用户名: 密码: 验证码:
北京山区森林景观格局及其尺度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京山区是北京郊区的重要组成部分,是环绕北京市的天然屏障,森林主要分布在山区,而森林质量的好坏直接影响到北京地区生态系统的平衡和稳定。本文通过对北京山区森林景观组成、结构和空间格局的定量描述以及多尺度分析,从景观角度揭示了森林类型空间结构及其空间变化的规律性和尺度效应,通过对景观破碎化、异质性和分布特征的研究,为森林景观规划、森林景观生态系统优化提供了理论参考,同时对改善北京山区森林结构,更好地实现森林空间布局的优化配置,发挥城市林业的生态功能等方面都具有重要的现实意义。
     本文在查阅了大量国内外关于森林景观和景观尺度方面文献的基础上,结合研究区域的特色,选取北京山区森林景观空间格局、景观尺度下森林类型地形分异以及森林景观尺度效应三个方面作为主要研究内容,以景观生态学为理论基础,采用多期遥感影像,结合历史资料(各类森林调查数据)和样地实测资料,充分利用遥感技术、地理信息系统技术、数量化格局分析技术、空间地统计学技术等多种研究方法,对北京山区森林景观格局及其尺度效应进行了系统研究。主要研究结论如下:
     (1)通过对北京山区森林景观的数量化格局分析显示:在斑块类型水平和景观水平下,北京山区针叶林、阔叶林、针阔混交林和灌木林四类森林景观的组成、结构和空间分布格局极不均衡,空间异质性特征明显。
     (2)通过北京山区森林景观格局地形因子分异研究表明:随着海拔高度和局部地形特征(坡向、坡度)变化,森林植被也随之发生有规律的变化,而且在不同地形因子分级水平下影响程度有所不同,呈明显地规律性分布。
     (3)通过对怀柔和门头沟试验区进行线格局抽样及信息熵指数的计算发现:各类森林景观在不同的样线上反映出随尺度变化大体一致的变化趋势,即随着样段从小到大变化,信息熵指数值从小逐渐变大,最终达到各自的最大值;各景观组分均存在一个最大异质性表现尺度,在这个尺度之下,组分在样线上的分布是不均匀的,表现出一定的宏观异质性特征;超过这个尺度之后,这种不均匀特征作为一种细节被掩盖,组分在样线上的分布趋于均匀,表现为微观异质性特征。
     (4)通过对怀柔和门头沟试验区进行网格局抽样及孔隙度指数分析发现:在不同尺度下,孔隙度指数值越高,森林景观组分空间分布的不均匀程度越高,表现为宏观异质性特征;孔隙度指数值越低,其景观组分在其研究范围内空间分布均匀,表现为微观异质性特征。
     孔隙度指数的排序与在该尺度下各森林景观组分覆盖率大小排序相反,因而根据试验计算的孔隙度指数值可以研究各森林景观组分的覆盖率随空间尺度变化的情况。随着尺度逐渐变大,孔隙度指数反映景观覆盖度的精确程度随之降低。
     随着分析尺度逐渐增大,各森林景观类型标准孔隙度指数均表现出减小的趋势,但不同景观组分标准孔隙度指数随尺度变化的速度是不同的,反映出不同研究区域不同森林景观类型对尺度效应的敏感性差异。
     (5)通过对不同尺度下森林景观格局的空间异质性及Kriging插值(由点格局插值为面格局)研究发现:实验区森林景观多样性的空间分布具有各向异性,其空间依赖性和空间异质性水平在不同的方向上差异显著,即随着幅度增大,出现明显各向异性的步长值逐渐增大;而且在不同幅度下表现出了相似的变化趋势。不同尺度下森林景观多样性指数插值结果均能够反映景观多样性的空间分布格局,但其结果的详细和准确程度有所不同,在小尺度下不同森林景观多样性指数估计值形成的斑块非常破碎,随着尺度增加,森林景观多样性格局的复杂程度趋于简单,空间变化减少,估计值相同的区域连通性逐渐增强。表明小尺度下通常包括更多的细节,随着观测尺度的增大,在大尺度下部分细节逐渐被淹没,趋于宏观异质性。
     本文创新点主要体现在三个方面:(1)应用数量化格局分析理论对北京山区的森林景观格局和空间分布进行了较全面的分析和研究。(2)采用信息熵法、孔隙度指数和空间地统计学三种尺度分析方法,分别从线格局、网格局以及由点格局插值为面格局几个不同角度和层面对北京山区森林景观格局进行尺度效应研究。(3)选择森林景观多样性指数作为区域化变量,引入地统计学方法对空间异质性及尺度效应进行探索性研究方面具有一定理论和实践意义。
Beijing mountain area is an important part of Beijing suburb and it is a natural barrier surrounding Beijing city. The forest quality has a direct impact on the balance and stability of Beijing ecological system. Based on the quantitative description and analysis of the effect scale of forest landscape composition, structure, and spatial pattern in Beijing mountain area, the thesis clarifies the mountain forest resources, reveals the spatial structure of forest types as well as the regular pattern and scale effect of spatial changes from the perspective of the landscape. It provides a theoretical reference for forest landscape planning and forest landscape ecosystems optimization. Meanwhile, it has an important significance to improve the forest structure of Beijing mountain area, realize the optimal allocation of forest spatial layout, and develop the ecological function of urban forestry.
