用户名: 密码: 验证码:
三维铋系光催化剂纳米结构的合成及其光催化性能的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的快速发展,越来越多的有机污染物进入水环境中,对人类的生存造成严重威胁。相对于传统的处理技术(如吸附法、生物法),光催化氧化技术由于能够有效地去除水体中高稳定性和高毒性的有机污染物,已逐渐成为环境保护领域研究的热点。二氧化钛(TiO_2)具有高效、无毒、稳定及廉价等优点,是光催化领域中应用最为广泛的一种半导体光催化剂,但由于其仅能被紫外光激发而制约了其对太阳光(紫外光仅占太阳光谱的4%)的有效利用,因此,致力于开发新型利用太阳光降解有机污染物的光催化剂具有重要的研究意义。本论文主要研究通过一步简单溶剂热/水热法合成易回收、太阳光响应的三维铋系光催化剂纳米结构,采用各种分析技术对其进行表征,并对其光催化性能进行调控,提高其利用太阳光去除水体中有机污染物的能力。
     以五水硝酸铋和偏钒酸铵为原料,采用一步溶剂热法合成高产率、由纳米粒子组装而成的具孔三维花生形貌BiVO_4纳米光催化剂,通过X射线衍射(XRD)、X射线能谱(EDS)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis/DRS)及氮吸附等手段对其成分、结构、尺寸、形貌、光学性质及表面孔结构进行表征,并探讨该三维BiVO_4纳米结构的形成机理。在溶剂热合成条件下,乙二醇对三维花生形貌BiVO_4纳米光催化剂的结构及形貌控制具有至关重要的作用。具孔三维BiVO_4纳米光催化剂和H_2O_2的协同作用能很好地利用太阳光降解水体中的有机污染物罗丹明B,同时探讨了BiVO_4/H_2O_2系统去除水体中罗丹明B的降解机理,研究结果表明羟基自由基和空穴共同氧化降解罗丹明B。此外,对具孔三维BiVO_4纳米光催化剂的稳定性及其循环利用性也进行了研究。
     模拟太阳光照射下,研究了银离子(Ag~+)对三维BiVO_4纳米光催化剂降解罗丹明B效果的影响。加入的Ag~+能够有效的捕获BiVO_4导带上的光生电子,从而抑制了光生电子和空穴的复合,提高其光催化降解罗丹明B的活性。理论和实验证实,Ag~+/BiVO_4系统光催化降解罗丹明B主要归结于价带空穴的直接氧化。通过采用X射线衍射(XRD)、透射电镜(TEM)及X射线能谱(EDS)证实Ag~+/BiVO_4系统光催化降解反应后回收得到的三维BiVO_4催化剂表面有金属银纳米颗粒的沉积。光催化降解实验显示沉积在三维BiVO_4催化剂表面的银纳米颗粒又能提高其光催化降解罗丹明B的效果,因此,实验结果证实了加入的Ag~+得到了双重的利用。
     以五水硝酸铋和二水钨酸钠为原料,采用一步简单、经济水热法合成由纳米片组装而成的三维Bi_2WO_6微米球,产率高,通过X射线衍射(XRD)、拉曼光谱(Raman)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis/DRS)及氮吸附等分析技术对其结构、形貌、尺寸、光学性质及表面孔结构进行表征。模拟太阳光照射下,三维Bi_2WO_6微米球具有优异的光催化降解罗丹明B的活性。此外,详细阐述了三维Bi_2WO_6微米球光催化降解罗丹明B的机理,证实光生空穴与超氧自由基共同氧化去除罗丹明B。同时实验表明三维Bi_2WO_6微米球在酸性及碱性条件下能够保持稳定,不易转变成其它物质,但在碱性条件下三维Bi_2WO_6微米球降解活性有所降低。在少量H_2O_2的协助下,三维Bi_2WO_6微米球去除高稳定性苯酚的能力大大提升,主要是由于在光照条件下Bi_2WO_6微米球导带上的电子与H_2O_2能够产生强氧化性的羟基自由基,从而导致苯酚的快速降解。
     以十六烷基三甲基溴化铵为软模板,五水硝酸铋和二水钨酸钠为原料,采用一步水热法合成三维Bi_2O_3/Bi_2WO_6复合微米球,通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis/DRS)和氮吸附等分析手段对其进行表征。真实太阳光及模拟太阳光照射下,三维Bi_2O_3/Bi_2WO_6复合微米球光催化剂对罗丹明B具有很高的光催化降解活性,活性远高于单独的Bi_2O_3催化剂和Bi_2WO_6催化剂,这主要是由于两者复合时具有合适的能带位置,使电子-空穴对能够有效分离,提高了光利用率。
With the rapid development of modern industry, more and moreorganic pollutants were released into water environment, which posed agreat threat to human survival. Compared with the traditional treatmenttechnology, such as absorption and biological methods, photocatalysisoxidation technology has attracted considerable attention because it canefficiently remove the stable and toxic organic pollutants in water. As awidely used photocatalyst, titania owns some outstanding advantages,such as highly efficient, non-toxic, stable and low-cost. However, titaniais only excited by UV light, which limits its efficient utilization of solarlight because the UV light range accounts for about4%of the solarspectrum. Therefore, it is highly necessary to develop new kinds ofvisible-light-induced photocatalysts using solar light to degrade organicpollutants in water. In this thesis, we mainly focus on design anddevelopment of recyclable sunlight-induced three dimensional (3D) Bi-based photocatalyst nanostructures by one-step facilesolvothermal/hydrothermal route. The as-obtained3D Bi-basedphotocatalyst nanostructures were characterized using various analytictechnologies, and the photocatalytic activities of Bi-based nanostructureswere controlled to enhance their abilities to remove organic pollutants inwater using solar light.
     3D porous peanut-shaped BiVO_4nano-photocatalysts assembled bynanoparticles were solvothermally synthesized with high yield byemploying bismuth nitrate and ammonium metavanadate as the startingmaterials. The as-obtained BiVO_4nano-photocatalysts were characterizedby X-ray powder diffraction, energy dispersive spectroscopy, scanningelectron microscopy, transmission electron microscopy, UV-Vis diffusereflectance spectroscopy and nitrogen sorption. The possible formationmechanism of3D peanut-shaped BiVO_4nano-photocatalysts wasdiscussed in detail. In the solvothermal condition, ethylene glycol played an important role in controlling the phase and morphology of theas-synthesized3D peanut-shaped BiVO_4nano-photocatalysts. In theH_2O_2-containing system, the photocatalytic ability of3D peanut-shapedBiVO_4nano-photocatalysts was greatly enhanced to degrade RhB inwater using solar light. The photocatalytic mechanism of porousBiVO_4/H_2O_2/sunlight/RhB system was also proposed, and the resulstsindicated that RhB was oxidized by OH and holes. In addition, thestability and reuse of3D peanut-shaped BiVO_4nano-photocatalysts inthe H_2O_2-containing system were also investigated.
     The effect of Ag~+ions for the RhB photodegradation in3D BiVO_4suspension was discussed under simulated solar light irradiation. Thephotoinduced electrons on the conduction band of BiVO_4were capturedby Ag~+ions, which suppressed the recombination of electrons and holes.The theoretical and experimental results indicated that RhB was oxidizedby holes in the Ag~+/BiVO_4system using simulated solar light. X-ray powder diffraction, energy dispersive spectroscopy, and transmissionelectron microscopy confirmed that metal Ag nanoparticles weredeposited on the3D BiVO_4photocatalysts after the photocatalyticreaction. The Ag/BiVO_4composite photocatalysts showed a higherphotocatalytic activity than pure BiVO_4photocatalysts. Obviously, Ag~+ions played the dual role to enhance the photocatalytic ability of3DBiVO_4photocatalysts for RhB degradation.
