用户名: 密码: 验证码:
粉煤灰固化淤泥路用性能及填筑技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程加快,交通基础设施建设正处于快速发展的黄金时期,随之引起的环保问题和资源紧缺问题也日益突出。在保证公路建设可持续发展的同时,又能解决环保和资源紧缺问题的有效措施已被日渐关注。
     本文将公路路堤填筑材料紧缺问题与淤泥传统抛填产生的环境污染相结合,将粉煤灰加入淤泥,使淤泥固化,通过室内试验研究淤泥粉煤灰固化剂的击实特性、强度特性和水稳定性,并分析了击实延迟和聚丙烯纤维对固化淤泥力学性质的影响。依托江苏省231省道兴化至泰州段(兴泰公路),系统分析粉煤灰固化淤泥填筑路堤的施工技术,主要取得以下研究成果:
     (1)粉煤灰固化淤泥的击实试验结果表明:淤泥的最大干密度随粉煤灰掺入量增加而减小,最优含水量随粉煤灰掺入量增加而增加;同时,随着击实延迟时间增加,固化淤泥的最大干密度减小、最优含水量增加;固化淤泥的CBR值随粉煤灰含量的增加而增大。
     (2)粉煤灰固化淤泥的三轴试验结果表明:固化淤泥的破坏形式随含水量减小、粉煤灰含量增大,表现为脆性破坏;在粉煤灰固化淤泥中掺加聚丙烯纤维后,试样表现为塑性变形特性;固化淤泥的强度参数(c和φ)随龄期、粉煤灰含量、纤维含量增大而增大;淤泥和粉煤灰在均匀搅拌后,若不及时进行击实,随着时间延迟,击实试样的强度降低;固化淤泥试样在非饱和状态下浸水后,随着时间的增长,含水量变大,强度减小。
     (3)现场路堤填筑和质量检测结果表明:淤泥经掺加粉煤灰固化后强度明显提高,含水量、压实度等路用性能指标满足路堤填筑材料要求;在现场施工过程中,应严格按照灰土比换算出的松铺高度要求进行淤泥土和粉煤灰填筑高度量测,控制好灰土比,防止粉煤灰含量过大产生的起皮现象和粉煤灰含量不达标而引起的强度降低问题;同时,应将土颗粒尽力打碎,使得淤泥与粉煤灰充分接触,增大水化反应面积。
With the acceleration of our country urbanization process, traffic infrastructure construction is in the rapid developing golden period,then the environmental protection problem and resources shortage problem followed by it is increasingly outstanding. Highway construction in ensuring sustainable development, while solving the problem of environmental protection and resource scarcity of effective measures at the same time have been of increasing concern.
     This paper combines the environmental pollution produced by muddy soil traditional parabolic filling and the inadequacy problem of highway embankment filling materials. We added fly-ash to muddy soils and then solidify muddy soils. By tests we research the compaction characteristics, unconfined compression strength, time delay and water stability of the muddy soil fly-ash curing agent and analyze the effects of compaction delay and polypropylene-fiber on solidified muddy soil. And we systematically analyze the construction technology of the muddy soil fly-ash embankment backfill and constructionfilling embankment which relies on the project of Xing-Tai Road in Jiangsu province .Then we obtain the research results as follows:
     1. Compaction test of solidified muddy soil by fly-ash shows that the maximum dry density of muddy soil and fly-ash mixture increased with fly-ash decreases, optimal water content of the mixture increases with the fly-ash increases. After the incorporation of fly-ash sludge, with the increase in delay time tamping, the maximum dry density of improved soils decreases; the optimal w increased. CBR value of the soils increases as the curing agent of fly-ash content increases.
     2. Triaxial test of solidified muddy soil by fly-ash shows that improved soils tend to show the trend of brittle failure with water content reduced and fly-ash content increased. c andφof the soils increases with increases of age, fly-ash content, fiber content increases. If the improved soil is not timely tamping, its strength will become lower and lower with the time delay. And the strength of solidified soils in non-saturated silt under the water becomes lower with w increase.
     3. The use of solidified muddy soils in construction site showed that the strength of waste muddy soils solidified by fly-ash significantly improves. And engineering parameters like water content and degree of compaction meet the requirements of embankment materials. And we should control the height of muddy soils and fly-ash during construction strictly, and we should make every effort to smash the soil particles to increase the size of the hydration reaction by making full contact with the soils and fly-ash.
引文
[1]徐强.污泥处理处置技术及装置[M].北京:化学工业出版社, 2003.
    [2]陈萍,张振营,李小山等.废弃淤泥作为再生资源的固化技术与工程应用研究[J].浙江水利科技, 2006, 32(11): 1-3.
    [3]朱伟,刘汉龙,高玉峰.工程废弃土的再生资源利用技术[J].再生资源研究, 2001, 7(6):32-35.