    On the basis of a great deal of domestic and international documents, combining the characteristics of the study area, selecting forest landscape spatial pattern in Beijing mountain area, forest type terrain differentiation under the landscape scale, and forest landscape scale effect these three main aspects as the research content, taking landscape ecology as the theoretical basis, using the multi-remote sensing images, together with historical data (all types of forest survey data) and plots measured data, and making full use of a variety of methods, such as remote sensing technology, geographic information system technology, quantifying pattern analysis technology, space geographic statistical technology, the thesis systematically studies the forest landscape pattern and the scale effect in Beijing mountain area. Main conclusions are as follows:
    (1) With indices calculation of forest landscape spatial pattern in Beijing mountain area, and through the researches of patches type level and landscape level, it is found that: The composition,
    structure and spatial distribution pattern of in Beijing mountain area is extremely uneven, and the spatial heterogeneity characteristics is significantly. These four types of forest landscape are coniferous forest, broad-leaves forest, mixed broadleaf-conifer forest and shrub forest.
    (2) Through the research of terrain factor differentiation of forest landscape pattern in Beijing mountain area, it is found that: With the changes of altitude and local topographic features (aspect, slope), forest vegetation is also experiencing a regular changes, and the impacts are various from different terrain-grade level, which presents a significant distribution.
    (3) Based on line pattern sampling, by the calculation of information entropy indices in Huairou and Mentougou District, it is found that: All types of forest landscape in different line transects reflect the same general trend with the changes of scale. Namely, along the changes of sample plots from small to large, the information entropy indexes were from small value gradually became larger and ultimately achieved their maximum; every landscape elements had its maxima expression scale of heterogeneous. Under the scale, elements were uneven in the distribution of line transects, which showed certain features of macroheterogeneity; exceed the scale, this uneven features were concealed as a detail, elements were even in the distribution of line transects, which showed microheterogeneity feature.
    (4) Based on grid pattern sampling, by the analysis of lacunarity indices in Huairou and Mentougou District, it is found that: In different scales, the higher lacunarity indices are, the greater heterogeneity of spatial distribution for forest landscape elements is. This performance can be considered as macroheterogeneity characteristics. Oppositely, the lower lacunarity indices values are, the smaller heterogeneity of spatial distribution for forest landscape elements are. This performance can be considered as microheterogeneity characteristics.
    The order of lacunarity index is contrary to the order of coverage rate of the forest landscape elements in the same scale, consequently, lacunarity indices values in experiments can help to study the coverage rate of forest landscape elements changing with the spatial scale. With gradually larger scale, the precision that lacunarity indices reflect the landscape coverage. rate is poorer.
    With gradually increasing analysis scale, all standard lacunarity indices of forest landscape types show the decreasing trend. However, the changed speed of standards lacunarity indices for different landscape elements is different along scale changes, which reflect the sensitivity difference of scale
    effect to different types of forest landscape in different studies areas.
    (5) By the study of spatial heterogeneity in different scales of the forest landscape pattern and Kriging interpolation, it is found that: The spatial distribution of forest landscape diversity in experimental area was of anisotropy, its spatial dependence and the level of spatial heterogeneity are significant in different directions: With the increased extents, the lag interval of anisotropy gradually increased; also showed a similar trend under different ranges. Diversity index interpolation of forest landscape in different scale can reflect the spatial distribution pattern of landscape diversity; however the results are varied with different details and accuracies. In small-scale, estimated diversity indices of different forest landscape, the patches are broken. With the increased scale, the complexity of diversity pattern of forest landscape became simple, spatial variation is reduced; regional connectivity with the same estimated value of diversity index gradually strengthened. It showed that the details in small-scale is being gradually inundated in large-scale with the increasing observed scale, tended to be more macroheterogeneity.
    There are three innovations in the paper: (1) Analyze and compare forest landscape pattern and spatial distribution in Beijing mountain area by the application of pattern quantification analysis theory. (2) Study the different scale effect of forest landscape pattern in Beijing mountain area by the sampling of the line pattern, grid pattern and polygon pattern interpolated from point pattern, with the help of information entropy, lacunarity index and geostatistical analysis. (3) Considered forest landscape diversity index as a regionalized variables, it is carried out exploratory study of spatial heterogeneity and the scale effect by geostatistical methods, which has certain theoretical and practical significance.
引文
1.安树青.紫金山次生森林林窗的植被环境特征[J].应用生态学报,1997,8(3):245-249.
    2.白永平.甘肃省武威市绿洲生态环境综合评价及其整治方略[J].地理科学,2000,20(3):251-258.
    3.布仁仓,胡远满,常禹,李秀珍,贺红士.景观指数之间的相关分析[J].生态学报,2005,25(10):2764-2775.
    4.常学礼.景观空隙度指数在沙漠化研究中的应用[J].中国沙漠,1997,17(4):351-354.
    5.常学礼,邬建国.科尔沁沙地景观格局的特征分析[J].生态学报,1998,18(3):225-232.
    6.常学礼,张德干,杨持.农牧交错区沙地景观空间格局的空隙度分析[J].中国沙漠,1999,19(增刊 1):12-17.
    7.陈晋,陈云浩,史培军等.基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J].遥感学报,2001,5(6):416-423.
    8.陈晋,何春阳,史培军,等.基于变化向量分析的土地利用/覆盖变化动态监测(Ⅰ)-变化阈值的确定方法[J].遥感学报,2001,5(4):259-266.