     3D Bi_2WO_6microspheres assembled by nanosheets were preparedwith high yield via one-step simple hydrothermal method, by employingbismuth nitrate and sodium tungstate as the starting materials. Theas-obtained Bi_2WO_6microspheres were characterized by X-ray powderdiffraction, Raman, scanning electron microscopy, transmission electronmicroscopy, UV-Vis diffuse reflectance spectroscopy and nitrogensorption. Under simulated solar light,3D Bi_2WO_6microspheres showedan excellent photocatalytic ability to degrade RhB in water, and the photodegradation mechanism was also proposed. The results indicatedthat RhB was degraded by holes and O–2radicals. The Bi_2WO_6microspheres could keep stable in acid or basic condition, and thephotocatalytic ability would be decrease in basic condition. Thephotocatalytic performance of the Bi_2WO_6microspheres for phenoldegradation was greatly enhanced with the assistance of a small amountof H_2O_2because of more OH radicals produced.
     3D Bi_2O_3/Bi_2WO_6composite microspheres were hydrothermallysynthesized by using CTAB as soft template, and bismuth nitrate andsodium tungstate as the starting materials. The as-obtained Bi_2O_3/Bi_2WO_6composite microspheres were characterized by X-ray powder diffraction,X-ray photoelectron spectroscopy, scanning electron microscopy,transmission electron microscopy, UV-Vis diffuse reflectancespectroscopy and nitrogen sorption. Under solar light irradiation,3DBi_2O_3-Bi_2WO_6composite microspheres exhibited a much higher efciency in the photodecomposition of RhB than Bi_2O_3catalyst orBi_2WO_6catalyst. The excellent photocatalytic activity of Bi_2O_3-Bi_2WO_6composite microspheres could be mainly attributed to their strongabsorption in light and low recombination rate of the electrons and holesbecause of the heterojunction formed between Bi_2O_3and Bi_2WO_6.
引文
[1]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [2] Chi B, Zhao L, Jin T. One-step template-free route for synthesis ofmesoporous N-dopedtitania spheres. J Phys Chem C,2007,111(17):6189~6193
    [3] Gao J N, Li Q S, Zhao H B, et al. One-pot synthesis of uniform Cu2Oand CuS hollow spheres and their optical limiting properties. ChemMater,2008,20(19):6263~6269
    [4] Fang Z, Lin X, Liu Y, et al. Fabrication of hierarchical CdSmicrospheres assembled by nanowires: solid stateelectro-chemiluminescence in H2O2solution. J Mater Sci,2010,45(24):6805~6811
    [5] Xi G, Wang C, Wang X. The oriented self-assembly of magneticFe3O4nanoparticles into monodisperse microspheres and their Uuseas substrates in the formation of Fe3O4Nanorods. European Journalof Inorganic Chemistry,2008,2008(3):425~431
    [6] Hu P, Zhang X, Han N, et al. Solution-controlled self-assembly ofZnO nanorods into hollow microspheres. Cryst Grow Des,2011,11(5):1520~1526
    [7] Zhong L S, Hu J S, LiangI H P, et al. Self-assembled3D flowerlikeiron oxide nanostructures and their application in water treatment.Adv Mater,2006,18(18):2426~2431
    [8] Liu L, Liu H J, Kou H Z, et al. Morphology control of β-In2S3fromchrysanthemum-like microspheres to hollow microspheres:synthesis and electrochemical properties. Cryst Grow Des,2009,9(1):113~117
    [9] Li H X, Bian Z F, Zhu J, et al. Mesoporous titania spheres withtunable chamber stucture and enhanced photocatalytic activity. J AmChem Soc,2007,129(27):8406~8407
    [10] Yu J G, Liu W, Yu H G. A one-pot approach to hierarchicallynanoporous titania hollow microspheres with high photocatalyticactivity. Cryst Grow Des,2008,8(3):930~934
    [11] Yuan Z Y, Su B L. Insights into hierarchically meso–macroporousstructured materials. J Mater Chem,2006,16(7):663~677
    [12] Yu J C, Wang X, Fu X. Pore-wall chemistry and photocatalyticactivity of mesoporous titania molecular sieve films. Chem Mater,2004,16(8):1523~1530
    [13] Lou X W, Archer L A, Yang Z. Hollow micro-/nanostructures:synthesis and applications. Adv Mater,2008,20(21):3987~4019
    [14] Zhao L, Chen X, Wang X, et al. One-step solvothermal synthesis ofa carbon@TiO2dyade structure effectively promoting visible-lightphotocatalysis. Adv Mater,2010,22(30):3317~3321
    [15] Jia B P, Gao L. Morphological transformation of Fe3O4sphericalaggregates from solid to hollow and their self-assembly under anexternal magnetic field. J Phys Chem C,2008,112(3):666~671
    [16]黄毅,申玥,吴季怀,等.花状Bi2WO6光催化剂的制备及性能研究.功能材料,2010,41:52~56
    [17] Yu D B, Sun X Q, Zou J W, et al. Oriented assembly of Fe3O4nanoparticles into monodisperse hollow single-crystalmicrospheres. J Phys Chem B,2006,110(43):21667~21671
    [18] Dong F, Sun Y, Fu M, et al. Novel in situ N-doped (BiO)2CO3hierarchical microspheres self-assembled by nanosheets as efficientand durable visible light driven photocatalyst. Langmuir,2011,28(1):766~773
    [19]谭晓旭,唐谊平,曹华珍,等.三维负极材料二氧化钛纳米管阵列的研究进展.电池,2011,6:340~343
    [20] Wang J, Zhou Y, Hu Y, et al. Facile synthesis of nanocrystallineTiO2mesoporous microspheres for lithium-ion batteries. J PhysChem C,2011,115(5):2529~2536
    [21] Wang Y, Yang W, Shi W. Preparation and characterization ofanatase TiO2nanosheets-based microspheres for dye-sensitizedsolarcells. Ind Eng Chem Res,2011,50(21):11982~11987
    [22]赵铁鹏,高德淑,李朝晖,等.作为锂离子电池负极材料的三维有序大孔SnO2的制备及表征.化学学报,2009,1:1~5
    [23] Zhou L, Wu H B, Zhu T, et al. Facile preparation of ZnMn2O4hollow microspheres as high-capacity anodes for lithium-ionbatteries. J Mater Chem,2012,22(3):827~829
    [24] Yang W G, Wan F R, Chen Q W, et al. Controlling synthesis ofwell-crystallized mesoporous TiO2microspheres with ultrahighsurface area for high-performance dye-sensitized solar cells. JMater Chem,2010,20(14):2870~2876
    [25] Zhang Q, Dandeneau C S, Zhou X, et al. ZnO nanostructures fordye-sensitized solar cells. Adv Mater,2009,21(41):4087~4108
    [26] Li G, Liu M, Liu H. Controlled synthesis of porous flowerlike Cu2Smicrospheres with nanosheet-assembly. CrystEngComm,2011,13(17):5337~5341
    [27]夏昌奎,黄剑锋,曹丽云,等.三维形貌ZnO一维纳米结构的微波水热合成、机理及性能研究.稀有金属材料与工程,2011,2:1~5
    [28] Luo Y S, Zhang W D, Dai X J, et al. Facile synthesis andluminescent properties of novel flowerlike BaMoO4nanostructuresby a simple hydrothermal route. J Phys Chem C,2009,113(12):4856~4861
    [29] Yang J, Li C, Quan Z, et al. Self-assembled3D flowerlike Lu2O3and Lu2O3:Ln3+microarchitectures: ethylene glycol-mediatedhydrothermal synthesis and luminescent properties. J Phys Chem C,2008,112(33):12777~12785
    [30] Zhang H, Wu R, Chen Z, et al. Self-assembly fabrication of3Dflower-like ZnO hierarchical nanostructures and their gas sensingproperties. CrystEngComm,2012,14(5):1775~1782.
