State Ionics, 2004, 175(1-4): 287~290
    [117] Sylvain Franger, Frédéric Le Cras, Carole Bourbon, et al, Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties, J. Power Sources, 2003, 119-121(1): 252~257
    [118] J.F. Ni, H.H. Zhou, J.T. Chen, et al, LiFePO4 doped with ions prepared by co-precipitation method, Mater. Lett., 2005, 59(18): 2361~2365
    [119] G. Arnold, J. Garche, R. Hemmer, et al, Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique, J. Power Sources, 2003, 119-121(1): 247~251
    [120]钟参云,田彦文,曲涛,共沉淀法制备锂离子电池正极材料LiFePO4,材料与冶金学报,2005,4(4):272~275
    [121]杨威,曹传堂,曹传宝,共沉淀法制备锂离子电池正极材料LiFePO4及其性能研究,材料工程,2005,(6):36~40
    [122] K.S. Park, J.T. Son, H.T. Chung, et al, Surface modification by silver coating for improving electrochemical properties of LiFePO4 , Solid State Commun., 2004, 129(5): 311~314
    [123]苏元智,徐徽,陈白珍,等,微波法合成LiFePO4研究,电池,2006,36(1): 43~44
    [124] Min-Sang Song, Yong-Mook Kang, Jin-Ho Kim, et al, Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating, J. Power Sources, 2007, 166(1): 260~265
    [125] Masashi Higuchi, Keiichi Katayama, Yasuo Azuma, et al, Synthesis of LiFePO4 cathode material by microwave processing, J. Power Sources, 2003, 119-121(1): 258~261
    [126]王小建,任俊霞,李宇展,等,微波法制备掺碳LiFePO4正极材料,无机化学学报,2005,21(2):249~252
    [127] Tomoyuki Shiratsuchi, Shigeto Okada, Jun-ichi Yamaki, et al, Cathode performance of olivine-type LiFePO4 synthesized by chemical lithiation, J. Power Sources, 2007, 173(2): 979~984
    [128] A.A.M. Prince, S. Mylswamy, T.S. Chan, et al, Investigation of Fe valence in LiFePO4 by M?ssbauer and XANES spectroscopic techniques, Solid State Commun., 2004, 132(7): 455~458
    [129] Silvera Scaccia, Maria Carewska, Pawel Wisniewski, et al, Morphological investigation of sub-micron FePO4 and LiFePO4 particles for rechargeable lithium batteries, Materials Research Bulletin, 2003, 38(7): 1155~1163
    [130] Cheol Woo Kim, Jong Suk Park, Kyung Sub Lee, Effect of Fe P on the electron conductivity and electrochemical performance of2LiFePO4 synthesized by mechanical alloying using Fe 3+ raw material, J. Power Sources, 2006, 163(1): 144~150
    [131] Jeremy Barker, M.Yazid Saidi, Jeffrey Swoyer, Method of making lithium metal cathode active materials, US patent, US6960331, 2005-10-01
    [132] Yonggao Xia, Masaki Yoshio, Hideyuki Noguchi, et al, Improved electro- chemical performance of LiFePO4 by increasing its specific surface area, Electrochimica Acta, 2006, 52(1): 240~245
    [133] Ketack Kim, Ji Hwa Jeong, Ick-Jun Kim, et al, Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO4, J. Power Sources, 2007, 167(2): 524~528
    [134] Bing Quan Zhu, Xin Hai Li, Zhi Xing Wang, et al, Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction, Mater. Chem. & Phys., 2006, 98(2-3): 373~376
    [135] Pier Paolo Prosini, Daniela Zane, Mauro Pasquali, Improved electrochemical performance of a LiFePO4-based composite cathode, Electrochimica Acta, 2001, 46(23): 3517~3523
    [136] Baofeng Wang, Yali Qiu, Siyu Ni, Ultrafine LiFePO4 cathode materials synthesized by chemical reduction and lithiation methode in alcohol solution, Solid State Ionics, 2007, 178(11-12): 843~847