    9.陈利顶,傅伯杰.黄河三角洲地区人类活动对景观结构的影响分析[J].生态学报,1996,16(4):337-345.
    10.陈梦.对生态系统及生物多样性等理论问题的探讨[J].南京林业大学学报(自然科学版),2003,27(4):30-34.
    11.陈梦,刘恩斌.生物多样性熵值测度指标的应用与分析[J].南京林业大学学报(自然科学版),2005,29(1):37-40.
    12.陈宁强,戴锦芳.人机交互式土地资源遥感解译方法研究[J].1998,13(2):15-20.
    13.陈述彭,赵英时.遥感地学分析[M].河北:测绘出版社,1990.
    14.陈文波,肖笃宁,李秀珍.景观空间分析的特征和主要内容[J].生态学报,2002,22(7):1135-1142.
    15.陈文波,肖笃宁,李秀珍.景观指数分类、应用及构建研究[J].应用生态学报,2002,13(1):121-125.
    16.陈云浩,李晓兵,史培军,周海丽.北京海淀区植被覆盖的遥感动态研究[J].植物生态学报,2001,25(5):588-593.
    17.丁圣彦,钱乐祥,曹新向,等.伊洛流域典型地区森林景观格局动态[J].地理学报,2003,58(3):354-362.
    18.丁艳梅,张继贤,王坚,刘正军.基于TM数据的植被覆盖度反演[J].测绘科学,2006,31(1):43-45.
    19.冯娜娜,李廷轩,张锡洲,王永东,夏建国.不同尺度下低山茶园土壤有机质含量的空间变异[J].生态学报,2006,26(2):349-356.
    20.傅伯杰.黄土区农业景观空间格局分析[J].生态学报,1995,15(2):113-120.
    21.傅伯杰.景观多样性分析及其制图研究[J].生态学报,1995,15(4):345-350.
    22.傅伯杰,陈利项,马克明,等.景观生态学原理及应用[M].北京:科学出版社.2001.
    23.傅伯杰,等.景观多样性的类型及其生态意义[J].地理学报,1996,51(5):454-461.
    24.龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征[J].土壤学报,1998,35(1):10-15.
    25.郭晋平.森林景观生态研究[M].北京:北京大学出版社.2001.
    26.郭晋平,王俊田,李世光.关帝山林区景观要素沿环境梯度分布趋势的研究[J].植物生态学报,2000,24(2):135-140.
    27.郭晋平,薛俊杰,李志强,等.森林景观恢复过程中景观要素斑块规模的变化[J].生态学报,2000,20(2):218-223.
    28.郭晋平,薛俊杰,李志强,等.森林景观恢复过程中景观要素斑块规模的动态分析[J].生态学报,2000,20(2):218-223.
    29.郭晋平,阳含熙,薛俊杰,等.关帝山森林景观异质性及其动态研究[J].应用生态学报,1990,10(2):167-171.
    30.郭晋平,阳含熙,张芸香.关帝山林区景观要素空间分布及其动态研究[J].生态学报,1999,19(4):468-473.
    31.郭晋平,张芸香.关帝山林区景观要素空间关联度与景观格局分析[J].林业科学,1999,35(5):28-33.
    32.郭晋平,张芸香.森林景观恢复过程中景观要素空间分布格局及其动态研究[J].生态学报,2002,22(12):2021-2029.
    33.郭晋平,张芸香.中国森林景观生态研究的进展与展望[J].世界林业研究,2003,16(5):46-49.
    34.郭泺,夏北成,刘蔚秋.地形因子对森林景观格局多尺度效应分析[J].生态学杂志,2006,25(8):900-904.
    35.郭泺,夏北成,余世孝.森林景观格局研究中的尺度效应[J].应用与环境生物学报,2006,12(3)304-307.
    36.国庆喜,肖少英.粒度效应对城-乡过渡区景观格局分析的影响[J].东北林业大学学报,2004,32(2):49-51.
    37.郭旭东,傅伯杰,马克明,等.河北省遵化平原土壤养分的时空变异特征-变异函数和Kriging插值分析[J].地理学报,2000,55(5):555-566.
    38.何东进,洪伟,胡海清,等.武夷山风景名胜区景观空间格局研究[J].林业科学,2004,40(1):174-179.
    39.何东进,洪伟,胡海清,等.武夷山风景名胜区景观要素斑块特征分析[J].应用与环境生物学报,2003,9(6):574-577.
    40.何东进,洪伟,胡海清,等.武夷山景区主要景观类型斑块大小分布规律及其等级效应分析[J].应用生态学报,2004,15(1):21-25.
    41.胡良军,邵明安.论水土流失研究中的植被覆盖度量指标[J].西北林学院学报,2001,16(1):40-43
    42.贾建军,程鹏,高抒.利用插值试验分析采样网格对粒度趋势分析的影响[J].海洋地质与第四纪地质,2004,24(3):135-141.
    43.菅利荣,李明阳.浙江临安森林景观动态的计算机模拟仿真[J].西北林学院学报,2001,16(3):42-45.
    44.蒋文伟,姜志林,刘安兴,等.浙江安吉山区森林景观空间格局动态分析[J].福建林学院学报,2002,22(2):150-153.