    [31] Wang L, Lou Z, Fei T, et al. Zinc oxide core-shell hollowmicrospheres with multi-shelled architecture for gas sensorapplications. J Mater Chem,2011,21(48):19331~19336
    [32] Li X L, Lou T J, Sun X M, et al. Highly sensitive WO3hollow-sphere gas sensors. Inorg Chem,2004,43(17):5442~5449
    [33] Kim S J, Huang I S, Na C W, et al. Ultrasensitive and selectiveC2H5OH sensors using Rh-loaded In2O3hollow spheres. J MaterChem,2011,21(46):18560~18567
    [34] Zhang Y, He X, Li J, et al. Gas-sensing properties of hollow andhierarchical copper oxide microspheres. Sens Actu B: Chem,2007,128(1):293~298
    [35]陈晓青,李庆振,焦飞鹏,等.单分散Fe3O4亚微米球的粒径控制合成及表征.精细化工,2010,6:1~4
    [36] Yu D, Sun X, Zou J, et al. Oriented assembly of Fe3O4nanoparticles into monodisperse hollow single-crystalmicrospheres. J Phys Chem B,2006,110(43):21667~21671
    [37]吕庆荣,方庆清,刘艳美.溶剂热法合成纳米结构四氧化三铁空心微球磁性研究.人工晶体学报,2011,6:1557~1562
    [38] Jagadeesan D, Mansoori U, Mandal P, et al. Hollow spheres tonanocups: tuning the morphology and magnetic properties of singlecrystalline α-Fe2O3nanostructures. Ange Chem Inter Ed,2008,47(40):7685~7688
    [39] Zhou Y X, Zhang Q, Gong J Y, et al. Surfactant-assistedhydrothermal synthesis and magnetic properties of urchin-likeMnWO4microspheres. J Phys Chem C,2008,112(35):13383~133839
    [40]佟欣,陈睿,陈铁红.微米级大孔结构二氧化钛的光催化活性.物理化学学报,2011,8:1941~1946
    [41]贺艳,段海静,王广华,等.3D介孔TiO2微米球的制备及其光催化降解双酚A的研究.环境科学学报,2011,10:2180~2184
    [42]张一兵,江雷.低温下水热法合成锐钛矿型二氧化钛微米球.现代化工,2009,1:43~46
    [43] Zhang K, Liang J, Wang S, et al. BiOCl sub-microcrystals inducedby citric acid and their high photocatalytic activities. Cryst GrowDes,2011,12(2):793~803
    [44] Shang S, Jiao X, Chen D. Template-free fabrication of TiO2hollowspheres and their photocatalytic properties. ACS Appl Mater Inter,2011,4(2):860~865
    [45] Liu S, Yu J, Jaroniec M. Tunable photocatalytic selectivity ofhollow TiO2microspheres composed of anatase polyhedra withexposed {001} facets. J Am Chem Soc,2010,132(34):11914~11916
    [46] Yu J, Yu X. Hydrothermal synthesis and photocatalytic activity ofzinc oxide hollow spheres. Env Sci Tech,2008,42(13):4902~4907
    [47] Zhou L, Wang W, Xu H, et al. Bi2O3hierarchical nanostructures:controllable synthesis, growth mechanism, and their application inphotocatalysis. Chem Eur J,2009,15(7):1776~1782
    [48] Sun X, Li Y. Colloidal carbon spheres and their core/shellstructures with noble-metal nanoparticles. Angew Chem Inter Ed,2004,43(5):597~601
    [49] Shang M, Wang W Z, Xu H. New Bi2WO6nanocages with highvisible-light-driven photocatalytic activities prepared in refluxingEG. Cryst Grow Des,2008,9(2):991~996
    [50] Li Z, Lai X, Wang H, et al. General synthesis of homogeneoushollow core shell ferrite microspheres. J Phys Chem C,2009,113(7):2792~2797
    [51] Yu J, Yu X, Huang B, et al. Hydrothermal synthesis andvisible-light photocatalytic activity of novel cage-like ferric oxidehollow spheres. Cryst Grow Des,2009,9(3):1474~1480
    [52] Guo C, Hu P, Yu L, et al. Synthesis and characterization of ZrO2hollow spheres. Mater Lett,2009,63(12):1013~1015
    [53] Shen W, Zhu Y, Dong X, et al. A new strategy to synthesizeTiO2-hollow spheres using carbon spheres as template. Chem Lett,2005,34(6):840~841
    [54] Titirici M M, Antonietti M, Thomas A. A generalized synthesis ofmetal oxide hollow spheres using a hydrothermal approach. ChemMater,2006,18(16):3808~3812
    [55] Demircakan R, Hu Y S, Antonietti M, et al. Facile one-potsynthesis of mesoporous SnO2microspheres via nanoparticlesassembly and lithium storage properties. Chem Mater,2008,20(4):1227~1229
    [56] Deng D, Lee J Y. Hollow core–shell mesospheres of crystallineSnO2nanoparticle aggregates for high capacity Li+ion storage.Chem Mater,2008,20(5):1841~1846
    [57] Yin W, Wang W, Shang M, et al. BiVO4hollow nanospheres:anchoring synthesis, growth mechanism, and their application inphotocatalysis. Eur J Inorg Chem,2009,2009:4379~4384
    [58] Du N, Zhang H, Chen J, et al. Metal oxide and sulfide hollowspheres: layer-by-layer synthesis and their application inlithium-ion battery. J Phys Chem B,2008,112(47):14836~14842
    [59] Son D, Wolsoiuk A, Braun P V. Double direct templated sollowZnS microspheres formed on chemically modified silica colloids.Chem Mater,2009,21(4):628~634
    [60] Lin C N, Huang M H. Formation of hollow gallium nitride spheresvia silica sphere templates. J Phys Chem C,2008,113(3):925~929
    [61] Wang Y, Wang G, Wang H, et al. One-pot synthesis ofnanotube-based hierarchical copper silicate hollow spheres. ChemComm,2008,48:6555~6557
    [62] Kondo Y, Yoshikawa H, Awaga K, et al. Preparation, photocatalyticactivities, and dye-sensitized solarcell performance ofsubmicron-scale TiO2hollow spheres. Langmuir,2007,24(2):547~550
    [63] Song C, Yu W, Zhao B, et al. Efficient fabrication andphotocatalytic properties of TiO2hollow spheres. Catal Comm,2009,10(5):650~654
    [64] Deng Z, Chen M, Gu G, et al. A facile method to fabricate ZnOfollow spheres and their photocatalytic property. J Phys Chem B,2007,112(1):16~22
    [65] Xu H, Wang W. Template synthesis of multishelled Cu2O hollowspheres with a single-crystalline shell wall. Angew Chem,2007,119(9):1511~1514
    [66] Ota J, Roy P, Srivastava S K, et al. Morphology evolution of Sb2S3under hydrothermal conditions: flowerlike structure to nanorods.Cryst Grow Des,2008,8(6):2019~2023
    [67] Zhu H, Wang X, Wang Z, et al. Self-assembled3D microfloweryIn(OH)3architecture and its conversion to In2O3. J Phys Chem C,2008,112(39):15285~15292
    [68] Liu L, Ge M, Liu H, et al. Controlled synthesis of ZnO withadjustable morphologies from nanosheets to microspheres. CollSurf A Phys Eng Aspe,2009,348:124~129
    [69] Rengaraj S, Venkatarak S, Jee S H, et al. Cauliflower-like CdSmicrospheres composed of nanocrystals and their physicochemicalproperties. Langmuir,2010,27(1):352~358