    [4]朱伟,张春雷,高玉峰等.疏浚泥处理再生资源技术的现状[J].环境科学与技术, 2002, 25(4):39-41.
    [5]朱伟.《疏浚泥综合利用技术》项目研究报告[R].南京,河海大学, 2002.
    [6]杨永荻,汤怡新.疏浚土的固化处理技术[J].水运工程, 2001, 25(4):12-15.
    [7]朱伟,张春雷,高玉峰等.海洋疏浚泥固化处理土基本力学性质研究.浙江大学学报(工学版), 2005, 49(10): 1561-1565.
    [8]梁静,侯浩波,周旻等.改性淤泥土作堤岸填筑材料的试验研究[J].粉煤灰综合利用, 2006, 16(4): 31-33.
    [9]林安珍,郑荣跃,黄亦真.固化疏浚泥作为填方材料的试验研究[J].宁波大学学报(理工版), 2006, 18(4): 525-528.
    [10]张春雷,朱伟,李磊等.湖泊疏浚泥固化筑堤现场试验研究[J].中国港湾建设, 2007, 26(2): 27-29.
    [11]寺师昌明,田中洋光,光本司等.セメント系安定处理土の基本特性ヒ关ネタ研究[J].港湾技术研究所报告, 1980, 19(1): 33-57.
    [12]曾科林,朱伟,张春雷.现场水下浇筑对淤泥固化效果的影响[J].水利水运工程学报,2005, 14(3):54-58.
    [13]张义贵,丁如珍,缪林昌.淤泥类水泥土的强度特性试验研究[J].公路交通科技, 2004, 20(11): 27-29.
    [14]储诚富,洪振舜,刘松玉等.用似水灰比对水泥土无侧限抗压强度的预测[J].岩土力学, 2005, 26(4): 645-649.
    [15]范公俊.固化淤泥的收缩性质及其控制措施研究[D].河海大学硕士学位论文. 2007.
    [16]范公俊,朱伟,张春雷.固化淤泥收缩性质研究[C].第二届全国岩土与工程大会.北京:科学出版社, 2006: 348-352.
    [17]张春雷,朱伟,黄英豪等.固化淤泥三轴试验研究.第一届中国水利水电岩土力学与工程学术讨论会论文集, 2006: 246-248.
    [18]梁松,杨医博,莫海鸿.淤泥水泥土强度的预测方法研究[J].路基工程,2006, 21(5): 30-32.
    [19]范昭平,朱伟,张春雷.有机质含量对淤泥固化效果影响的试验研究[J].岩土力学, 2005, 26(8): 1327-1343.
    [20]范昭平.有机质对淤泥固化的影响机理及对策研究[D].河海大学硕士学位论文. 2004.
    [21]朱伟,冯志超,张春雷等.疏浚泥固化处理进行填海工程的现场试验研究[J].中国港湾建设, 2005, 24(10): 27-30.
    [22]刘玮,匡希龙,文彬栋等.锡太一级公路淤泥质土二次掺灰压实度试验及其处治方法[J].辽宁交通科技. 2005, 11(10): 23-25.
    [23]刘林牙,高柏松.石灰改良黏性土的物理特性研究[J].铁道建筑, 2007, 11(7): 58-60.
    [24]杨绪军,宋铭栋.生石灰对粘性土改良作用的研究[J].电力勘测, 1992, 20(12): 8-12.
    [25]魏华彬,张爱华,孙开武等.淤泥质土改性做路基应用研究[J].湖南交通科技, 2006, 4(12): 31-32,40.
    [26]王吉刚,阎长虹,夏梁斌等.淤泥质土改性试验研究[J].水文地质工程, 2007, 6(2): 121-125.
    [27]蔡奕,施斌,高玮等.纤维石灰土工程性质的试验研究[J].岩土工程学报. 2006, 27(10): 1283-1287.
    [28]王振军,翁优灵,杜少文等.矿渣粉加固粉土的理论分析及路用性能研究[J].工程地质学报. 2006, 13(5): 709-714.
    [29]刘振杰,余建星,景悦.淤泥粉煤灰混合土的工程性质与混合吹填试验研究[J].中国港湾建设, 2001, 20(5): 38-41.
    [30]姬凤玲,朱伟,张春雷.疏浚淤泥的土工材料化处理技术的试验与探讨[J].岩土力学, 2004, 25(12): 1999-2002
    [31]徐红,罗国煜.粉煤灰处理软土地基的试验研究.工程地质学报[J]. 2001, 8(3): 286-290.
    [32]林安珍.粉煤灰、水泥和石灰等填充集料与疏浚泥固化强度的关系研究[J]..粉煤灰, 2006, 12(3): 15-16.
    [33]贾苍琴,黄茂松,姚环.水泥-粉煤灰加固闽江口地区软粘土试验研究[J].同济大学学报(自然科学版), 2004, 32(7), 884-888.