    45.姜小光,王长耀,王成.成像光谱数据的光谱信息特点及最佳波段选择—以北京顺义区为例[J].干旱区地理,2000,23(3):215-220.
    46.江子瀛.深圳-东莞地区快速城市化过程对植被覆盖动态变化的影响[D].北京:北京大学,2001.1-5.
    47.景贵和.1990.景观生态学的发展及其前景[J].地理科学,10(4):293-301.
    48.雷瑞德,刘建军,尚廉斌,等.主伐对森林景观结构和空间分布格局影响的研究[J].西北林学院学报,1996,11(增):53-64.
    49.李哈滨,王政权,王庆成.空间异质性定量研究理论与方法[J].应用生态学报,1998,9(6):651-657.
    50.李哈滨,伍业纲.景观生态学的数量研究方法[A]刘建国.当代生态学博论[C].北京:中国科学技术出版社,1992:209-233.
    51.李建利.人机交互式多波段数字图像解译技术方法研究[J].测绘标准,1999,15(2):13-15.
    52.李苗苗,吴炳方,颜长珍,周为峰.密云水库上游植被覆盖度的遥感估算[J].资源科学,2004,26(4):153-159.
    53.李淑娟,王明玉,李文友,等.东北林业大学帽儿山实验林场景观格局及破碎化分析[J].东北林业大学学报,2002,30(3):49-52.
    54.李双才,孔亚平,符素华.北京山区植被盖度季节变化规律模拟研究[J].北京师范大学学报(自然科学版),2002,38(2):273-278.
    55.李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11-17.
    56.李晓琴,孙丹峰,张凤荣,北京山区植被覆被率遥感制图与景观格局分析—以门头沟区为例[J].国土资源遥感,2003,55(1):23-28.
    57.李晓琴,孙丹峰,张凤荣.基于遥感的北京山区植被覆盖景观格局动态分析[J].山地学报,2003,21(3):272-280.
    58.李秀珍,布仁仓,常禹,等.景观格局指标对不同景观格局的反应[J].生态学报,2004,24(1):123-134.
    59.刘灿然,陈灵芝.北京地区植被景观中斑块大小的分布特征[J].植物学报,1999,41(2):199-205.
    60.刘灿然,陈灵芝.北京地区植被景观中斑块形状的指数分析[J].生态学报,2000,20(7):559-566.
    61.刘灿然,陈灵芝.北京地区植被景观斑块形状的分形分析[J].植物生态学报,2000,24(2):129-134.
    62.刘付程,史学正,于东升,等.太湖流域典型地区土壤全氮含量的空间变异特征[J].地理研究,2004,23(1):63-70.
    63.刘付程,史学正,于东升,潘贤章.基于地统计学和GIS的太湖典型地区土壤属性制图研究—以土壤全氮制图为例[J].土壤学报,2004,41(1):20-27.
    64.刘惠明,杨燕琼,罗富和,等.广州市帽峰山森林公园森林景观多样性研究[J].生态科学,2003,22(1):30-33.
    65.刘纪远.国家资源环境遥感宏观调查与动态监测研究[J].遥感学报,1997,1(31):225-230.
    66.刘纪远.中国资源环境遥感宏观调查与动态研究.北京:中国科学技术出版社.1996.
    67.刘建平,赵英时,孙淑玲.高光谱遥感数据最佳波段选择方法试验研究[J].遥感技术与应用,2001,16(1):7-13.
    68.刘先银,徐化成,郑均宝,等.河北省山海关林场景观格局与动态的研究[A]徐化成,郑均宝.封山育林研究[C].北京:中国林业出版社,1994:106-112.
    69.卢景龙.森林景观组成结构动态模拟及预测方法研究[J].山西农业大学学报,2002,22(3):234-238.
    70.陆元昌,陈敬忠,洪玲霞,雷相东.遥感影像分类技术在森林景观分类评价中的应用研究[J].林业科学研究,2005,18(1):31-35.
    71.陆元昌,洪玲霞,雷相东.基于森林资源二类调查数据的森林景观分类研究[J].林业科学,2005,41(2):21-29.
    72.罗格平,周成虎,陈曦.干旱区绿洲景观尺度稳定性初步分析[J].干旱区地理,2004,27(4):471-476.
    73.罗格平,周成虎,陈曦,等.区域尺度绿洲稳定性评价[J].自然资源学报,2004,19(4):519-524.
    74.吕一河,傅伯杰.生态学中的尺度及尺度转换方法[J].生态学报,2001,21(12):2097-2105.
    75.马克明,傅伯杰.北京东灵山地区景观格局及破碎化评价[J].植物生态学报,2000,24(3):320-326.
    76.马克明,傅伯杰.北京东灵山区景观类型空间邻接与分布规律[J].生态学报,2000,20(5):748-752.
    77.马克明,傅伯杰,周华锋.北京东灵山地区森林的物种多样性与景观格局多样性研究[J].生态学报,1999,19(1):1-7.
    78.马克明,祖元刚.植被格局的分形特征[J].植物生态学报,2000,24(1):111-117.
    79.马荣华,胡孟春.基于RS与GIS的自然生态环境评价—以海南岛为例[J].热带地理,2001,21(3):198-201.
    80.孟斌,王劲峰.地理数据尺度转换方法研究进展[J].地理学报,2005,60(2):277-288.
    81.孟健,马小明.Kriging空间分析法及其在城市大气污染中的应用[J].数学的实践与认识,2002,32(2):309-312.