    [70] Lou D, Ye M. Poly(ethylene glycol)-mediated synthesis of hollowZnS microspheres. J Phys Chem C,2008,112(7):2349~2352
    [71] Wang D, Sing C, Zhao Y, et al. Synthesis and characterization ofmonodisperse iron oxides microspheres. J Phys Chem C,2008,112(33):12710~12715
    [72] Dai X J, Luo Y S, Zhang W D, et al. Facile hydrothermal synthesisand photocatalytic activity of bismuth tungstate hierarchical hollowspheres with an ultrahigh surface area. Dalt Tran,2010,39(14):3426~3432
    [73] Wu J, Duan F, Zheng Y, et al. Synthesis of Bi2WO6nanoplate-builthierarchical nest-like structures with visible-light-inducedphotocatalytic activity. J Phys Chem C,2007,111(34):12866~12871
    [74] Guo C, Ge M, Liu L, et al. Directed synthesis of mesoporous TiO2microspheres: catalysts and their photocatalysis for bisphenol Adegradation. Envi Sci Tech,2009,44(1):419~425
    [75] Zhang J, Shi F J, Lin J, et al. Self-assembled3-D architectures ofBiOBr as a visible light-driven photocatalyst. Chem Mater,2008,20:2937~2941
    [76] Zhang L, Wang W, Chen Z, et al. Fabrication of flower-likeBi2WO6superstructures as high performance visible-light drivenphotocatalysts. J Mater Chem,2007,17(24):2526~2532
    [77] Wang J W, Wang X, Peng Q, et al. Synthesis and characterizationof bismuth single-crystalline nanowires and nanospheres. InorgChem,2004,43:7552~7556
    [78] Fujishima A, Honda K. Electrochemical photolysis of water at asemiconductor electrode. Nature,1972,238(5358):37~38
    [79] Linsebigler A L, Lu G, Yantes J T. Photocatalysis on TiO2surfaces:principles, mechanisms, and selected results. Chem Rev,1995,95(3):735~758
    [80] Chong M N, Jin B, Chow C W K, et al. Recent developments inphotocatalytic water treatment technology: A review. WaterResearch,2010,44(10):2997~3027
    [81] Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visiblelight irradiation with an oxide semiconductor photocatalyst. Nature,2001,414(6864):625~627
    [82]杨宇,杨莉,白波. NiO掺杂InVO4光催化降解甲酸水溶液产氢的研究.化学工程,2011,12:17~20
    [83]彭绍琴,黄亚辉,安然,等.复合光催化剂CdS-Pt/TiO2低温制备及可见光制氢性能.功能材料,2011,09:323~326
    [84] Daskalaki V M, Antoniadou M, Lipuma G, et al. Solarlight-responsive Pt/CdS/TiO2photocatalysts for hydrogenproduction and simultaneous degradation of inorganic or organicsacrificial agents in wastewater. Envi Sci Tech,2010,44(19):7200~7205
    [85] Kato H, Asakura K, Kudo A. Highly efficient water splitting intoH2and O2over lanthanum-doped NaTaO3photocatalysts with highcrystallinity and surface nanostructure. J Am Chem Soc,2003,125(10):3082~3089
    [86] Kudo A, Omori K, Kato H. A novel aqueous process forpreparation of crystal form-controlled and highly crystalline BiVO4powder from layered vanadates at room temperature and itsphotocatalytic and photophysical properties. J Am Chem Soc,1999,121(49):11459~11467
    [87]黄锦勇,刘国光,张万辉,等. TiO2光催化还原重金属离子的研究进展.环境科学与技术,2008,12:8~14
    [88]张昊,谭欣,赵林.废水中重金属离子的光催化还原研究进展.天津理工学院学报,2004,03:28~32
    [89] Schrank S G, Jos H J, MoreiraR F P M. Simultaneousphotocatalytic Cr(VI) reduction and dye oxidation in a TiO2slurryreactor. J Photochem Photobio A: Chem,2002,147(1):71~76
    [90] Xie B, Zhang H, Cai P, et al. Simultaneous photocatalytic reductionof Cr(VI) and oxidation of phenol over monoclinic BiVO4undervisible light irradiation. Chemosphere,2006,63(6):956~963
    [91] Khalil L B, Rophael M W, Mourad W E. The removal of the toxicHg(II) salts from water by photocatalysis. Appl Catal B: Envi,2002,36(2):125~130
    [92] Chen D, K. Ray A. Removal of toxic metal ions from wastewaterby semiconductor photocatalysis. Chem Eng Sci,2001,56(4):1561~1570
    [93] Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemicalsterilization of microbial cells by semiconductor powders. FEMSMicro Lett,1985,29(1-2):211~214
    [94] Luigi R. Inactivation and injury of total coliform bacteria afterprimary disinfection of drinking water by TiO2photocatalysis. JHazar Mater,2009,165(1–3):48~51
    [95]丁卉,张诺,戎非,等.氮氟共掺杂二氧化钛薄膜的制备、表征及杀菌性能.无机材料学报,2011,05:517~522
    [96]唐晓山,李达.银包覆TiO2纳米薄膜的光催化杀菌性能.中国生物医学工程学报,2011,04:615~619
    [97] Ren J, Wang W, Sun S, et al. Enhanced photocatalytic activity ofBi2WO6loaded with Ag nanoparticles under visible light irradiation.Appl Catal B: Envi,2009,92(1–2):50~55
    [98] Zhang L S, Wong K H, Yip H Y, et al. Effective Photocatalyticsisinfection of E. coli K-12using AgBr Ag Bi2WO6nanojunctionsystem irradiated by visible light: the role of diffusing hydroxylradicals. Envi Sci Tech,2010,44(4):1392~1398
    [99] Mo J, Zhang Y, Xu Q, et al. Photocatalytic purification of volatileorganic compounds in indoor air: A literature review. Atmo Envi,2009,43(14):2229~2246
    [100] Obee T N, Brown R T. TiO2photocatalysis for indoor airapplications: effects of humidity and trace contaminant levels onthe oxidation rates of formaldehyde, toluene, and1,3-butadiene.Envi Sci Tech,1995,29(5):1223~3121
    [101] Kibanova D, Cervini-silva J, Destaillats H. Efficiency ofclay TiO2nanocomposites on the photocatalytic elimination of amodel hydrophobic air pollutant. Envi Sci Tech,2009,43(5):1500~1506
    [102] Feng Y, Li L, Ge M, et al. Improved catalytic capability ofmesoporous TiO2microspheres and photodecomposition oftoluene. ACS Appl Mater Inter,2010,2(11):3134~3140
    [103] Martyanov I N, Klabunde K J. Photocatalytic oxidation ofgaseous2-chloroethyl ethyl sulfide over TiO2. Envi Sci Tech,2003,37(15):3448~3453
    [104] Huang H, Li D, Lin Q, et al. Efficient degradation of benzene overLaVO4/TiO2nanocrystalline heterojunction photocatalyst undervisible light irradiation. Envi Sci Tech,2009,43(11):4164~4168
    [105] Forgacs E, CserhtiT, Oros G. Removal of synthetic dyes fromwastewaters: a review. Envi Inter,2004,30(7):953~971
    [106] Rajeshwar K, Osugi M E, Chanmanee W, et al. Heterogeneousphotocatalytic treatment of organic dyes in air and aqueous media.J Photochem Photobio C: Photochem Rev,2008,9(4):171~192.