    [137]雷敏,应皆荣,姜长印,等,高密度球形LiFePO4的合成及性能,电源技术,2006,30(1):11~13
    [138] Fei Gao, Zhiyuan Tang, Jianjun Xue, Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method, Electrochimica Acta, 2007, 53(4): 1939~1944
    [139] K. Konstantinov, S. Bewlay, G.X. Wang, et al, New approach for synthesis of carbon-mixed LiFePO4 cathode materials, Electrochimica Acta, 2004, 50(2-3): 421~426
    [140] Ho Chul Shin, Won Il Cho, Ho Jang, Electrochemical properties of carbon- coated LiFePO4 cathode using graphite, carbon black, and acetylene black, Electrochimica Acta, 2006, 52(4): 1472~1476
    [141] Mu-Rong Yang, Tsung-Hsien Teng, She-Hung Wu, LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis, J. Power Sources, 2006, 159(1): 307~311
    [142]唐致远,阮艳莉,不同碳源对LiFePO4/C复合正极材料性能的影响,化学学报,2005,63(16):1500~1504
    [143] Julián Morales, Jesús Santos-Pe?a, Enrique Rodríguez-Castellón, et al, Antagonistic effects of copper on the electrochemical performance of LiFePO4, Electrochimica Acta, 2007, 53(2): 920~926
    [144] C.H. Mi, Y.X. Cao, X.G. Zhang, et al, Synthesis and characterization of LiFePO4/(Ag + C) composite cathodes with nano-carbon webs, Powder Technology, 2007, 179(1):171~176
    [145] Chung Sung-Yoon, Bloking Jason T., Chiang Yet-Ming, Electronically conductive phospho-olivines as lithium storage electrodes, Nature Materials,2002,1(2): 123~128
    [146] Anton Nytén, John O. Thomas, A neutron powder diffraction study of LiCoxFe1?xPO4 for x = 0, 0.25, 0.40, 0.60 and 0.75, Solid State Ionics, 2006, 177(15-16):1327~1330
    [147] J.F. Ni, H.H. Zhou, J.T. Chen, et al, LiFePO4 doped with ions prepared by co-precipitation method, Mater. Lett., 2005, 59(18):2361~2365
    [148] Deyu Wang, Hong Li, Siqi Shi, et al, Improving the rate performance of LiFePO4 by Fe-site doping, Electrochimica Acta, 2005, 50(14): 2955~2958
    [149] Jian Hong, Chunsheng Wang, Uday Kasavajjula, Kinetic behavior of LiFeMgPO4 cathode material for Li-ion batteries, J. Power Sources, 2006, 162(2): 1289~1296
    [150]杨平,戴曦,唐红辉,等,LiFe1-xMnxPO4正极材料的合成及结构与性能,电源技术,2005,29(11):755~757
    [151] C.Delacourt, C.Wurm, L.Laffont, et al, Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites, Solid State Ionics, 2006,177(3-4):333~341
    [152] N.Ravet, A.Abouimrane, M. Armand, On the electronic conductivity of phospho-olivines as lithium storage electrodes, Nature Materials, 2003, 2(11): 702~706
    [153] P.S.Herle, B.Ellid, N.Coombs, et al, Nano-network electronic conduction in iron and nickel olivine phosphates, Nature Materials, 2004,3(3):147~152
    [154] M.S.Islam, D.J.Driscoll, C.A.J.Fisher, et al, Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material, Chem.Mater., 2005,17(20):5058~5092
    [155] Christopher M Burba, Roger Frech, In situ transmission FTIR spectroelectrochemistry: A new technique for studying lithium batteries, Electrochimica Acta, 2006, 52(3):780~785
    [156] Ait Salah A, Jozwiak P, Zaghib K, et al, FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries, Spectrochimica Acta Part A, 2006, 65(5):1007~1013
    [157]A. S. Andersson, J. O. Thomas, The source of first-cycle capacity loss in LiFePO4 , J. Power Sources, 2001, 97-98(1): 498~502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700