    82.彭少麟.边缘效应对森林景观的影响[A]肖笃宁.景观生态学理论、方法及应用[C].北京:中国林业出版社,1991:181-185.
    83.邵国凡.应用地理信息系统模拟森林景观动态的研究[J].应用生态学报,1991,2(2):103-107.
    84.申卫军,邬建国,任海,等.空间幅度变化对景观格局分析的影响[J].生态学报,2003,23(11):2219-2231.
    85.沈泽昊,张新时,金义兴.地形对亚热带山地景观尺度植被格局影响的梯度分析[J].植物生态学报,2000,24(4):430-435.
    86.孙冰.广州市城市森林的空间特征与发展研究[J].城市环境与城市生态,1997,(2):50-54.
    87.覃凤飞,安树青,卓元午,等.景观破碎化对植物种群的影响[J].生态学杂志,2003,22(3):43-48.
    88.田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-333.
    89.王根绪,程国栋.荒漠绿洲生态系统的景观格局分析—景观空间方法与应用[J].干旱区研究,1999,16(3):6-11.
    90.王根绪,郭晓寅,程国栋.黄河源区景观格局与生态功能的动态变化[J].生态学报,2002,22(10),1587-1598.
    91.王劲峰,李连发,葛咏等.地理信息空间分析的理论体系探讨[J].地理学报,2000,55(1):92-103.
    92.王军,傅伯杰,邱扬等.黄土丘陵小流域土壤水分的时空变异特征[J].地理学报,2000,55(4):428-438.
    93.王清春,张向辉,张林艳,等.北京喇叭沟门自然保护区森林景观多样性研究[J].北京林业大学学报,2002,24(3):54-61.
    94.王思远,张增祥,赵晓丽,等.遥感与GIS技术支持下的湖北省生态环境综合分析[J].地球科学进展,2002,17(3):426-430.
    95.王涛,等.遥感图像人机交互判读系统的关键技术[J].中国科学院研究生院学报,1999,16(2):161-168.
    96.王宪礼,肖笃宁,布仁仓,等.1997.辽河三角洲湿地的景观格局分析[J].生态学报,17(3):317-323.
    97.王晓春,孙龙,周晓锋,等.黑龙江省森林景观的格局变化[J].应用与环境生物学 报,2003,9(2):111-116.
    98.王永军,李团胜,刘康,等.榆林地区景观格局分析及其破碎化[J].资源科学,2005,27(2):161-166.
    99.王政权.地统计学及其在生态学中的应用[M].北京:科学出版社,1999.35-149.
    100.邬建国.景观生态学—格局、过程、尺度与等级[M].北京:高等教育出版社,2000,99-119.
    101.肖斌,赵鹏大,侯景儒.地质统计学新进展[J].地球科学进展,2000,15(3):293-296.
    102.肖笃宁.城市景观空间格局变化的研究方法及实例[J].城市环境与城市生态,1990,(1):12-16.
    103.肖笃宁.景观生态学:理论、方法及应用[M].北京:中国林业出版社.1991.
    104.肖笃宁,布仁仓,李秀珍.生态空间理论与景观异质性[J].生态学报,1997,17(5),453-460.
    105.肖笃宁,孙中伟.城市景观空间格局变化的研究方法及实例[J].城市环境与城市生态,1990,3(1):12-16.
    106.徐化成.中国大兴安岭森林[M].北京:科学出版社,1998:183-202.
    107.徐化成,范兆飞,王胜.兴安落叶松原始林林木空间格局的研究[J].生态学报,1994,14(2):155-160.
    108.徐建华,方创琳,岳文泽.基于RS与GIS的区域景观镶嵌结构研究[J].生态学报,2003,23(2):365-375.
    109.徐建华,梅安新.20世纪下半叶上海城市景观镶嵌结构演变的数量特征与分形结构模型研究[J].生态科学,2002,21(2):131-137.
    110.徐建华,岳文泽,谈文琦.城市景观格局尺度效应的空间统计规律—以上海中心城区为例[J].地理学报,2004,59(6):1058-1067.
    111.徐岚,赵羿.利用马尔柯夫过程预测东陵区土地利用格局的变化[J].应用生态学报,1993,4(3):272-277.
    112.徐志高,王晓燕,雷瑞德.基于GIS的秦岭火地塘森林景观生物量变化趋势分析[J].中南林业调查规划,2003,22(4):14-17.
    113.杨国靖,肖笃宁.森林景观格局分析及破碎化评价[J].生态学杂志,2003,22(5):56-61.
    114.杨国靖,肖笃宁.中祁连山浅山区山地森林景观空间格局分析[J].应用生态学报,2004,15(2),269-272.
    115.杨学军,姜志林,刘茂松.溧阳地区森林景观的空间格局动态[J].南京林业大学学报,1999,23(3):63-66.
    116.岳天祥,刘纪远.生态地理建模中的多尺度问题[J].第四纪研究,2003,23(3):256-261.
    117.岳文泽,徐建华,徐丽华,等.不同尺度下城市景观综合指数的空间变异特征研究[J].应用生态学报,2005,6(11):2053-2059.
    118.臧润国等.长白山自然保护区阔叶红松林林隙更新的研究[J].应用生态学报,1998,9(2):349-353
    119.曾辉,郭庆华,刘晓东.景观格局空间分辨率效应的实验研究—以珠江三角洲东部地区为例[J].北京大学学报(自然科学版),1998,34(6):820-827.