    [107] Spadaro J T, Isabelle L, Renganathan V. Hydroxyl radicalmediated degradation of azo dyes: evidence for benzenegeneration. Envi Sci Tech,1994,28(7):1389~1393
    [108] Konstantinou I K, Albanis T A. TiO2-assisted photocatalyticdegradation of azo dyes in aqueous solution: kinetic andmechanistic investigations: A review. Appl Catal B: Envi,2004,49(1):1~14
    [109] Khataee A R, Kasiri M B. Photocatalytic degradation of organicdyes in the presence of nanostructured titanium dioxide:Influence of the chemical structure of dyes. J Mol Catal A:Chem,2010,328(1–2):8~26
    [110] Tang W Z, Huren A. UV/TiO2photocatalytic oxidation ofcommercial dyes in aqueous solutions. Chemosphere,1995,31(9):4157~4170
    [111] Daneshvar N, Rasoulifard M H, Khataee A R, et al. Removal ofC.I. Acid Orange7from aqueous solution by UV irradiation inthe presence of ZnO nanopowder. J Hazard Mater,2007,143(1–2):95~101
    [112] Stylidi M, Kondarides D I, Verykios X E. Pathways of solarlight-induced photocatalytic degradation of azo dyes in aqueousTiO2suspensions. Appl Catal B: Envir,2003,40(4):271~286
    [113] Chen C, Zhao W, Li J, et al. Formation and identification ofintermediates in the visible-light-assisted photodegradation ofsulforhodamine-B dye in aqueous TiO2dispersion. Envir SciTech,2002,36(16):3604~3611
    [114] Yin W, Wang W, Zhou L, et al. CTAB-assisted synthesis ofmonoclinic BiVO4photocatalyst and its highly efficientdegradation of organic dye under visible-light irradiation. JHazard Mater,2010,173(1–3):194~199
    [115] Yi Z, Ye J, Kikugawa N, et al. An orthophosphate semiconductorwith photooxidation properties under visible-light irradiation.Nat Mater,2010,9(7):559~564
    [116] Dinh C T, Nguyen T D, Kleitz F, et al. Large-scale synthesis ofuniform silver orthophosphate colloidal nanocrystals exhibitinghigh visible light photocatalytic activity. Chem Comm,2011,47(27):7797~7799
    [117] Bi Y, Ouyang S, Umezawa N, et al. Facet effect ofsingle-crystalline Ag3PO4sub-microcrystals on photocatalyticproperties. J Am Chem Soc,2011,133(17):6490~6492
    [118] Liu L, Liu H, Zhao Y P, et al. Directed synthesis of hierarchicalnanostructured TiO2catalysts and their morphology-dependentphotocatalysis for phenol degradation. Envir Sci Tech,2008,42(7):2342~2348
    [119] Ohko Y, Iuchi K I, Niwa C, et al.17β-Estradiol degradation byTiO2photocatalysis as a means of reducing estrogenic activity.Envir Sci Tech,2002,36(19):4175~4181
    [120] Ohko Y, Ando I, Niwa C, et al. Degradation of bisphenol A inwater by TiO2Photocatalyst. Envir Sci Tech,2001,35(11):2365~2368
    [121] Wang C, Zhang H, Li F, et al. Degradation and mineralization ofbisphenol A by mesoporous Bi2WO6under simulated solar lightirradiation. Envir Sci Tech,2010,44(17):6843~6848
    [122] Xiao X, Zhang W D. Facile synthesis of nanostructured BiOImicrospheres with high visible light-induced photocatalyticactivity. J Mater Chem,2010,20(28):5866~5870
    [123] Kato H, Kudo A. New tantalate photocatalysts for waterdecomposition into H2and O2. Chem Phys Lett,1998,295(5–6):487~492
    [124] Tokunaga S, Kato H, Kudo A. Selective preparation ofmonoclinic and tetragonal BiVO4with scheelite structure andtheir photocatalytic properties. Chem Mater,2001,13(12):4624~4628
    [125] Zhao X, Jin W, Cai J, et al. Shape-and size-controlled synthesisof uniform anatase TiO2nanocuboids enclosed by active {100}and {001} facets. Adv Func Mater,2011,21(18):3554~3563
    [126] Shi J E, Shang S, Yang L, et al. Morphology and crystallinephase-controllable synthesis of TiO2and theirmorphology-dependent photocatalytic properties. J Allo Comp,2009,479(1–2):436~439
    [127] Xi G, Ye J H. Synthesis of bismuth vanadate nanoplates withexposed {001} facets and enhanced visible-light photocatalyticproperties. Chem Comm,2010,46(11):1893~1895
    [128] Zhang L, Wang W Z, Zhou L, et al. Bi2WO6nano-andmicrostructures: shape control and associated visible-light-drivenphotocatalytic activities. Small,2007,3(9):1618~1625
    [129] Ren L, Ma L, Jin L, et al. Template-free synthesis of BiVO4nanostructures: II. relationship between various microstructuresfor monoclinic BiVO4and their photocatalytic activity for thedegradation of rhodamine B under visible light. Nanotechnology,2009,20(40):405602~405606
    [130] Scaife D E. Oxide semiconductors in photoelectrochemicalconversion of solar energy. Solar Energy,1980,25(1):41~54
    [131] Hagfeldt A, Graetzel M. Light-induced redox reactions innanocrystalline systems. Chem Rev,1995,95(1):49~68
    [132] Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials:possibilities and challenges. Adv Mater,2012,24(2):229~251
    [133] Zhang M, Shao C, Mu J, et al. One-dimensional Bi2MoO6/TiO2hierarchical heterostructures with enhanced photocatalytic activity.CrystEngComm,2012,14(2):605~612
    [134] Cheng H, Huang B, Dai Y, et al. One-step synthesis of thenanostructured AgI/BiOI composites with highly enhancedvisible-light photocatalytic performances. Langmuir,2010,26(9):6618~6624
    [135] Evgenidou E, Fytianos K, Poulios I. Semiconductor-sensitizedphotodegradation of dichlorvos in water using TiO2and ZnO ascatalysts. Appl Catal B: Envir,2005,59(1–2):81~89
    [136] Muradov N Z, Traissi A, Muzzee Y D, et al. Selectivephotocatalytic destruction of airborne VOCs. Solar Energy,1996,56(5):445~453
    [137] Fu H, Pan C, Yao W, et al. Visible-light-induced degradation ofRhodamine B by nanosized Bi2WO6. J Phys Chem B,2005,109(47):22432~22439
    [138] Tsai W T, Lee M K, Su T Y, et al. Photodegradation ofbisphenol-A in a batch TiO2suspension reactor. J Hazard Mater,2009,168(1):269~275
    [139] Saison T, Chemin N, Chaneac C, et al. Bi2O3, BiVO4, andBi2WO6: impact of surface properties on photocatalytic activityunder visible light. J Phys Chem C,2011,115(13):5657~5666
    [140] Fujishima A, Zhang X, Tryk D A. TiO2photocatalysis and relatedsurface phenomena. Surf Sci Repo,2008,63(12):515~582
    [141] Shang M, Wang W Z, Sun S M, et al. Efficient visiblelight-induced photocatalytic degradation of contaminant byspindle-like PANI/BiVO4. J Phys Chem C,2009,113(47):20228~20233
    [142] Zhang H, Liu J, Wang H, et al. Rapid microwave-assistedsynthesis of phase controlled BiVO4nanocrystals and research onphotocatalytic properties under visible light irradiation. J NanoRes,2008,10(5):767~774