    [34]朱书景,刘定军,侯浩波.改性海相淤泥工程特性试验研究[J].水运工程2007, 31(4): 17-22.
    [35]徐艳.滨海淤泥的快速固化研究[D].中国科学院研究生院硕士学位论文. 2007.
    [36]李玉华,吕炳南,张景成等.河底淤泥固化处理及相关试验[J].哈尔滨建筑大学学报, 1999, 6(12): 66-69.
    [37]朱伟,李明东,汤峻等.淤泥颗粒混合轻质土抗剪强度的影响因素[J].公路, 2007, 2(2): 7-10.
    [38]朱伟,曾科林,张春雷.淤泥固化处理中有机物成分的影响[J].岩土力学, 2008, 29(1): 33-36.
    [39]李志威,朱书景.改性淤泥做码头填筑材料试验研究[J].水运工程, 2006, 30(6): 85-88.
    [40]焦志斌,刘汉龙,蔡正银.淤泥质酸性土水泥土强度试验研究[J].岩土力学, 2005(增刊): 57-60.
    [41] Tang CS, Shi B, Gao W. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles and Geomembranes, 2007, 25(6): 194-202.
    [42]庄心善,王功勋,曾三海.工业废料加固土的试验研究[J].水泥工程, 2004, 10(4): 25-29.
    [43]周旻,侯浩波,李志威.疏浚淤泥固化改性的工程特性[J].工业建筑, 2006, 9(7): 35-38.
    [44]邵玉芳,何超,楼庆.西湖疏浚淤泥的固化试验[J].江苏大学学报(自然科学版), 2007, 27(5): 442-445.
    [45]杨云芳,陈萍,施萍萍.化学固化对淤泥颗粒粒径及含水率影响的试验研究[J].浙江理工大学学报, 2008, 24(1): 38-41.
    [46] Sezer A, Yilmaz H.R, Ramyar K. Utilization of a very high lime fly ash for improvement of Izmir clay [J]. Building and Environment, 2006, 20(6):150-155.
    [47] Lin D F, Lin K-L, Hung M-J. Sludge ash/hydrated lime on the geotechnical properties of soft soil [J]. Journal of Hazardous Materials. 2007, 145(8): 58-64.
    [48] Yong R N, Ouhadi V R. Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils [J]. Applied Clay Science. 2007, 35(9): 238-249.
    [49]黄新,周国钧.水泥加固土硬化机理初探[J].岩土工程学报. 1994, 16(1): l63-168.
    [50]钱觉时.粉煤灰特性与粉煤灰混凝土[M].科学出版社, 2002.
    [51] McCarthy G J, Solem J K, Manz O. Use of a database of chemical, mineralogical and physical fly ash and its utilization as a mineral admixture in concrete [J]. Materials Research Society Symposia Proceedings, 1990, 178(12): 3-31.
    [52] Herzog A, Mitchell J K. Reaction accompanying the stabilization of clag with cement. 42nd Annual Meeting of the Highway Research Board Washington D.C., 1963: 165-180.
    [53] Filz G M, Hodges D K, Weatherby D E, et al. Standardized definitionslaboratory procedures for soil-cement specimens applicable to the wet method of deep mixing [J]. Innovation in Grouting and Soil Improvement (GSP136), ASCE, 2005, 162(10): 1-13.
    [54]叶书麟,韩杰,叶观宝.地基处理与托换技术(第二版)[M].北京:中国建筑工业出版社, 1994.
    [55] Kamata H, Akutsu H. Deep mixing method for site experience [J]. Pro. of the Journal of Japanese Society of Soil Mechanical and Foundation Engineering, Tsuchi to Kiso, 1976, 24(12): 43-50.
    [56] Japan Cement Association. Soil improvement manual using cement stabilizes. 1994: 420- 424.
    [57]张奎鸿熊,安红平,申红平.沪杭高速公路(上海段)路堤材料CBR值以及相关因素研究.沪杭高速公路(上海段)学术论文集: 72-81.
    [58] Kolias S., Kasselouri-Rigopoulou V., Karahalios A. Stabilisation of clayey soils with high calcium fly ash and cement. Cement & Concrete Composites. 2005, 27(7): 301-313.
    [59]李文瑛,戴经梁.土壤加固剂加固土的研究[J].东北公路, 2003, 6(1): 34-36.
    [60] The Ameriean Soeiety for Testing and Materials. Standard Test Method for Shrinkage Factors of soils by the Wax Method. (ASTMD4943-2002) [S]. West Conshohoeken: ASTM, 2002.
    [61]王稉达.多雨潮湿地区电渗法处理过湿填料技术研究[D].昆明理工大学硕士学位论文. 2007.
    [62]习仲伟.我国交通隧道工程及施工技术进展[J].北京工业大学学报, 2005, 31(2): 141-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700