    120.曾辉,江子瀛,许国雄,深圳市龙华地区快速城市化过程中的景观结构研究—Ⅰ城镇建设用地的结构及异质性分析[J].应用生态学报,2000,10(4):567-572.
    121.曾辉,孔宁宁,李书娟.基于边界特征的山地森林景观破裂化研究[J].生态研究,2002,22(11):1803-1801.
    122.曾辉,邵楠,郭庆华.珠江三角洲东部地区景观异质性研究[J].地理学报,1999,54(3):255-262.
    123.张吉先,陆军.红壤丘陵区生态系统的评价及其生态模型探讨[J].浙江林业科技,1998,18(6):54-57.
    124.张金屯,邱扬,郑凤英.景观格局的数量研究方法[J].山地学报,2000,18(4):346-352.
    125.张晓丽,游先祥.应用“3S”技术进行北京市森林立地分类和立地质量评价的研究[J].遥感学报,1998,2(4):292-296.
    126.张芸香,田双宝,任兆光,等.关帝山森林景观空间分布格局及动态研究[J].山西农业大学学报,1998,18(2):121-124.
    127.赵光,邵国凡,郝占庆,吴文春.长白山森林景观破碎的遥感探测[J].生态学报,2001,21(9)1393-1402.
    128.赵景柱.景观生态空间格局动态度量指标体系[J].生态学报,1990,10(2):182-186.
    129.赵淑清,方精云,唐志尧,等,洪湖湖区土地利用/土地覆盖时空格局研究[J].应用生态学报,2001,12(5):721-725.
    130.赵文武,傅伯杰,陈利顶.尺度推绎研究中的几点基本问题[J].地球科学进展,2002,17(6):906-908.
    131.赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    132.郑新奇,王爱萍.基于RS与GIS的区域生态环境质量综合评价研究—以山东省为例[J].环境科学学报,2000,20(4):489-493.
    133.祖元刚,赵则海,丛沛桐,等.兴安落叶松(Larix gmelinii)林林窗分布规律的小波分析研究[J].生态学报,1999,19(6):927-931.
    134. Allain C, Cloitre M. Characterizing the lacunarity of random and deterministic fractal sets[J].Physical Review A, 1991,44:3552-3558.
    135. Baker W L. A Review of Models of Landscape Change[J]. Landscape Ecology, 1989, 2:111-133.
    136. Benson B J, Mackenzie M D. Effects of sensor spatial resolution on landscape structure parameters[J].Landscape Ecology, 1995,10:113-120.
    137. Bian L, Butler R. Comparing effects of aggregation methods on statistical and spatial properties of simulated spatial data. Photogrammatic Engineering and Remote Sensing, 1999, 65:73-84.
    138. Bian L, Walsh S J. Scale dependencies of vegetation and topography in a mountainous environment of Montana[J]. Professional Geographer, 1993, 45:1-11.
    139. Burrough P A. GIS and geostatistics: essential partners for spatial analysis[J]. Environmental and Ecological Statistics,2001,8(4): 361-377.
    140. Burrough P A. Spatial aspects of ecological data[A]. In:Jongman R H G, Ter Braak C J FtC], Cambridge University Press,1995:213-265.
    141. Cattle J A, Mcbrantney A B, Minasny B. Kriging Method Evaluation for Assessing the Spatial Distribution of Urban Soil Lead Contamination[J]. Journal of Environmental Quality,2002, 31:1576-1588.
    142. Costanza R, Maxwell T. Resolution and predictability:An approach to the scaling problem[J]. Landscape Ecology, 1994, 9:47-57.
    143. Crawley M J, Harral J E. Scale dependence in plant biodiversity [J]. Science, 2001, 291:864-868.
    144. Dale M R T,Mah M. The use of wavelets for spatial pattern analysis in ecology[J]. Journal of Vegetation Science, 1998, 9:805-814.
    145. Dale M R T. Spatial Pattern Analysis in Plant Ecology[M]. Cambridge University Press, 1999.
    146. Delcourt H R, Delcourt P A, Webb T. Dynamic plant ecology: the spectrum of vegetation change in space and time[J], Quaternary Science Review, 1983, 1:153-175.
    147. Dungan J L, Perry J N, Dale M R T, et al. A balance view of scale in spatial statistical analysis[J]. Ecography,2002,25:626-640.
    148. Forman R, Godron. Landscape Ecology[M]. New York: Wiley & Sons. 1986.
    149. Forman R. Land Mosaics, the Ecology of Landscapes and Regions[M]. Cambridge: Cambridge University Press. 1995.
    150. Forman R T T. Ecologically sustainable landscapes: The role of spatial configuration [A], In: Zonneveld I S, Forman R T T, eds. Changing Landscape: An Ecological Perspective[C]. New York: Springer Verlag, 1990: 261-277.
    151. Forman RTT. Some general principles of landscape and regional ecology [J]. Landscape Ecology, 1995,10:133-142.
    152. Forman R T T. The ethics of isolation:the spread of disturbance and landscape ecology [A].In:M Turner ed,Landscape heterogeneith and disturbance[C]. Springer-Verlag, New York. 1987:213-229.