    [143] Sasaki Y, Iwase A, Kato H, et al. The effect of co-catalyst forZ-scheme photocatalysis systems with an Fe3+/Fe2+electronmediator on overall water splitting under visible light irradiation.J Catal,2008,259(1):133~137
    [144] Xin B, Ren Z, Wang P, et al. Study on the mechanisms ofphotoinduced carriers separation and recombination forFe3+–TiO2photocatalysts. Appl Surf Sci,2007,253(9):4390~4395
    [145] Tian G, Chen Y, Zhou W, et al. Facile solvothermal synthesis ofhierarchical flower-like Bi2MoO6hollow spheres as highperformance visible-light driven photocatalysts. J Mater Chem,2011,21(3):887~892
    [146] Zhu L, Zhang W D, Chen C H, et al. Solvothermal synthesis ofbismuth molybdate hollow microspheres with high photocatalyticactivity. J Nanosci Nanotech,2011,11(6):4948~4956
    [147] Zhang X, Ai Z, Jia F, et al. Generalized one-Pot synthesis,characterization, and photocatalytic activity of hierarchical BiOX(X=Cl, Br, I) nanoplate microspheres. J Phys Chem C,2008,112(3):747~753
    [148] Xia J X, Yin S, Li H, et al. Self-assembly and enhancedphotocatalytic properties of BiOI hollow microspheres via areactable ionic liquid. Langmuir,2011,27(3),1200~1206
    [149] Chen Y, Wen M, Wu Q. Stepwise blossoming of BiOBrnanoplate-assembled microflowers and their visible-lightphotocatalytic activities. CrystEngComm,2011,13(8):3035~3039
    [150] Xia J, Yin S, Li H, et al. Improved visible light photocatalyticactivity of sphere-like BiOBr hollow and porous structuressynthesized via a reactable ionic liquid. Dalt Tran,2011,40(19):5249~5258
    [151] Li G, Zhang D, Yu J C. Ordered mesoporous BiVO4throughnanocasting: a superior visible light-driven photocatalyst. ChemMater,2008,20(12):3983~3992
    [152] Jiang H, Dai H, Meng X, et al. Porous olive-like BiVO4:Alcoho-hydrothermal preparation and excellentvisible-light-driven photocatalytic performance for thedegradation of phenol. Appl Catal B: Envi,2011,105(3–4):326~334
    [153] Zhou L, Wang W, Xu H. Controllable synthesis ofthree-dimensional well-defined BiVO4mesocrystals via a facileadditive-free aqueous strategy. Cryst Grow Des,2008,8(2):728~733
    [154] Zhao Y, Xie Y, Zhu X, et al. Surfactant-Free synthesis ofhyperbranched monoclinic bismuth vanadate and its applicationsin photocatalysis, gas sensing, and lithium-ion batteries. ChemEur J,2008,14(5):1601~1606
    [155] Li H, Liu G, Duan X. Monoclinic BiVO4with regularmorphologies: hydrothermal synthesis, characterization andphotocatalytic properties. Mater Chem Phys,2009,115(1):9~13
    [156] Zheng Y, Wu J, Duan F, et al. Gemini surfactant directedpreparation and photocatalysis of m-BiVO4hierarchicalframeworks. Chem Lett,2007,36(4):520~521
    [157] Li Y, Liu J, Huang X, et al. Hydrothermal synthesis of Bi2WO6uniform hierarchical microspheres. Cryst Grow Des,2007,7(7):1350~1355
    [158] Li Y, Liu J, Huang X. Synthesis and visible-light photocatalyticproperty of Bi2WO6hierarchical octahedron-like structures. NanoRes Lett,2008,3(10):365~371
    [159] Amano F, Nogami K, Abe R, et al. Preparation andcharacterization of bismuth tungstate polycrystalline flake-ballparticles for photocatalytic reactions. J Phys Chem C,2008,112(25):9320~9326
    [160] Amano F, Nogami K, Tanaka M, et al. Correlation betweensurface area and photocatalytic Activity for acetaldehydedecomposition over bBismuth tungstate aarticles with ahierarchical structure. Langmuir,2010,26(10):7174~7180
    [161] Cui Z, Zeng D, Tang T, et al. Processing–structure–propertyrelationships of Bi2WO6nanostructures as visible-light-drivenphotocatalyst. Jhazard Mater,2010,183(1–3):211~217
    [162] Ma D, Huang S, Chen W, et al. Self-assembled three-dimensionalhierarchical umbilicate Bi2WO6microspheres from nanoplates:controlled synthesis, photocatalytic activities, and wettability. JPhys Chem C,2009,113(11):4369~4374
    [163] Chen Z, Qian L, Zhu J, et al. Controlled synthesis of hierarchicalBi2WO6microspheres with improved visible-light-drivenphotocatalytic activity. CrystEngComm,2010,12(7):2100~2106
    [164]施尔畏,夏长泰,王步国,仲维卓.水热法的应用与发展.无机材料学报,1996,02:193~206
    [165] Byrappa K, Adschiri T. Hydrothermal technology fornanotechnology. Progress in crystal growth and characterizationof materials,2007,53(2):117~166
    [166] Fukahori S, Ichiura H, Kitaoka T, et al. Photocatalyticdecomposition of bisphenol A in water using compositeTiO2-zeolite sheets prepared by a papermaking technique. EnvirSci Tech,2003,37(5):1048~1051
    [167] Ollis D F, Pelizzetti E, Serpone N. Photocatalyzed destruction ofwater contaminants. Envir Sci Tech,1991,25(9):1522~1529
    [168] Hoffmann M R, Martin S T, Choi W, et al. Environmentalapplications of semiconductor photocatalysis. Chem Rev,1995,95(1):69~96
    [169] Zhang L, Chen D, Jiao X. Monoclinic structured BiVO4nanosheets: hydrothermal preparation, formation mechanism,and coloristic and photocatalytic properties. J Phys Chem B,2006,110(6):2668~2673
    [170] Chatchai P, Murakami Y, Kishioka S Y, et al. Efficientphotocatalytic activity of water oxidation over WO3/BiVO4composite under visible light irradiation. Elect Acta,2009,54(3):1147~1152
    [171] Long M, Cai W, Cai J, et al. Efficient photocatalytic degradationof phenol over Co3O4/BiVO4composite under visible lightirradiation. J Phys Chem B,2006,110(41):20211~20216
    [172] Amirtahmasseb L, Nlieu S, Kerhoas L, et al. Ozonation ofchlorophenylurea pesticides in water: reaction monitoring anddegradation pathways. Sci Total Envir,2002,291(1–3):33~44
    [173] Benitez F J, Real F J, Acero J L, et al. Photochemical oxidationprocesses for the elimination of phenyl-urea herbicides in waters.J Hazard Mater,2006,138(2):278~287
    [174] Zhao Y, Hu J, Jin W. Transformation of oxidation products andreduction of estrogenic activity of17β-estradiol by aheterogeneous photo-fenton reaction. Envir Sci Tech,2008,42(14):5277~5284
    [175] Kaniou S, Pitarakis K, Barlaginani I, et al. Photocatalyticoxidation of sulfamethazine. Chemosphere,2005,60(3):372~380
    [176] Wong C C, Chu W. The hydrogen peroxide-assistedphotocatalytic degradation of alachlor in TiO2suspensions.Envir Sci Tech,2003,37(10):2310~2316