    153. Forman R T T. The new jersey pine barrens, an ecological mosaic [A]. In: Forman R T T. ed. Pine Barrens: Ecosystem and Landscape[C]. New York: Academic Press, 1979: 569-585.
    154. Fortin M J. Effects of quadrat size and data measurement on the detection of boundaries[J]. Journal of Vegetation Science, 1999, 10:43-50.
    155. Franklin J F. The fundamentals of ecosystem management with applications in the Pacific Northwest[A]. In:Aplet G H, Johnson N, Olson J T, Sample V A(eds), Defining sustainable forestry[C]. Island Press, Washington DC. 1993,127-145.
    156. Franklin J F, Forman R T T. Creating landscape pattern by forest cutting:ecological consequences and principles[J]. Landscape Ecology, 1987, 1:5-18.
    157. Gefen Y.Mandelbrot B B. Phase transitions on fractals:III. Infinitely ramified lattices[J]. Journal Physics A: Mathematical and General,1984,17:1277-1289.
    158. Gergel S E, Turner M G, Kratz T K. Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers[J]. Ecological Applications, 1999,9(4): 1377-1390.
    159. Goovaerts P, Webster R, Dubois J P. Assessing the Risk of Soil Contamination in the Swiss Jura Using Indicator Geostatistics[J]. Environmental and Ecological Statistics, 1997(4): 31-48.
    160. Gosz J R, Sharpe P J H. Broad-scale concepts for interaction of climate, topography, and biota at biome transitions[J]. Landscape Ecology,1989,3:229-243.
    161. Hall F G, Botkin D B, Strebek D E, et al. Large-scale patterns in forest succession as determined by remote sensing[J]. Eology, 1991, (72): 628-640.
    162. Hall 0, Hay G J, Bouchard A, et al. Detecting dominant landscape objects through multiple scales:An integration of object-specific methods and watershed segmentation[J]. Landscape Ecology, 2004, 19:59-76.
    163. Harini N. Opposite trends in response for the shannon and Simpson indices of landscape diversity[J]. Applied Geography, 2002,22(2):175-186.
    164. Hay G, Marcean D J, Dube P, et al. A multiscale framework for landscape analysis: Object-specific analysis and upscaling[J]. Landscape Ecology,2001, 16:471-490.
    165. Isaaks E H, Srivastava R M. An Introduction to Applied Geostatistics[M]. New York. Oxford University Press, 1989.
    166. Jelinski D E, Wu J. The modifiable areal unit problem and implications for landscape ecology[J]. Landscape Ecology, 1996, 11:129-140.
    167. Jerry A Griffith, Edward A Martinko, Kevin P Price. Landscape structure analysis of Kansas at three scales[J]. Landscape and Urban Planning, 2000, (1):45-61.
    168. Jianguo Wu, Jelinski D E, Luck M et al. Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics[J]. Geographic Information Sciences, 2000, 6(1): 6-19.
    169. Journel A G,Hurijbrets C G. Mining Geostatistics[M]. London:Academic Press, 1978.
    170. Justice C O, Markham B L, Townshend J R G, et al. Spatial degradation of satellite data[J]. International Journal of Remote Sensing, 1989, 10:1539-1561.
    171. Kuuluvalnen T, Kiramo S, Kalliola R. Structure of a pristine Picea abies forest in northeastern Europe[J]. Journal of Vegetation Science, 1998,9: 563-574.
    172. Lam N S N, Quattrochi D A. On the issues of scale, resolution, and fractal analysis in the mapping sciences[J]. Professional Geographer, 1992, 44:88-98.
    173. Levin S A. The problem of pattern and scale in ecology[J]. Ecology, 1992,73: 1943-1967.
    174. LI H. Developing alternative forest cutting patterns: Assmilation approach[J]. Landscape Ecol., 1993,8 (1) : 63-75.
    175. Li H.Reynold J F. A simulation Experiment to quantify spatial heterogeneity in categorical maps[J]. Ecology, 1994, 75:2446-2455.
    176. Lin B,Yang Z R. A suggested lacunarity expression for Sierpinski carpets[J]. Joournal Physics A:Mathemation and General,1986, 19:49-52.
    177. MacArthur R H, Wilson E O. An equilibrium theory of insular ziigeography[J]. Evolution, 1963,17:73-87.
    178. Mandelbrot B B. The Fractal Geometry of Nature[M]. New York:W H Freeman, 1983.
    179. Marceau D J, Howarth P J, Gratto D J. Remote Sensing and the measurement of geographical entities in a forested environment 1. The scale and spatial aggregation problem [J]. Remote Sensing of Environment, 1994, 49:93-104.
    180. Matheron G. Principles of geostatistics[J]. Econ Geol, 1963, 58:1246-1266.
    181. McGarigal K.Marks B J. FRAGSTATS:Spatial Pattern Analysis Program for Quantifying Landscape Structure[M]. Report No. PNW-GTR-351, USDA-Forest Service, Pacific Northwest Research Station, Portland, 1995.
    182. Meisel J E, Turner M G. Scale detection in real and artificial landscapes using semivariance analysis[J]. Landscape Ecology, 1998,13:347-362.
    183. Moody A, Woodcock C E. Scale-dependent errors in the estimation of land-cover proportions:Implications for global land-cover datasets[J]. Photogrammatic Engineering and Remote Sensing,1994, 60:585-594.
    184. O'Neil R V, Deangelis D L, Waide J B, et al. A hierarchical concept of ecosystems[M]. New Jersey, Princeton: Princeton University Press. 1986.
    185. O'Neill R V.Gardner R H,Milne B T, et al. Heterogeneity and Spatial Hierarchies[A]. In:Kolasa J and Pickett S T A eds. Ecological Heterogeneity[C]. New York:Springer-Verlag, 1991. 85-96.
    186. O'Neill R V, Hunsaker C T, Timmins S P, et al. Scale problems in reporting landscape pattern at the regional scale[J]. Landscape Ecology, 1996,11:169-180.
    187. Pearson S M. The spatial extent and relative influence of landscape-level factors on wintering bird populations [J]. Landscape Ecology, 1993, 1:3-18
    188. Plotnick R E, Gardner R H, O'Neill R V. Lacunarity indices as measures of landscape texture[J]. Landscape Ecology,1993, (8):201-211.
    189. Plotnick R E. The ecological play and the geological theater. Palaios, 1996, 11: 207-208.
    190. Qi Y, Wu J. Effects of changing spatial resolution on the results of landscape pattern analysis using spatial autocorrelation indices[J]. Landscape Ecology, 1996, 11: 39-49.
    191. Ripple W J, Bradshaw G A, Spies T A. Measuring forest landscape patterns in the Cascade Range of Oregon, USA[J]. Biological Conservation,1991,57:73-88.
    192. Robertson G P,Gross K L. Assessing the heterogeneity of belowground resources: Quantifying pattern and scale[A]. In:Caldwell M M, Pearcy R W, ed. Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above-and-Belowground[M]. San Diego: Academic Press,1994:237-253.
    193. Robertson G P, Huston M A, Evans F C, et al. Spatial variability in a successional plant community:Patterns of nitrogen availability[J]. Ecology, 1988, 69:1517-1524.
    194. Rossi R E, Mulla D J, Journel A G, et al. Geostatistical tools for modeling and interpreting ecological spatial dependence[J]. Ecological Monographs, 1992, 62:277-314.
    195. Schneider D C. Quantitative Ecology. Spatial and Temporal Scaling[M]. San Diego, California: Academic Press. 1994.
    196. Schneider D C. The rise of the concept of scale in ecology[J]. Bioscience,2001, 51(7):545-553.
    197. Sen A K. Large sample-size distributions of statistics used in testing for spatial correlation[J]. Geographical Analysis, 1976, 9:175-184.
    198. Stephen J Walsh, David R Butler, George P Malanson. An overview of scale, pattern, process relationships in geomorphology: a remote sensing and GIS perspective[J]. Geomorphology,1998, (21):183-205.
    199. Swanson F J, Franklin J F, Sedell J R. Landscape Patterns, Disturbance, and Management in the Pacific Northwest, USA [A]. In: Zonneveld I S, Forman R T T eds. Changing Landscape: An Ecological Perspective[C].Springer-Verlag, New York, 1990:191-211.
    200. Townshend J R G, Justice C O. Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations[J]. International Journal of Remote Sensing, 1988, 9:187-236.
    201. Townshend J R G, Justice C 0. The spatial variation of vegetation changes at very coarse scales[J]. International Journal of Remote Sensing, 1990, 11:149-157.
    202. Turner M G. A spatial simulation model of land use change in Georgia[J].Applied Mathematics and Computation, 1988, 27:39-51.
    203. Turner M G. Landscape Ecology: the Effect of Pattern on Process[J].Annual Review of Ecology Systematics, 1989, (20):171-197.
    204. Turner M G. Spatial simulation of landscape changes in Georgia: A comparison of 3 transition models[J]. Landscape Ecology, 1987,1:29-36.
    205. Turner M G, Dale V H, Gardner R H. Predicting across scales:Theory development and testing[J]. Landscape Ecology, 1989, 3:245-252.
    206. Turner M G, Gardner R H. Quantitative Methods in Landscape Ecology[M]. New York:Springer-Verlag.1990.
    207. Turner M G, Gardner R H, O'Neill R V. Landscape Ecology in Theory and Practice[M]. New York:Springer-Verlag. 2001, 22-34.
    208. Turner M G, O'Neill R V, Gardner R H, et al. Effects of changing spatial scale on the analysis of landscape pattern[J]. Landscape Ecology, 1989, 3:153-162.
    209. Webster R. Quantitative spatital analysis of soil in the field[J]. Advance in Soil Science, 1985, (3) :2-66.
    210. Webster R, Nortcliff S. Improved Estimation of Micro-nutrients in Hectare Plots of the Sonning Series[J].J Soil Sci, 1984(35):667-672.
    211. White J G, Welch R M, Norvell W A. Soil zinc map of the USA using GIS[J]. Soil Sci. Soc. Am. J. 1997,61:185-194.
    212. Wickham J D,Riitters K H. Sensitivity of landscape metrics to pixel size[J]. International Journal of Remote Sensing,1995, 16:3585-3595.
    213. Withers M A, Meentemeyer V. Concepts of scale in landscape ecology[A]. In:Klopatek J M and Gardner R H eds. Landscape Ecological Analysis: Issues and Applications[C]. New York: Springer, 1999. 205-252.
    214. Wu J, Shen W, Sun W, et al. Empirical patterns of the effects of changing scale on landscape metrics[J]. Landscape Ecology, 2002,17:761-782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700