    [177] Rao Y F, Chu W. Reaction mechanism of linuron degradation inTiO2suspension under visible light irradiation with theassistance of H2O2. Envir Sci Tech,2009,43(16):6183~6189
    [178] Ohno T, Masaki Y, Hirayama S, et al. TiO2-photocatalyzedepoxidation of1-Decene by H2O2under visible light. J Catal,2001,204(1):163~168
    [179] Guan M L, Ma D K, Hu S W, et al. From hollow olive-shapedBiVO4to n p core shell BiVO4@Bi2O3microspheres:controlled synthesis and enhanced visible-light-responsivephotocatalytic properties. Inorg Chem,2010,50(3):800~805
    [180] Chen J, Herricks T, Geissler M, et al. Single-crystal nanowires ofplatinum can Be synthesized by controlling the reaction rate of apolyol process. J Am Chem Soc,2004,126(35):10854~10855
    [181] Zhu Y, Zhao W, Chen H, et al. A simple one-pot self-assemblyroute to nanoporous and monodispersed Fe3O4particles withoriented attachment structure and magnetic property. J PhysChem C,2007,111(14):5281~5285
    [182] Zhao Y P, Ye D X, Wang G C, et al. Novel nano-column andnano-flower arrays by glancing angle deposition. Nano Lett,2002,2(4):351~354
    [183] Zhang X, Ai Z, Jia F, et al. Selective synthesis and visible-lightphotocatalytic activities of BiVO4with different crystalline phases.Mater Chem Phys,2007,103(1):162~167
    [184] Tang J, Zou Z, Y J H. Efficient photocatalytic decomposition oforganic contaminants over CaBi2O4under visible-light irradiation.Angew Chem Inter Ed,2004,43(34):4463~4466
    [185] Butler M A. Photoelectrolysis and physical properties of thesemiconducting electrode WO3. J Appl Phys,1977,48(5):1914~1920
    [186] Sun S, Wang W, Zhou L, et al. Efficient methylene blue removalover hydrothermally synthesized starlike BiVO4. In Eng ChemRes,2009,48(4):1735~1739
    [187] Zhang A, Zhang J, Cui N, et al. Effects of pH on hydrothermalsynthesis and characterization of visible-light-driven BiVO4photocatalyst. J Mol Catal A: Chem,2009,304(1–2):28~32
    [188] Palominos R, Freer J, Mondaca M A, et al. Evidence for holeparticipation during the photocatalytic oxidation of the antibioticflumequine. J Photochem Photobio A: Chem,2008,193(2–3):139~145
    [189] Ishibashi K I, Fujishima A, Watanabe T, et al. Quantum yields ofactive oxidative species formed on TiO2photocatalyst. JPhotochem Photobio A: Chem,2000,134(1–2):139~142
    [190] Jeanmarie H. Heterogeneous photocatalysis: fundamentals andapplications to the removal of various types of aqueouspollutants. Catal Today,1999,53(1):115~129.
    [191] Castillo N C, Ding L, Heel A, et al. On the photocatalyticdegradation of phenol and dichloroacetate by BiVO4: the need ofa sacrificial electron acceptor. J Photochem Photobio A: Chem,2010,216(2–3):221~227
    [192] Wang X, Yu J C, Ho C, et al. Photocatalytic activity of ahierarchically macro/mesoporous titania. Langmuir,2005,21(6):2552~2559
    [193] Zhang Z, Wang W, Shang M, et al. Photocatalytic degradation ofrhodamine B and phenol by solution combustion synthesizedBiVO4photocatalyst. Catal Comm,2010,11(11):982~986
    [194] Ni M, Leung M K H, Leung D Y C, et al. A review and recentdevelopments in photocatalytic water-splitting using for hydrogenproduction. Rene Sust Ener Rev,2007,11(3):401~425
    [195] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysisin nitrogen-doped titanium oxides. Science,2001,293(5528):269~271
    [196] Horikoshi S, Hojo F, Hidaka H, et al. Environmental remediationby an entegrated microwave/UV illumination technique.8. fate ofcarboxylic acids, aldehydes, alkoxycarbonyl and phenolicsubstrates in a microwave radiation Ffield in the presence of TiO2particles under UV irradiation. Envir Sci Tech,2004,38(7):2198~2208
    [197] Biancoprevot A, Baiocchi C, Brussino M C, et al. Photocatalyticdegradation of acid blue80in aqueous solutions containing TiO2suspensions. Envir Sci Tech,2001,35(5):971~976
    [198] Vinodgopal K, Wynkoop D E, Kamat P V. Environmentalphotochemistry on semiconductor surfaces: photosensitizeddegradation of a textile azo dye, acid orange7, on TiO2particlesusing visible light. Envir Sci Tech,1996,30(5):1660~1666
    [199] Yu J, Zhang Y, Kudo A. Synthesis and photocatalyticperformances of BiVO4by ammonia co-precipitation process. JSolid State Chem,2009,182(2):223~228
    [200] Yu J, Kudo A. Effects of structural variation on the photocatalyticperformance of hydrothermally synthesized BiVO4. Adv FuncMater,2006,16(16):2163~2169
    [201] Zhang X, Zhang Y, Quan X, et al. Preparation of Ag dopedBiVO4film and its enhanced photoelectrocatalytic (PEC) abilityof phenol degradation under visible light. J Hazard Mater,2009,167(1–3):911~914
    [202] Kohtani S, Hiro J, Yamamoto N, et al. Adsorptive andphotocatalytic properties of Ag-loaded BiVO4on the degradationof4-n-alkylphenols under visible light irradiation. Catal Comm,2005,6(3):185~189
    [203] Kyung H, Lee J, Choi W. Simultaneous and synergisticconversion of dyes and heavy metal ions in aqueous TiO2suspensions under visible-light illumination. Envir Sci Tech,2005,39(7):2376~2382
    [204] Sakkas V A, Arabatzis I M, Konstantinou I K, et al. Metolachlorphotocatalytic degradation using TiO2photocatalysts. Appl CatalB: Envir,2004,49(3):195~205
    [205] Chen Y, Yang S, Wang K, et al. Role of primary active species andTiO2surface characteristic in UV-illuminated photodegradation ofacid orange7. J Photochem and Photobio A: Chem,2005,172(1):47~54
    [206] Kim S, Choi W. Kinetics and mechanisms of photocatalyticdegradation of (CH+3)nNH4-n(0≤n≤4) in TiO2Suspension: therole of OH radicals. Envir Sci Tech,2002,36(9):2019~2025
    [207] Herrmann J M, Tahiri H, Aitichou Y, et al. Characterization andphotocatalytic activity in aqueous medium of TiO2and Ag-TiO2coatings on quartz. Appl Catal B: Envir,1997,13(3–4):219~228
    [208] Vamathevan V, Amal R, Beydoun D, et al. Photocatalytic oxidationof organics in water using pure and silver-modified titaniumdioxide particles. J Photochem and Photobio A: Chem,2002,148(1–3):233~245
    [209] Zhang H, Wang G, Chen D, et al. Tuning photoelectrochemicalperformances of Ag TiO2nanocomposites viareduction/oxidation of Ag. Chem Mater,2008,20(20):6543~6549
    [210] Legrini O, Oliveros E, Braun A M. Photochemical processes forwater treatment. Chem Rev,1993,93(2):671~998
    [211] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation ofcyanide and sulfite in aqueous solutions at semiconductorpowders. J Phys Chem,1977,81(15):1484~1488
    [212] Shimodaira Y, Kato H, Kobayashi H, et al. Photophysicalproperties and photocatalytic activities of bismuth molybdatesunder visible light irradiation. J Phys Chem B,2006,110(36):17790~17797
    [213] Zhou J, Zou Z, Ray A K, et al. Preparation and characterization ofpolycrystalline bismuth titanate Bi12TiO20and its photocatalyticproperties under visible light irradiation. In Eng Chem Res,2007,46(3):745~749
    [214] Kudo A, Hijii S. H2or O2evolution from aqueous solutions onlayered oxide photocatalysts consisting of Bi3+with6s2configuration and d0transition metal ions. Chem Lett,1999,28(10):1103~1104
    [215] Tang J, Zou Z, Ye J H. Photocatalytic decomposition of organiccontaminants by Bi2WO6under visible light irradiation. CatalLett,2004,92(1):53~56
    [216] Zhang C, Zhu Y. Synthesis of square Bi2WO6nanoplates ashigh-activity visible-light-driven photocatalysts. Chem Mater,2005,17(13):3537~3545
    [217] Fu H, Zhang L, Yao W, et al. Photocatalytic properties ofnanosized Bi2WO6catalysts synthesized via a hydrothermalprocess. Appl Catal B: Envir,2006,66(1–2):100~110
    [218] Liu Z, Sun D D, Guo P, et al. One-Step fabrication and highphotocatalytic activity of porous TiO2hollow aggregates byusing a low-temperature hydrothermal method without templates.Chem Eur J,2007,13(6):1851~1855
    [219] Zhang Y C, Tang J Y, Zhou W D. Green hydrothermal synthesisand optical properties of cuprous bromide nanocrystals. MaterChem Phys,2008,108(1):4~7
    [220] Yin M, Li Z, Kou J, et al. Mechanism investigation of visiblelight-induced degradation in a heterogeneous TiO2/EosinY/Rhodamine B system. Envir Sci Tech,2009,43(21):8361~8366
    [221] Li W, Bai Y, Liu C, et al. Highly thermal stable and highlycrystalline anatase TiO2for photocatalysis. Envir Sci Tech,2009,43(14):5423~5428
    [222] Crane M, Frost R L, Williams P A, et al. Raman spectroscopy ofthe molybdate minerals chillagite (tungsteinian wulfenite-I4),stolzite, scheelite, wolframite and wulfenite. J Raman Spec,2002,33(1):62~66
    [223] Zhang L W, Wang Y J, Cheng H Y, et al. Synthesis of porousBi2WO6thin films as efficient visible-light-active photocatalysts.Adv Mater,2009,21(12):1286~1290
    [224] Tang J, Zou Z, Ye J H. Effects of substituting Sr2+and Ba2+forCa2+on the structural properties and photocatalytic behaviors ofCaIn2O4. Chem Mater,2004,16(9):1644~1649
    [225] Wang X, Yu J C, Hou Y, et al. Three-dimensionally orderedmesoporous molecular-sieve films as solid superacidphotocatalysts. Adv Mater,2005,17(1):99~102
    [226] Ishibashi K I, Fujishima A, Watanabe T, et al. Detection of activeoxidative species in TiO2photocatalysis using the fluorescencetechnique. Electrochem Comm,2000,2(3):207~210
    [227] Xiang Q, Yu J, Wong P K. Quantitative characterization ofhydroxyl radicals produced by various photocatalysts. J CollInter Sci,2011,357(1):163~167
    [228] Zhu S, Xu T, Fu H, et al. Synergetic effect of Bi2WO6photocatalyst with C60and enhanced photoactivity under visibleirradiation. Envir Sci Tech,2007,41(17):6234~6239
    [229] Fu H, Yao W, Zhang L, et al. The enhanced photoactivity ofnanosized Bi2WO6catalyst for the degradation of4-chlorophenol. Mater Res Bull,2008,43(10):2617~2625
    [230] Chu W, Choy W K. The mechanisms of rate enhancing andquenching of trichloroethene photodecay in the presence ofsensitizer and hydrogen sources. Water Research,2002,36(10):2525~2532
    [231] In S, Orlov A, Berg R, et al. Effective visible light-activatedB-doped and B,N-codoped TiO2Photocatalysts. J Ame ChemSoc,2007,129(45):13790~13791
    [232] Xu A W, Gao Y, Liu H Q. The preparation, characterization, andtheir photocatalytic activities of rare-earth-doped TiO2nanoparticles. J Catal,2002,207(2):151~157
    [233] Kim N, Vannier R N, Grey C P. Detecting different oxygen-ionjump pathways in Bi2WO6with1-and2-dimensional17O MASNMR spectroscopy. Chem Mater,2005,17(8):1952~1958
    [234] Xu Y, Schoonen M A A. The absolute energy positions ofconduction and valence bands of selected semiconductingminerals. Ame Mine,85(3-4):543~556
    [235] Hameed A, Montini T, Gombac V, et al. Surface phases andphotocatalytic activity correlation of Bi2O3/Bi2O4-xnanocomposite. J Ame Chem Soc,2008,130(30):9658~9659
    [236] Shang M, Wang W, Zhang L, et al.3D Bi2WO6/TiO2hierarchicalheterostructure: controllable synthesis and enhanced visiblephotocatalytic degradation performances. J Phys Chem C,2009,113(33):14727~31.
    [237] Zhang L, Wong K H, Chen Z, et al. AgBr-Ag-Bi2WO6nanojunction system: a novel and efficient photocatalyst withdouble visible-light active components. Appl Catal A: General,2009,363(1–2):221~229
    [238] Chai S Y, Kim Y J, Jung M H, et al. HeterojunctionedBiOCl/Bi2O3, a new visible light photocatalyst. J Catal,2009,262(1):144~149
    [239] Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2and CdS/TiO2heterojunctions as an available configuration for photocatalyticdegradation of organic pollutant. J Photochem and Photobio A:Chem,2004,163(3):569~580
    [240] Barreca D, Morazzoni F, Rizzi G A, et al. Molecular oxygeninteraction with Bi2O3: a spectroscopic and spectromagneticinvestigation. Phys Chem Chem Phys,2001,3(9):1743~1749
    [241] Morgan W E, Stec W J, Vanwazer J R. Inner-orbitalbinding-energy shifts of antimony and bismuth compounds.Inorg Chem,1973,12(4):953~955
    [242] Kreidler B. Multimetallic catalysts in organic synthesis. editedby masakatsu shibasakiand yoshinori yamamoto. Ange Chem Inter Ed,2005,44(9):1295~1296
    [243] Si R, Zhang Y W, You L P, et al. Rare-earth oxidenanopolyhedra, nanoplates, and nanodisks. Ange Chem Inter Ed,2005,44(21):3256~3260
    [244] Kim W T, Kim C D. Optical energy gaps of beta-In2S3thin filmsgrown by spray pyrolysis. J Appl Phys,1986,60(7):2631~2633
    [245] Bian Z, Zhu J, Wang S, et al. Self-assembly of active
    Bi2O3/TiO2visible photocatalyst with ordered mesoporous
    structure and highly crystallized anatase. J Phys Chem C,2008,
    112(16):6258~6262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700